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Dipole excitation of collective modes in viscous two-dimensional electron systems
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We describe the structure of the time-harmonic electromagnetic field of a vertical Hertzian electric dipole
source radiating over an infinite, translation-invariant two-dimensional electron system. Our model for the
electron flow takes into account the effects of shear and Hall viscosities as well as an external static magnetic field
perpendicular to the sheet. We identify two wave modes, namely, a surface plasmon and a diffusive mode. In the
presence of an external static magnetic field, the diffusive mode combines the features of both the conventional
and Hall diffusion and may exhibit a negative group velocity. In our analysis, we solve exactly a boundary value
problem for the time-harmonic Maxwell equations coupled with linearized hydrodynamic equations for the flat,
two-dimensional material. By numerically evaluating the integrals for the electromagnetic field on the sheet, we
find that the plasmon contribution dominates in the intermediate-field region of the dipole source. In contrast,
the amplitude of the diffusive mode reaches its maximum value in the near-field region, and quickly decays with
the distance from the source. We demonstrate that the diffusive mode can be distinguished from the plasmon
in the presence of the static magnetic field, when the highly oscillatory plasmon is gapped and tends to disappear.
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I. INTRODUCTION

In metallic conductors with low disorder and weak
electron-phonon coupling, the momentum-conserving
electron-electron collisions render the local thermodynamic
equilibrium ensuring a fluidlike electron behavior. In this
situation, the linear size of the system is larger than
the mean-free path of momentum-conserving scattering
processes but much smaller than the mean-free path for
momentum-relaxing collisions. The emerging electron
behavior, predicted several decades ago [1], is readily
described by a hydrodynamic theory that is similar to the
one used to treat transport phenomena in classical liquids
and gases. Recent experimental evidence for electronic
hydrodynamics in solid-state materials such as GaAs [2–4],
PdCoO2 [5], WP2 [6], and graphene [7–13] has spiked active
interest in the hydrodynamic approach within the linear
and nonlinear responses. Special attention focuses on two
spatial dimensions, where electron-electron interactions are
particularly strong [14].

As a macroscopic theory for strongly interacting parti-
cle systems, hydrodynamics is a valuable tool in the study
of problems where strong correlations invalidate simple the-
oretical approaches based on single-particle considerations
[15–20]. Interacting many-body quantum systems allow for a
hydrodynamic description when the typical electron-electron
scattering time τee is the shortest timescale of the system
[21]. Therefore, when an external excitation in the form of
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an electromagnetic field at a sufficiently high frequency ω is
supplied to a two-dimensional electron system (2DES), the
latter responds “hydrodynamically” if ω � τ−1

ee . For example,
in graphene this condition is satisfied in the THz and sub-THz
frequency ranges at sufficiently elevated temperatures. Moti-
vated by these developments, in this paper we systematically
address the coupling of the hydrodynamic 2DES to the field
generated by an elementary electric-current-carrying source.

It has been predicted that hydrodynamic 2DESs host a
variety of intriguing collective modes. One can recall the
conventional plasmon modes, which are characterized by a
dispersion relation of the form ω ∼ √

k (where k is the mode
wave number) and morph into collisional plasma waves with
ω ∼ k if only short-range interactions are respected [22–25].
In addition to the conventional plasmon modes, hydrody-
namic 2DESs are also expected to support the propagation of
transverse shear waves [26] and, in the presence of a static
magnetic field, magnetosonic waves [27,28]. Furthermore,
an exotic electron-hole sound has been predicted to emerge
in the graphene electron fluid close to the charge neutrality
point where particles of opposite types coexist [25,29–31].
In consideration of the rich variety of collective modes in
hydrodynamic 2DESs, it is natural to expect that the elec-
tromagnetic response of such systems is strongly affected by
the excitations of these modes [32–35]. If the incident field is
produced by an electric-current-carrying source, these modes
accompany a radiation field that has a complicated spatial
structure.

In this paper, we describe the excitation of collective modes
in a viscous 2DES by the high-frequency electromagnetic
field generated by a Hertzian electric dipole. We demonstrate
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that the electromagnetic response of the electron fluid con-
tains two fundamentally different collective modes, namely,
a surface “plasmon” and a “diffusive” mode, which accom-
pany the radiation field. The dispersion relation of the former
mode (plasmon) primarily depends on the equilibrium elec-
tron density through a Drude-type weight. The amplitude of
this mode is appreciable in the intermediate-field region of
the dipole source even if the viscous effects tend to disappear.
In contrast, the diffusive mode is characterized by a strong
dependence on the viscosities of the electron fluid, and com-
bines features of both the conventional and Hall diffusion.
The amplitude of this mode is noticeable in the near-field
region but quickly decays away from the source. We point out
the possible scale separation in the manifestation of the two
modes. Furthermore, by including a static magnetic field we
describe an intriguing interplay of its direct effect with that
of the Hall viscosity in the angular component of the electric
field.

In our model, the material sheet is infinite and transla-
tion invariant, and lies in an unbounded, homogeneous, and
isotropic dielectric medium. The dipole is vertical to the
material boundary; and in principle excites all three electric
field components in the presence of a static magnetic field
perpendicular to the sheet. Because of the character of the
source, the spatial behavior of the generated total field on
the sheet ranges from that of a near field, which tends to be
singular at the source, to an intermediate field and, for large
enough distances from the dipole, to the distinctly different
far field. We study in detail this spatial structure in connection
to the aforementioned collective modes. For this purpose,
we solve a boundary value problem for the time-harmonic
Maxwell equations coupled with linearized viscous hydro-
dynamic (Navier-Stokes–type) equations for the flow of the
2DES. In this analysis, we include a static magnetic field
perpendicular to the plane of the 2DES.

Our choice of a linear hydrodynamic model can be justified
via the following consideration. The observation of nonlin-
ear electron hydrodynamics requires a conducting material
with a large momentum relaxation time [21]. This property
is very difficult to achieve experimentally. Hence, we re-
strict our attention to linear hydrodynamics, using linearized
Navier-Stokes–type equations in the 2D sheet. Although we
incorporate viscous effects by some analogy with classical
liquids and gases, we place emphasis on the special role of
the Hall viscosity in the 2DES response.

We reiterate that our analysis and numerics demonstrate
the coexistence of two distinct collective modes, the surface
plasmon and diffusive mode, with the radiation field on the
material sheet. To be more precise, these modes are analyti-
cally identified with the contributions of certain poles in the
complex plane of the Fourier variable that corresponds to the
(radial) wave-vector component tangential to the sheet. In
contrast, the radiation field is a contribution associated with
(but not entirely determined by) a different type of singular-
ity, and is characterized by the free-space wave number. The
plasmon and the diffusive modes are affected by the nonlocal
character of the emerging surface conductivity of the sheet be-
cause of the underlying hydrodynamic behavior. A highlight
of our results is that the dispersion relations of these modes are

distinctly different from those of the conventional (transverse-
magnetic or transverse-electric polarized) graphene plasmons;
in the latter modes, nonlocal effects in the surface conductivity
are typically neglected. Notably, regarding the diffusive mode
in the presence of an external magnetic field, we show that
the Hall viscosity affects the dispersion relation of this mode
significantly and can change the sign of its group velocity.
Furthermore, we describe the range of distance from the dipole
source for which each of the surface wave modes can be
dominant.

To make a connection with previous surface conductivity
models, a part of our analysis focuses on the derivation of the
underlying nonlocal surface conductivity tensor as a function
of the wave vector on the sheet and frequency. In view of
the hydrodynamic ingredients of our model, this conductivity
takes into account the nonlocal electrical transport character-
istics of 2DESs. In our setting, these features include the shear
and Hall viscosities [11,36] and fluid compressibility, and are
subject to a perpendicular static magnetic field. By coupling
the hydrodynamic description of the 2D material with time-
harmonic Maxwell’s equations, we derive Sommerfeld-type
integrals for the electric field components. We numerically
compute these integrals, and single out and assess the con-
tributions of the plasmon and diffusive mode in comparison
to the radiation field for a wide range of distance from the
source.

Notably, we find that the electric field amplitude of the
diffusive mode in graphene peaks in the near-field region.
The diffusive mode can have a smaller wavelength than the
plasmon, but its spatial decay due to dissipation is intrinsically
stronger. Unlike the plasmon, the diffusive mode does not
exhibit a gap in the dispersion relation when a static magnetic
field is applied. This mode is, however, very sensitive to the
nonlocal properties of the material. In contrast, the plasmon
mode dominates in the intermediate-field region. In addition,
its dispersion relation can be gapped by a magnetic field, if
the frequency is suitably chosen, and the nonlocal effect on
the sheet primarily influences its dissipation. Our results pro-
vide predictions that may guide the detection of wave modes
inherent to the hydrodynamic 2DES by use of electromagnetic
probes such as scanning-type near-field optical microscopy or
antenna-coupled field-effect transistors [37,38].

We should mention a few open questions motivated by our
analysis. The use of more realistic electric-current-carrying
sources such as a linear antenna of finite size is a tractable
problem of experimental interest. In our hydrodynamic model,
we invoke a simplified version of the linearized compressible
Navier-Stokes equations with a Hall viscosity. This model
can be enriched with more complicated constitutive laws
[25,39,40]. The character of the electromagnetic fields in
the time domain, when the source radiates a pulse, is not
touched upon here. This aspect should be developed if elec-
tromagnetism needs to be coupled with a broader range of
hydrodynamic phenomena including the intrinsically nonlin-
ear convective acceleration.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the linear hydrodynamic model coupled
with Maxwell’s equations for the problem at hand. In Sec. III,
we derive the nonlocal conductivity tensor for the material
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FIG. 1. Geometry of the problem. An infinite, flat conducting
material sheet lies in the xy plane, inside an unbounded dielectric
medium. A vertical, z-directed, Hertzian electric dipole is located at
distance z0 from the sheet. The region with z > 0 (z < 0) is labeled
by the index j = 1 ( j = 2).

sheet which takes into account the effects of shear and Hall
viscosities, compressibility, and external static magnetic field.
In Sec. IV, we express the excited electromagnetic field by
a Fourier-Bessel representation, also known as the “Hankel
transform,” and discuss qualitative features of this description.
Section V focuses on the derivation of the dispersion relations
for the wave modes on the material sheet. This task involves
the examination of singularities present in the Fourier-Bessel
transforms of the electric field components. In Sec. VI, we
evaluate numerically the requisite integrals when both the
dipole source and the observation point lie in the material
sheet. Section VII provides a brief discussion on implications
of our results. In Sec. VIII we conclude the paper with a
summary of the main results.

We assume that the time-harmonic fields have the temporal
dependence e−iωt , where ω is the angular frequency. We use
the centimeter-gram-second (CGS) system of units.

II. FORMULATION

In this section, we describe the geometry and govern-
ing equations for the problem under consideration. In our
formulation, we combine Maxwell’s equations for the electro-
magnetic field with a linear viscous hydrodynamic model for
the 2DES. The electronic fluid flow is modeled via linearized
Navier-Stokes–type equations, which consist of the continuity
and momentum equations with viscous effects.

In our setting, the conducting sheet of the 2DES lies in the
xy plane, and is immersed in an unbounded linear, isotropic,
and homogeneous dielectric medium, as shown in Fig. 1. A
z-directed Hertzian electric dipole of unit moment is located
at height z0 above the sheet. The ambient dielectric medium
has permittivity relative to the vacuum equal to ε (for z �= 0).
We label the region of the upper (lower) half-space, for z > 0
(z < 0), by the index j = 1 ( j = 2).

We start with the time-harmonic Maxwell equations along
with suitable (transmission) boundary conditions for the elec-
tromagnetic field on the material sheet. These boundary

conditions account for a surface current density at z = 0 due
to the charge flow in the 2DES [41].

The curl laws of Maxwell’s equations in region j are

∇ × H j = − iω

c
D j + 4π

c
J, (1a)

∇ × E j = iω

c
H j ( j = 1, 2). (1b)

In the above, E j (x, y, z), H j (x, y, z), and D j (x, y, z) =
εE j (x, y, z) are the electric, magnetic, and displacement vec-
tor fields, respectively. We define

J(x, y, z) = (I0�)δ(x)δ(y)δ(z − z0) ez

as the vector-valued volume current density due to the vertical
electric dipole. Here, I0� denotes the dipole strength (electric
moment) where I0 and � have units of current and length,
respectively; z0 is the height of the dipole above the mate-
rial sheet (z0 > 0 for definiteness); c is the speed of light in
vacuum; ez is the z-directed unit Cartesian vector; and δ(x) is
Dirac’s delta function in one dimension. For a dipole of unit
electric moment we set I0� = 1 Bi/cm (or, abA/cm) [42]. The
ambient medium is nonmagnetic.

Next, we describe the requisite boundary conditions.
Across the material sheet (at z = 0) we impose the following
[41,43,44]: (i) the continuity of the tangential component of
the electric field, and (ii) a jump in the tangential component
of the magnetic field that accounts for the surface current
density js induced by the tangential electric field on the sheet.
These conditions are expressed by

(E2 − E1) × ez = 0, (2a)

(H2 − H1) × ez = 4π

c
js. (2b)

Note that js macroscopically expresses the linear response
of the conducting sheet and, thus, in principle includes hy-
drodynamic effects of the 2DES. In addition to the above
conditions, the scalar components of the electromagnetic field
(E j, H j ) must obey the Sommerfeld radiation condition as√

x2 + y2 + z2 → ∞ with z �= 0 [42–44].
To describe the linear response of the conducting sheet, and

thus express js in terms of the electric field components paral-
lel to the xy plane, we follow the hydrodynamic approach for
the 2D electron transport in the presence of a static magnetic
field [45–47]. Our model has two main ingredients, in the
spirit of the Navier-Stokes equations: (i) the continuity equa-
tion for the electron number density and (ii) the momentum
equation, which accounts for forces acting on the 2DES as
well as viscous effects.

Next, we describe the time-dependent, nonlinear Navier-
Stokes–type equations for the electronic fluid, leaving aside
the time-harmonic version of Maxwell’s equations for a mo-
ment. Eventually, we linearize the hydrodynamic equations in
the steady state, in correspondence to Eqs. (1) and (2).

Accordingly, the continuity equation is

∂t n + ∇ · (nv) = 0, (3a)

where ∂t = ∂/∂t is the time derivative, ∇ = (∂/∂x, ∂/∂y)
denotes the gradient on the xy plane, n(x, y, t ) is the number
(carrier) density, and v(x, y, t ) is the velocity field for the
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electron flow. The momentum equation is

∂t v + v · ∇v =−∇P(n)

mn
− γ v+ η∇ · (∇v+ ∇vT − ∇ · v I)

+ ζ∇(∇ · v) − (ωc − ηH∇2)v × ez − eE‖
m

. (3b)

In the above, E‖ = (Ex, Ey) is the (time-dependent but not
necessarily time-harmonic) tangential electric field on the
sheet, at z = 0. Since the electric field parallel to the xy plane
is continuous across the sheet, we do not need to specify
the region index ( j = 1, 2) for E‖, at z = 0. We now define
the various parameters appearing in the above equation as
follows. First, γ is the scattering rate accounting for mo-
mentum dissipation due to the collisions of electrons with
impurities and phonons; m is the effective electron mass and
P is the internal pressure in the absence of interactions [46];
−e is the (negative) electron charge; and ωc = eBst/(mc) is
the cyclotron frequency associated with an externally applied,
z-directed static magnetic field of strength Bst. Note that the
term −eE‖/m on the right-hand side of Eq. (3b) can be
considered as the forcing that generates the electron flow,
which amounts to nonzero n and v on the conducting sheet.
Of course, this forcing term is part of the solution of the
full, coupled system that should include the time-dependent
Maxwell equations (not written here in full generality).

The viscous terms of Eq. (3b) deserve particular attention.
These two distinct contributions involve the shear viscosity η

and the Hall viscosity ηH , which pertain to the effect of the
diagonal and off-diagonal components of the electron viscos-
ity tensor, respectively [19,36,47,48]. In this setting, we also
include the bulk viscosity ζ (see, e.g., [47]). However, the bulk
viscosity in graphene was shown to vanish (at least at high
frequencies) [20,49]. In the following sections, we keep the
contribution of the bulk viscosity ζ in our analytical results,
but neglect this contribution in our numerical calculations.
Here, we assume that the material parameters of the 2DES
are local, spatially homogeneous, and time independent. (For
results regarding ω-dependent viscosities in the frequency
domain, see Secs. V and VI.)

For a quantitative description of the parameters η and ηH ,
particularly their dependence on Bst, we introduce the charac-
teristic magnetic field B0 = h̄vF kF /(8eη0). This is expressed
in terms of the Fermi wave number kF , the Fermi velocity vF ,
the electronic viscosity η0 at zero static magnetic field [49],
and the reduced Planck constant h̄. Accordingly, η is equal to
[11,36,49–51]

η = η0

1 + (Bst/B0)2 . (4)

This formula is compatible with the definition of η0 outlined
above since η = η0 if Bst = 0. Furthermore, the Hall viscosity
is given by [11,36,49–51]

ηH = −η0
Bst/B0

1 + (Bst/B0)2 . (5)

Note that ηH → 0 as Bst → 0, in contrast to the respective
behavior of η. The Hall viscosity ηH seriously affects the
dispersion of the 2D hydrodynamic waves in a static magnetic
field [11,19,36]. Our sign convention for ηH follows that in
[36].

We note that the models of the shear viscosity, Eq. (4), and
the Hall viscosity, Eq. (5), do not take into account quantum
effects in 2DES such as the Landau level quantization in the
presence of a static magnetic field. It has been shown that
the consideration of the Landau level quantization results in
the appearance of Shubnikov–de Haas type oscillations of the
shear and the Hall viscosities [52]. Here, we consider small
enough values of the static magnetic field consistent with the
classical model, Eqs. (4) and (5). (The possible effects of
Shubnikov–de Haas type oscillations on our results for the
hydrodynamic modes and the fields are briefly discussed in
Secs. V and VI.)

In correspondence to Eqs. (1) and (2), we linearize fluid
equations (3a) and (3b) around the equilibrium electron num-
ber density n0 and zero velocity field for the time-harmonic
case. Hence, the resulting, time-harmonic electron flow ex-
cited by the dipole source is treated as a small perturbation
of the static fluid that has electron density n0. This flow gives
rise to the surface current density js [cf. Eq. (2b)]. Abusing
notation, we use the same symbols for the time-harmonic
dependent variables such as the fluid velocity (v) and number-
density fluctuation (n) around n0.

The linearized fluid equations in the xy plane become

−iωn + n0∇ · v = 0, (6a)

−iωv = − s2∇n

n0
− (γ − η∇2)v + ζ∇(∇ · v)

−(ωc − ηH∇2)v × ez − eE‖
m

. (6b)

Here, s2 = m−1(dP/dn) is the speed of the compressional
waves at the equilibrium number density n0. Equations (6) are
coupled with the Maxwell system of Eqs. (1) and (2) in the
three-dimensional space (see Fig. 1).

Once the fluid velocity v is determined as a linear function
of the time-harmonic field E‖ in the 2DES from the coupled
Eqs. (6a) and (6b), the surface current density can be com-
puted by js = −en0v, where en0 is the absolute value of the
equilibrium electron charge density. This task is carried out in
Sec. III.

III. NONLOCAL SURFACE CONDUCTIVITY

In this section, we develop the main ingredient of the
linear-response theory for the hydrodynamic model of Sec. II.
More precisely, we derive the surface conductivity tensor
of the infinite, translation-invariant sheet by treating the
time-harmonic electromagnetic field as the forcing in the
hydrodynamic equations. Hence, the emerging conductivity
tensor takes into account the effects of shear and Hall viscosi-
ties of the 2DES, electronic compressibility, and externally
applied static magnetic field. Accordingly, this conductivity
is spatially nonlocal (albeit translation invariant) and obeys
the Onsager reciprocity relations [53,54]. We expect that the
matrix elements of this emergent conductivity tensor can be
obtained experimentally via nonlocal transport measurements,
and may be used to estimate the values of the shear and Hall
viscosity coefficients.

The procedure for obtaining the conductivity relies on solv-
ing Eqs. (6a) and (6b) for fixed tangential electric field E‖ on
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the sheet. Thus, we can express the electron number-density
fluctuation n and the velocity v as linear functions of E‖. The
surface current density on the sheet is defined as

js = −en0v.

We will now show that js and E‖ on the sheet (at z = 0) are
related by a convolution equation, viz.,

js(r) =
∫∫

dr′ σ (r − r′; ω) E‖(r′).

Here, σ (r; ω) is a matrix valued kernel that corresponds to the
surface conductivity tensor, whose Fourier representation is
derived below; r = (x, y), and the domain of integration for
the double integral is the whole xy plane.

Because the present setting is translation invariant in the x
and y coordinates, we use the Fourier transform with respect
to the position vector r = (x, y). We start with the application
of this transform to Eqs. (6a) and (6b). In this vein, consider
the integral representations

n(r) = 1

4π2

∫∫
dk n̂(k) eik·r,

v(r) = 1

4π2

∫∫
dk v̂(k) eik·r,

E(r, z) = 1

4π2

∫∫
dk Ê(k, z) eik·r,

where k = (kx, ky ) is the Fourier variable, or in-plane wave
vector, and the integration is carried out in the entire kxky

plane (−∞ < kl < ∞, l = x, y). In the above, n̂, v̂, and Ê
are the Fourier transforms with respect to r of n, v, and E,
respectively, while z is kept fixed. Note that Ê‖(k) will denote
the Fourier transform in r of E‖(r), at z = 0.

We use the Fourier transform of Eq. (6a) in order to express
n̂ in terms of k · v̂. Then, we substitute the result into the
transformed equation (6b). Consequently, we find a linear,
nonhomogeneous system of equations for the components v̂x

and v̂y of v̂ where the wave vector k enters as a parame-
ter. By solving this system, we obtain formulas of the form
v̂(k) = G(k; ω)Ê‖(k) where G is a 2 × 2 matrix; its entries are
computed explicitly but are not displayed here. By the formula
ĵs = −en0v̂, we thus find a relation of the form

ĵs(k) = σ̂ (k; ω) Ê‖(k),

where the 2 × 2 matrix σ̂ = [σ̂ll ′ ] = −en0G represents the
(linear) surface conductivity tensor (l, l ′ = x, y). The entries
for this σ̂ , as functions of k = (kx, ky) and ω, are

σ̂xx = ie2n0

m


(k) − (
s2

ω
− iζ

)
k2

y


(k)
[

(k) − (

s2

ω
− iζ

)
k2

] − 
2
c (k)

, (7a)

σ̂xy = ie2n0

m

−i
c(k) + (
s2

ω
− iζ

)
kxky


(k)
[

(k) − (

s2

ω
− iζ

)
k2

] − 
2
c (k)

, (7b)

σ̂yx = ie2n0

m

i
c(k) + (
s2

ω
− iζ

)
kxky


(k)
[

(k) − (

s2

ω
− iζ

)
k2

] − 
2
c (k)

, (7c)

σ̂yy = ie2n0

m


(k) − (
s2

ω
− iζ

)
k2

x


(k)
[

(k) − (

s2

ω
− iζ

)
k2

] − 
2
c (k)

, (7d)

where k2 = k2
x + k2

y , 
(k) = ω + iγ + iηk2, and 
c(k) =
ωc + iηH k2. Evidently, these formulas are Onsager reciprocal
[53,54], viz., σxy(Bst ) = σyx(−Bst ).

A few remarks on these results are in order. First, for k = 0
and Bst = 0, each conductivity matrix element in Eqs. (7a)–
(7d) has a Drude-type form, where the role of the Drude
weight is played by the parameter e2n0/m. Second, we repeat
at the risk of redundancy that the elements of the conductivity
tensor can be experimentally obtained by nonlocal transport
measurements [55–57]. Thus, Eqs. (7) can provide a refer-
ence model for future experimental investigations of surface
conductivity on graphene and help one estimate the value of
the shear viscosity coefficient η by comparison to available
experimental data.

It is worthwhile to compare our findings to previous works
in the derivation of the surface conductivity tensor for the
hydrodynamic regime of the 2DES. For example, similar re-
sults are obtained in [39] through the microscopic Boltzmann
equation for the electron collisions. Here, Eq. (7) additionally
includes the effects of the Hall viscosity ηH and a static
magnetic field via the cyclotron frequency ωc. However, our
starting point is different from that in [39] since we rely on the
(macroscopic) Navier-Stokes–type description.

In a similar vein, we should mention the results presented
in [58] for the intraband conductivity tensor of graphene,
which are derived from the semiclassical Boltzmann equation.
In particular, for sufficiently small k, our formulas (7) are in
qualitative agreement with the conductivity derived in [58].

It is worthwhile to add that expressions for the conductivity
tensor of the 2DES at finite frequency and wave vector in the
presence of a static magnetic field have also been derived in
[59,60] by use of the Hamiltonian operator formalism. Our
formulas (7) are in quantitative agreement with the results
presented in [59,60] under our main assumption that the 2DES
exhibits viscous hydrodynamic behavior.

IV. ELECTRIC FIELD: INTEGRAL FORMULAS

In this section, we obtain Fourier-Bessel integral represen-
tations for the components of the electric field generated by a
vertical electric dipole, in the spirit of [42–44]. The radiating
dipole is located at height z0 above the 2D material (z > 0)
(see Fig. 1). For this purpose, we solve Maxwell’s equations
for (E j, H j ) by using the nonlocal conductivity of Sec. III for
the surface current density js, which enters the transmission
boundary conditions across the sheet. An alternate approach,
not followed here, is to solve directly the whole system of
Eqs. (1), (2), and (6), thus circumventing the use of the effec-
tive conductivity tensor.

We start by applying the Fourier transform with respect to
r = (x, y) to Maxwell’s equations. In this context, we need to
write (cf. integral formulas of Sec. III)

H(r, z) = 1

4π2

∫∫
dk Ĥ(k, z) eik·r,

where Ĥ denotes the Fourier transform of the magnetic field,
k = (kx, ky), and the integration (in k) is performed in the
entire kxky plane. The ensuing procedure consists of the fol-
lowing steps. First, we solve the transformed equations (1a)
and (1b) for Ê j (k, z) and Ĥ j (k, z) in order to obtain Ê j (k, z)
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for z �= 0. Second, we need to determine the requisite integra-
tion constants. Therefore, we have to use boundary conditions
(2a) and (2b), at z = 0. These conditions dictate the continuity
of the tangential electric field and a jump of the tangential
magnetic field across the sheet; the latter involves the surface
current density js(r). Accordingly, we express ĵs(k) in terms
of Ê‖(k) = Ê(k, 0) − (Ê(k, 0) · ez )ez by invoking the surface
conductivity tensor described in Eq. (7). Details of this proce-
dure can be found in the Appendix. Note that the component
Hz vanishes identically in our problem.

Because of the axisymmetry of our geometry (Fig. 1),
it is convenient to use the cylindrical coordinates (r, φ, z)
where r =

√
x2 + y2 and 0 � φ < 2π ; x = r cos φ and

y = r sin φ. This choice enables us to convert the afore-
mentioned Fourier representations for the electromagnetic
field to one-dimensional (Fourier-Bessel) integrals with re-
spect to the polar coordinate k of the Fourier space
[42]. After some algebra, for a unit Hertzian electric
dipole we obtain the following integrals for the electric
field:

Er (r, z) = i

ωε

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

0
dk k2J1(kr)

[
A(k) +D(k)

D(k)
e−β(k)(z+z0 ) + sgn(z − z0)e−β(k)|z−z0|

]
, z � 0

∫ ∞

0
dk k2J1(kr)

A(k)

D(k)
eβ(k)(z−z0 ), z � 0;

(8a)

Eφ (r, z) = −ω2D0

c2ε

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

0
dk k2J1(kr)


c(k)

D(k)
e−β(k)(z+z0 ), z � 0

∫ ∞

0
dk k2J1(kr)


c(k)

D(k)
eβ(k)(z−z0 ), z � 0;

(8b)

Ez(r, z) = i

ωε

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

0
dk

k3

β(k)
J1(kr)

[
A(k) +D(k)

D(k)
e−β(k)(z+z0 ) + e−β(k)|z−z0|

]
, z > 0, (r, z) �= (0, z0)

∫ ∞

0
dk k3J1(kr)

A(k)

D(k)β(k)
eβ(k)(z−z0 ), z < 0.

(8c)

Here, sgn(z) is the signum function, sgn(z) = ±1 if ±z > 0;
J1 is the Bessel function of the first order; and the electric
moment I0� of the dipole is set equal to unity (cf. Sec. II). We
also define the following quantities:

A(k) = {(s2 − iωζ )k2 − ω
(k)}(k2D0 + εω
(k)β(k))

+ω2εβ(k)
2
c (k),

D(k) = −A(k) − β(k)k2D2
0/ε − D0ω
(k)β2(k),

and β(k) =
√

k2 − k2
0 . Note that k0 = ω

√
ε/c is the wave

number of the ambient dielectric medium, and D0 =
2πe2n0/m expresses the Drude weight. In addition, we require
that the integration in the k variable is carried out under the
condition

Reβ(k) > 0,

which ensures that the electromagnetic field decays as |z| →
∞. Recall that k = |k| =

√
k2

x + k2
y .

A few remarks on Eq. (8) are in order. We observe that
the angular component Eφ of the electric field vanishes iden-
tically in the absence of a static magnetic field, when Bst = 0
and, thus, ωc = 0 and ηH = 0. This simplified electric field
polarization is in agreement with previous studies in dipoles
radiating over the isotropic and homogeneous graphene, in
the Ohmic regime [43,44]. Interestingly, the z-directed static
magnetic field Bstez applied to the 2DES is solely responsible
for the generation of the (time-harmonic) φ component of
the electric field here, through the Hall viscosity ηH , and
cyclotron frequency ωc. In Sec. VI, we will show that two
collective modes, both a diffusive mode and a plasmon, can

manifest in this angular component and, thus, can exhibit a
nonlongitudinal character.

We close this section with a more technical remark. Be-
cause the components Er and Eφ are continuous across z = 0,
the z coordinate can be set equal to 0 in their formulas for
each region (z > 0 or z < 0) without ambiguity. In contrast,
Ez exhibits a jump proportional to the surface charge density
at z = 0; thus, its formula for each region yields a different
limiting value as z approaches 0.

V. SINGULARITIES AND COLLECTIVE MODES

In this section, we focus on the role of singularities that are
present in the integrands of the Fourier-Bessel representation
for the electric field (Sec. IV). There are two types of such
singularities, namely, poles and branch points. These can ad-
mit distinct physical interpretations. In particular, some poles
are associated to collective modes in the 2DES. We derive and
discuss the relevant dispersion relations.

Consider the Fourier-Bessel integrals in Eq. (8). We can
view the Fourier variable k as complex, and examine the ana-
lytic continuation of each integrand in the complex k plane.
The singularities of the integrands as functions of k are as
follows: (a) The branch points k = ±k0, which are due to the
multivalued even function β(k) =

√
k2 − k2

0 , and (b) simple
poles, which come exclusively from the (complex) zeros of
the denominatorD(k) [cf. Eq. (8)]. The poles can give rise to
surface waves, or collective modes, on the sheet.

Recall that we require Reβ(k) > 0 so that the correspond-
ing scattered wave, which has wave number iβ in the z
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direction, decays with the height |z| (Sec. IV). This condition
on β(k) defines the physical branch (or “top Riemann sheet”)
of the function β(k). For fixed ω, a zero k = k∗(ω) of D(k)
is considered physically admissible if it obeys the following
conditions:

Imk∗(ω) � 0 and Reβ(k∗(ω)) > 0. (9)

The first condition implies that the amplitude of the respective
surface wave mode, which comes from the residue at the pole
k = k∗ of the Fourier-Bessel transform, does not grow with
the radial distance r.

Next, we elaborate on the character of each singularity.
a. Branch points k = ±k0. The effect of these singularities

is intimately connected to retardation in the ambient medium.
By properly deforming the integration path for the field com-
ponents in the upper complex k plane for sufficiently large
radial distance r, we can split each Fourier-Bessel integral
into distinct contributions. One of these terms comes from the
infinite cut associated with k0. This contribution is interpreted
as the radiation field into the unbounded dielectric medium
with radial wave number equal to k0. For a lossless ambient
medium (k0 > 0), we expect that k0 can be much smaller than
the real parts of the wave numbers of the surface modes, in a
suitable range of frequencies.

b. Poles. We now address the zeros k∗(ω) of the denomina-
tor D(k) in the integrands of Eq. (8), for given ω. By setting
D(k) equal to zero, we obtain the relation[

η2 + η2
H + iη(s2 − iωζ )

ω

]
β(k)5 + iD0η

εω
β(k)4

+
[
2ηω

(ηω

c2
+ γ

ω

)
+ 2ηHω

(ηHω

c2
+ ωc

ω

)
+s2

(
1 + 2i

ηω

c2
+ i

γ

ω

)]
β(k)3

+
[
ω2

(ηω

c2
+ γ

ω
− i

)(
ηω

c2
+ γ

ω
− i + i

s2 − iωζ

c2

)

+ω2
(ηHω

c2
+ ωc

ω

)2
+ D2

0

c2ε2

]
β(k)

+D0

ε

(
i
γ

ω
+ 1 + s2 − iωζ

c2

)
β2(k)

−i
D0ω

2

εc2

(
ηω

c2
+ γ

ω
− i + i

s2 − iωζ

c2

)
= 0. (10)

Note that the Fourier variable k enters the above relation only
through β(k). Evidently, the left-hand side of this equation is a
fifth-degree polynomial in β; thus, it has exactly five complex
roots β(k∗). Accordingly, for any given frequency ω, we seek
the physically admissible solutions k∗(ω) of Eq. (10) via the
roots β. Thus, all zeros k∗(ω) can be grouped into five pairs of
symmetric-through-the-origin points in the complex k plane.
By statement (9), we can admit at most one k = k∗(ω) from
each pair.

Next, we derive approximate closed-form expressions for
k∗(ω) in the nonretarded frequency regime, assuming [41]

D0

ωcε
� 1.

We switch off the static magnetic field (Bst = 0), and neglect
the effects of internal pressure (s = 0) and bulk viscosity (ζ =
0). Hence, Eq. (10) is simplified. After some algebra, we write
this relation as[

ηβ2 + ω

(
ηω

c2
+ γ

ω
− i

)] [
ηβ3 + ω

(
ηω

c2
+ γ

ω
− i

)
β

+ i
D0

ωε
β2 − i

D0ω

εc2

]
= 0.

Our task is to solve this equation subject to statement (9).
A physically admissible solution k∗(ω) = kd (ω) is

kd (ω) �
√

iω − γ

η
+ ω2

c2
(ε − 1), (11)

which is independent of D0. The respective surface wave
is a diffusive mode [23,26]. Notably, by dispersion relation
(11) this mode exhibits an appreciable decay. In particu-
lar, for γ = 0 the damping ratio in vacuum (ε = 1) equals
Imkd (ω)/Rekd (ω) = 1. Interestingly, for ηω/c2 � 1 we have

kd (ω) ≈
√

iω−γ

η
and Rekd (ω) � k0(ω), which indicates a

subwavelength (albeit highly damped) diffusive mode.
Another admissible solution, k∗(ω) = kpl (ω), corresponds

to a surface plasmon. For sufficiently small shear viscosity,
i.e., if ηεω/c2 � 1, we find

kpl (ω) � ωε(ω + iγ )

D0

(
1 − iη

ω2(ω + iγ )ε2

D2
0

)
. (12)

In the special case with η = 0, this formula reduces to the
familiar Drude-type dispersion relation, according to which
ω ∼ √

k [41]. Equation (12) provides a small correction term
due to the nonzero shear viscosity, where η = η0 for zero
static magnetic field Bst = 0.

So far, our explicit analytical results for the solution k∗(ω)
have not taken into account the effect of the static magnetic
field Bst. Next, we consider the leading-order correction to
Eq. (11) for the diffusive mode caused by the Hall viscosity
ηH because of a nonzero but weak field Bst.

To this end, we turn our attention to Eq. (10). We seek a so-
lution k = k∗(ω) of this equation in the form of a perturbation
expansion in powers of Bst, viz.,

k∗ � k(0)
d + k(1)

d + k(2)
d ,

where k(0)
d is given by Eq. (11) while k( j)

d is proportional
to B j

st for j = 1, 2; here, we assume that |ηHω/c2| � 1 and
ωc/ω � 1. Because of this choice for k(0)

d , we can consider
the above approximate solution for k∗ as an expansion for the
diffusive mode. By direct substitution of this expansion for k∗
into Eq. (10) and application of dominant balance in the small
parameters ηHω/c2 and ωc/ω, we obtain

k(1)
d = 0 and

k(2)
d = −

√√√√ iω−γ

η
− ω2

c2

iω−γ

η
+ ω2

c2 (ε − 1)

(
i ηH

η
(ω + iγ ) + ωc

)2

6iωη

√
iω−γ

η
− 2D0

ωε
(ω + iγ )

.

In this regime, it is of interest to express the wave number
of the diffusive mode in terms of the static magnetic field
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Bst. By invoking the relevant formulas for the shear and Hall
viscosities (Sec. II) [11,19,36], we obtain

k∗(ω) = kd (ω) �
√

iω − γ

η
+ ω2

c2
(ε − 1)

−
(Bst

B0

)2

√√√√ iω−γ

η
− ω2

c2

iω−γ

η
+ ω2

c2 (ε − 1)

×
(−i(ω + iγ ) + eB0

mc

)2

6iωη

√
iω−γ

η
− 2D0

ωε
(ω + iγ )

.

Notably, this dispersion relation does not depend on the di-
rection of the static magnetic field which is perpendicular to
the material sheet. It is worthwhile to reiterate that the shear
and Hall viscosities, η and ηH , whose effect is captured in
a perturbative sense here, cause a nonlocal linear response
via the surface conductivity tensor [recall Eq. (7)]. To our
knowledge, the above expansion for kd (ω) forms an extension
of previous results found in the literature [23,26].

We now proceed to study numerically the dispersion re-
lations for the plasmon and diffusive modes, after gaining
some insight from perturbation theory. We therefore compute
the roots k = k∗(ω) of the equationD(k; ω) = 0 numerically,
for a range of THz frequencies. Accordingly, we plot the
frequency ω versus the real and imaginary parts of the in
principle complex wave number k = k∗(ω). Let k∗ = k′

∗ + ik′′
∗

where k′
∗ and k′′

∗ are the real and imaginary parts of k∗, respec-
tively; k′

∗ = Rek∗ and k′′
∗ = Imk∗. In our plots, we distinguish

the two modes: k∗ = kpl or k∗ = kd .
We alert the reader that we refer to the “local effect” regard-

ing the dispersion relations in situations with an underlying
k-independent surface conductivity tensor (Sec. III). Consid-
ering the minimal set of parameters that are responsible for the
dependence of this conductivity on k = (kx, ky), for locality
to occur we set each of these parameters equal to zero. Thus,
we set η0 = 0 and s2 = 0, while allowing for a nonzero static
magnetic field Bst; consequently, η = 0 and ηH = 0 regardless
of the value of Bst. In contrast, the “nonlocal effect” regarding
the dispersion relations arises when the conductivity tensor
becomes strictly k dependent.

Note that in our numerics we use two different models for
the characteristic viscosity η0 at zero static magnetic field,
when the nonlocal effect is present. According to one model
for η0, we take η0 = η0(ω), a function of frequency which is
derived in [36]. In another model, we use a constant η0, i.e.,
η0 = 0.05 m2 s−1 which is a value measured experimentally
at zero frequency [7,11].

Figure 2 aims to demonstrate the relative influence of the
nonlocal effect and static magnetic field on the dispersion
relations of the plasmon and diffusive modes. Let us focus on
the plasmon first [Figs. 2(a) and 2(b)]. Our numerics confirm
that the dispersion curve ω(k′

pl ) of the plasmon [Fig. 2(a)]

exhibits the familiar asymptotic behavior ω ∼
√

k′
pl for suf-

ficiently large k′
pl in the nonretarded frequency regime, if the

nonlocal effect in the surface conductivity is switched off.
Accordingly, when the local effect dominates, for nonzero
magnetic field (Bst = 0.2 T in our numerics) we observe the

expected gap in the relation ω(k′
pl ) at k′

pl = 0, in agreement
with previous results [27,28] [see the inset of Fig. 2(a)].
Now, consider the nonlocal effect in this setting. By Fig. 2(a),
the slope of the plasmon dispersion relation ω(k′

pl ) then in-
creases. Thus, the plasmon group velocity or speed dω/dk′

pl
increases; compare the solid red and dashed blue curves in
Figs. 2(a) and 2(b). This trend is more pronounced at higher
frequencies ω where the dominant nonlocal effect is asso-
ciated with the compressional waves, i.e., the pressure term
proportional to s2 in the linearized momentum equation (6b)
(Sec. II). (A similar conclusion can be drawn in the case
with nonzero bulk viscosity.) This result is consistent with
previous studies of hydrodynamic effects in 2D materials [14].
We repeat at the risk of redundancy that the viscosity η0 at
zero static magnetic field can be a function of the frequency
ω [36]. Therefore, in the plots of Fig. 2 we consider both
the cases with η0 = η0(ω) and a constant η0 which has the
zero-frequency value η0 ≡ 0.05 m2/s [7,11], for comparison
purposes.

It has been shown that the viscosity η0 at zero static mag-
netic field can be a function of the momentum (see, e.g.,
[61,62]). The momentum dependence of η0 can in principle
be included in our model through appropriate modification of
Eq. (3b). Depending on the momentum-dependent viscosity
model η0(k), one may obtain corrections to the dispersion
relations of both the plasmon mode, Eq. (12), and the dif-
fusive mode, Eq. (11). We expect these corrections to be
small, in comparison to our leading-order formulas, in the
hydrodynamic regime due to the relatively small momentum
values.

Next, we turn our attention to the dispersion relation
kd (ω) = k′

d (ω) + ik′′
d (ω) of the diffusive mode, when the non-

local effect is present (s �= 0 and η0 �= 0) [see Figs. 2(c) and
2(d)]. In contrast to the plasmon mode, in the case of the
diffusive mode there is no gap in the ω(k′

d ) if B �= 0. Notably,
the real part k′

d = Rekd of the wave number kd of the diffusion
mode can be much larger than the real part k′

pl of the plasmon
wave number kpl [cf. Figs. 2(a) and 2(c)]. Thus, the diffusive
mode can provide even higher confinement of the electro-
magnetic radiation than the plasmon at THz frequencies. On
the other hand, the imaginary part k′′

d = Imkd of the diffusive
mode wave number is at least as large as the real part k′

d .
Hence, as we point out in Sec. V, the diffusive mode, unlike
the conventional plasmon in graphene, can experience high
dissipation in the 2D material.

Figure 3 depicts the numerically computed dispersion re-
lation for the diffusive mode by Eq. (10) as well as analytical
formula (11). Interestingly, the diffusive mode can exist even
when the shear viscosity is zero (η ≡ 0) but a nonzero static
magnetic field is applied (Bst �= 0). In this situation, the mo-
mentum transport within the electron fluid is characterized by
the Hall viscosity ηH . The dispersion relation of the resulting
Hall diffusive mode is shown in Fig. 3; see the yellow curve
for which we set η ≡ 0 for illustrative purposes. When both
viscosities η and ηH are taken into account (η �= 0 and ηH �=
0) and the static magnetic field is present, the effective diffu-
sive mode combines the features of the conventional [23,26]
and Hall diffusions. In fact, in Fig. 3, compare the data of
the green (for B = 0.1 T) and blue (for B = 0.5 T) curves to
the cases of conventional diffusion [23,26] (red curve, B = 0)
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FIG. 2. Numerically computed dispersion relations for collective modes on a material sheet via solutions of Eq. (10). Top panels [(a), (b)]:
frequency ω/(2π ) versus real part k′

pl/(2π ) (a) and imaginary part k′′
pl/(2π ) (b) of wave number kpl/(2π ) of the plasmon mode. Bottom panels

[(c), (d)]: frequency ω/(2π ) versus real part k′
d/(2π ) (c) and imaginary part k′′

d /(2π ) (d) part of wave number kd/(2π ) of the diffusive mode.
Values of the material parameters used in numerics for all plots are γ = 0.01 THz and n0 = 1012 cm−2. The value of the static magnetic field
is Bst = 0 or 0.2 T. The “local” effect amounts to s = 0 and η0 = 0 [blue solid and dashed curves in (a), (b)]; otherwise, s = 0.7 × 105 m s−1

and η0 = η0(ω) by [36] or η0 = 0.05 m2s−1 [7,11].

and the Hall diffusion mode (yellow curve). Interestingly, in
this regime, the group velocity of the diffusive mode becomes
negative at frequencies ω/(2π ) > 1 THz.

The account of the Shubnikov–de Haas type oscillations
in shear and Hall viscosities, due to the Landau level quanti-

zation, in a weak static magnetic field [52] would modify the
values of the viscosities. We expect that this modification may
introduce a small quantitative (but not qualitative) change to
the dispersion curves of the hydrodynamic modes depicted in
Figs. 2 and 3.

FIG. 3. Numerically computed frequency ω/(2π ) versus real part k′
d/(2π ) (a) and imaginary part k′′

d /(2π ) (b) of wave number kd/(2π ) of
the diffusive mode by Eq. (10), and respective analytical result from Eq. (11). Values of parameters used in numerics are Bst = 0, 0.1, 0.5 T;
γ = 0.01 THz, n0 = 1012 cm−2, η0 = 0.1 m2s−1, and s = 0.7 × 105 m s−1. For comparison purposes, we also use the test value η = 0 with
Bst = 0.5 T (solid yellow curves). A negative group velocity is evident at frequencies ω/(2π ) > 1 THz.
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We conclude this section by reiterating that so far we
derived dispersion relations for two distinct modes on the
material sheet. A pending question is whether these modes
can actually be excited by a radiating, current-carrying source.
Aspects of this question, particularly the amplitudes of the
modes and their comparisons to the accompanying radiation
field, are investigated in Sec. VI.

VI. EXCITATION OF HYDRODYNAMIC MODES

In this section, we numerically evaluate the integrals de-
scribing the electric field components on the conducting sheet,
when the current-carrying source is a vertical Hertzian electric
dipole (see Fig. 1). By virtue of this computation, we discuss
the excitation and relative contributions of the plasmon and
diffusion modes. As pointed out in Sec. V, the surface waves
due to these modes coexist with the radiation field which has
a complicated structure. In this vein, we study the possible
dominance of the a single mode in the near- or intermediate-
field region of the source.

A. Methodology

We start with the Fourier-Bessel integral representations
of Eq. (8). Here, we choose to focus on the computation of
the radial component Er and angular component Eφ of the
electric field for illustrative purposes. These components form
the electric field parallel to the sheet, and thus are continuous
across z = 0 for an elevated dipole at height z0 (z0 > 0). Since
all fields decay away from the boundary, in our numerical
evaluation we let z → 0 and z0 → 0 with z < z0. In other
words, both the Hertzian dipole (from region 1) and the obser-
vation point are allowed to approach the sheet. The requisite
Fourier-Bessel integrals become

Er (r, 0) = i

ωε

∫ ∞

0
dk k2J1(kr)

A(k)

D(k)
, (13a)

Eφ (r, 0) = −ω2D0

c2ε

∫ ∞

0
dk k2J1(kr)

ωc + ηH k2

D(k)
, (13b)

where we have set the dipole electric moment I0� equal to
unity (Sec. II). Recall that the functions A(k) and D(k) are
defined in Sec. IV. Note that the z-directed component of the
electric field Ez is qualitatively similar to the radial one Er .
Indeed, one can show that Eq. (8c) can be approximated by
Eq. (8a) (up to the singularities due to the dipole) in the k
region of interest where k � k0 and, hence, k/β ≈ 1.

We proceed to numerically evaluate integrals (13a) and
(13b) by use of two different techniques. First, we use the
“integration then summation” technique [63,64] which is ac-
celerated by the “ε algorithm” [65]. This numerical method
of “integration then summation” is designed for integration
of functions containing oscillatory terms such as the Bessel
function J1(℘) for real ℘. Second, we apply notions of con-
tour integration in the complex plane, particularly the residue
theorem, to confirm the accuracy of the above numerical inte-
gration. To this end, we calculate the sum of the contributions
to each Fourier-Bessel integral from: (i) the cut originating
from the branch point k = k0 in the complex k plane (see
Sec. V), and (ii) the admissible poles of the integrands, which
pertain to the plasmon and diffusive modes. Abusing terminol-
ogy slightly, we often refer to the contribution to integration

from the cut (related to k = k0) as the branch-point contri-
bution. It should be borne in mind that this loose statement
becomes reasonably accurate only asymptotically, for suffi-
ciently large k0r, in the far-field region.

Next, we provide some details of our methodology for the
separation of branch cut and residue contributions. To facili-
tate manipulations in the complex k plane, we first write the
Bessel function J1 as J1(℘) = [H (1)(℘) + H (2)(℘)]/2, in terms
of the first- and second-kind Hankel functions H ( j)

1 (℘) ( j =
1, 2), of which only H (1)

1 (℘) satisfies the acceptable radiation
condition as r → ∞; ℘= kr. Subsequently, we express each
integrand in terms of H (1)

1 (kr) only, by using the symmetry
property H (2)

1 (e−iπ℘) = H1(℘) with ℘= kr, and extending the
integration path in the k variable over the whole real axis
(−∞ < k < +∞). Furthermore, regarding the multivalued
function β(k) = (k2 − k2

0 )1/2, we choose the cuts emanating
from ±k0 to be straight half-lines parallel to the positive and
negative real axes in the complex k plane.

To single out the branch-cut contribution, we deform the
integration path for Er and Eφ from the real axis to a contour
that is wrapped around the cut in the upper half k plane,
through a large semicircle. Along the cut, set k = k0(1 + iτ )
where τ > 0. The corresponding branch-point contributions
to the Fourier-Bessel integrals can be written as

Ebp
r (r, 0) = k3

0

2ωε

∫ ∞

0
dτ (1 + iτ )2H (1)

1 (k0r(1 + iτ ))

×
[
A−(k0(1 + iτ ))
D−(k0(1 + iτ ))

− A
+(k0(1 + iτ ))
D+(k0(1 + iτ ))

]
,

Ebp
φ (r, 0) = iω2D0k3

0

2c2ε

∫ ∞

0
dτ (1 + iτ )2H (1)

1 (k0r(1 + iτ ))

× (ωc + ηH k2
0 (1 + iτ )2)

×
[

1

D−(k0(1 + iτ ))
− 1

D+(k0(1 + iτ ))

]
.

Here, the symbol X± (for X = A,D) denotes the value of
X(k) on the right (+) or left (−) side of the upper cut where
β(k) = ±k0eiπ/4

√
2 + iτ . Note that the value of the function√

2 + iτ at τ = 0 is
√

2; more generally, Re
√

2 + iτ > 0 for
all τ � 0. In the asymptotic regime with k0r � 1, the major
contribution to integration in the integrals for Ebp

r and Ebp
φ

comes from the end point τ = 0.
In the above procedure, the contour integration picks up the

residues of the integrands at the simple poles k = kd (diffusive
mode) and k = kpl (plasmon) in the upper half k plane. The
respective residue contributions for Er and Eφ on the sheet
(z = 0) in cylindrical coordinates are

Ed
r (r, 0) = − π

ωε
k2

d H (1)
1 (kd r)

A(kd )

D′(kd )
,

E pl
r (r, 0) = − π

ωε
k2

plH
(1)
1 (kpl r)

A(kpl )

D′(kpl )
,

Ed
φ (r, 0) = − iπω2D0

c2ε
k2

d H (1)
1 (kd r)

ωc + ηH k2
d

D′(kd )
,

E pl
φ (r, 0) = − iπω2D0

c2ε
k2

plH
(1)
1 (kpl r)

ωc + ηH k2
pl

D′(kpl )
.
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FIG. 4. Absolute values of real [(a), (b)] and imaginary [(c), (d)] parts of the radial component Er (r, 0) of the electric field generated by a
Hertzian electric dipole on a graphene sheet. Left panel [(a), (c)]: contributions from the diffusive mode (blue curve), plasmon (orange curve),
and branch point (green curve), along with the full integral obtained by Eq. (13a) through direct numerical integration (red curve). Right
panel [(b), (d)]: the same total electric field (red line) is compared to the one obtained as the sum of contributions from the residues of the
two modes and the branch-cut integral. The numerical values of parameters used in the computations are ω/(2π ) = 1 THz, γ = 0.01 THz,
n0 = 1012 cm−2, s = 0.7 × 105 m s−1, η0[ω/(2π ) = 1 THz] ≈ 0.004 m2s−1, Bst = 0.1 T.

Here, the prime denotes differentiation with respect to the
argument.

Hence, the tangential electric field components on the sheet
(z = 0) are given by

Es(r, 0) = Ebp
s (r, 0) + Ed

s (r, 0) + E pl
s (r, 0), s = r, φ.

An interesting question is whether any particular residue con-
tribution, i.e., the diffusive mode or the plasmon, can possibly
be dominant in the above sum for some range of distance r.
We investigate this issue numerically below.

B. Numerical results

Next, we numerically compute the radial and angular com-
ponents of the electric field on the conducting sheet, using the
techniques of Sec. VI A. We assess the relative importance and
possible appearance of the collective modes, in comparison
to the radiation field (i.e., the branch-point contribution). In
all computations, we assume that the ambient medium is the
vacuum, thus setting ε = 1.

In Fig. 4, we show the log-log plots of the real and imag-
inary parts of the electric field radial component Er (r, 0) on
the sheet versus the polar distance r according to the full
Fourier-Bessel integral (13a). These values are compared to

the three contributions mentioned above (two hydrodynamic-
mode residues and branch-cut integral). For example, in
Fig. 4(a) we plot each individual contribution to ReEr (r, 0);
see the blue, orange, and green curves for the diffusive mode,
plasmon, and branch-cut integral, respectively. In Fig. 4(b),
we depict the sum of these three contributions. Note that the
“dips” in the log-log plots correspond to harmonic oscillations
with respect to r that come from the first-kind Hankel function
involved in the residues.

Our comparisons indicate that the near-field-region oscil-
lations (k0r � 10−3) of the electric field should be attributed
solely to the manifestation of the diffusive mode. However,
we observe that the amplitude of this mode dissipates quickly
with r on the sheet, as we analytically predict via its dispersion
relation in Sec. V. In contrast, the plasmon oscillations man-
ifest in the intermediate-field region (10−3 � k0r � 1) of the
dipole source where the other two contributions are negligible.
In fact, we notice that the plasmon mode dominates the total
radial field component for a wide range of distances. However,
if k0r is sufficiently large compared to unity (k0r � 1), both
the plasmon and diffusive modes have substantially decayed.
Consequently, by our numerics the two hydrodynamic modes
are spatially separated because of their different wavelengths

205411-11



ANDREEVA, BANDURIN, LUSKIN, AND MARGETIS PHYSICAL REVIEW B 102, 205411 (2020)

FIG. 5. Real parts of radial component (Er) and angular component (Eφ) of the electric field on the sheet as functions of polar distance
r from the dipole source (a), (b); plasmon wavelength versus static magnetic field (c); and magnitude of angular component (Eφ) of electric
field at a fixed distance r (d). Top panel [(a), (b)]: real part of component Er for zero static magnetic Bst = 0 T in the cases with local (blue
curve) and nonlocal (orange curve) surface conductivity [left plot, (a)]; and corresponding real part of component Eφ for Bst = 0.1 T [right plot,
(b)]. Bottom panel [(c), (d)]: depiction of dependence of plasmon wavelength λpl = 2π/k′

pl on static magnetic field Bst by dispersion relation
(10) [left plot, (c)]; and magnitude of component Eφ at polar distance r = 1 μm as a function of Bst [right plot, (d)]. The numerical values
of parameters used in the computations are ω/(2π ) = 1 THz, γ = 0.01 THz, n0 = 1012 cm−2, s = 0.7 × 105 m s−1, η0(ω/(2π ) = 1 THz) ≈
0.004 m2 s−1.

and dissipation rates. Specifically, by comparing the propaga-
tion length of the diffusive mode ld = 1/k′′

d and the plasmon
wavelength λpl = 2π/k′

pl we find that the condition for the
spatial separation ld < λpl is satisfied for frequencies ω <

(2πD0/
√

2η)
2/3

. Accordingly, for the parameters considered
in this paper, the frequency ω/(2π ) should not exceed 4.6
THz. Hence, in principle, these modes might be observed (and
distinguished) in a single experiment [38].

The numerical computations depicted in Figs. 4(b) and 4(d)
aim to validate our two methods of integral evaluation (see
Sec. VI A): The red curve corresponds to the direct numerical
evaluation of the integral given by Eq. (13a), and the blue
curve amounts to the sum of the three individual contributions,
which include the branch-cut term. The two methods of eval-
uating Er are found to be in good agreement. This implies the
mutual consistency, and plausible validity, of our numerical
approaches.

We now turn our attention to capturing nonlocal effects of
the surface conductivity tensor (cf. Sec. III) on the excited
electric fields. We remind the reader that, in the context of our
hydrodynamic model, the local effects are brought about in
the linear response of the 2D material regardless of the value
of the static magnetic field when the compressional wave

and all viscosities are switched off. This special case occurs
when s = 0 and η0 = 0. Otherwise, the nonlocal effects of
the compressional wave or viscosities are felt by the surface
conductivity tensor. In Figs. 5(a) and 5(b) we indicate the
influence of such nonlocal effects by plotting the real parts
of the components Er [Fig. 5(a)] and Eφ [Fig. 5(b)] on the
sheet as functions of the polar distance r from the dipole
source. Our numerical simulations show that both Er and
Eφ dissipate more rapidly along the sheet when the nonlocal
effects are present, in comparison to the setting of the Drude-
type, local linear response. At the same time, the wavelength
of the plasmon spatial oscillations increases. Note that this
plasmon wavelength also increases with the static magnetic
field Bst, as shown directly in Fig. 5(c). In fact, this trend
is in agreement with Fig. 2(a). Furthermore, by Fig. 5(d)
we numerically assert that the magnitude of Eφ at a fixed
distance r of the order of the plasmon wavelength is roughly
proportional to the static magnetic field Bst, for sufficiently
weak Bst. This observation is compatible with integral repre-
sentation (13b) for Eφ . Indeed, in this formula the numerator
of the integrand is linear in the parameters ωc and ηH while
the denominator D(k) approaches a well-defined function of
k as Bst becomes small enough. Recall that the Hall viscos-
ity ηH is approximately linear with Bst if |Bst| � B0 (see
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FIG. 6. Numerical computation that indicates possible isolation of diffusive mode in radial component Er of electric field under the
influence of a static magnetic field (Bstez) perpendicular to the sheet. Left [(a)]: absolute value of the real part of Er as a function of radial
distance r from dipole source, in the near- and intermediate-field regions (r is scaled by wavelength λ0 in free space). Right [(b)]: real part of
Er as a function of radial distance r in the near-field region. In both plots, the results from the full Fourier-Bessel integral (blue and orange
curves) are plotted separately from the residue contribution of the diffusive mode (green curve). The static magnetic field values are Bst = 0 T
(blue curve) and Bst = 0.1 T (orange and green curves). The plasmon manifests via fast spatial oscillations in the case with zero static magnetic
field (Bst = 0); in contrast, for Bst = 0.1 T, the plasmon becomes “gapped” and disappears. The numerical values of parameters used in the
computations are ω/(2π ) = 0.1 THz, γ = 0.01 THz, n0 = 1012 cm−2, η0[ω/(2π ) = 0.1 THz] ≈ 0.2 m2 s−1, and s = 0.7 × 105 m s−1.

Sec. II). We note that the behavior of the angular compo-
nent Eφ in Fig. 5(d) might appreciably deviate from linear if
one includes the Landau level quantization for a weak static
magnetic field. This consideration entails the appearance of
Shubnikov–de Haas type oscillations of the shear and Hall
viscosities [52].

By dispersion relation (10) and our numerics, the wave-
lengths of the plasmon and the diffusive mode can in principle
be comparable at some frequency range. Therefore, it is chal-
lenging to try to distinguish the contributions of the two modes
in a laboratory experiment. A plausible scenario for address-
ing this issue, as suggested by our analysis, is to excite the two
modes by a vertical electric dipole operating at a relatively low
frequency, say, ν = ω/(2π ) = 0.1 THz, on the conducting
sheet in the presence of a static magnetic field (perpendicular
to the 2D material). In this setting, the static magnetic field
can be adjusted to suppress the plasmon and thus single out
the diffusive mode in the near field.

Figure 6 illustrates the above scenario via the numerically
evaluated real part of the electric field radial component Er

as a function of the polar distance r from the dipole source
at frequency ν = 0.1 THz. We consider the cases without
and with a static magnetic field (Bst = 0, 0.1 T). In this plot,
we display the respective values of the full Fourier-Bessel
integral (13a) in comparison to the residue contribution of the
diffusive mode. Note that the plasmon might manifest through
the fast spatial oscillations of the full integral for the ReEr

in the intermediate-field region. We observe that the plasmon
becomes gapped and disappears when a suitable value of the
static magnetic field is applied, if ωc > ω = 2πν. Thus, the
diffusive mode can, in principle, be isolated and detected in
the near-field region if the value of the static magnetic field
Bst and operating frequency ν are such that the plasmon is
gapped [see Fig. 6(b)].

Before we close this section, it is of interest to discuss the
contribution of the Hall viscosity to the angular component Eφ

of the electric field. This component deserves some special
attention because, as we point out in Sec. IV, it vanishes
identically only when ωc = 0 and ηH = 0 (thus, Bst = 0) [cf.
Eq. (8b)]. In Fig. 7(a), we show the numerically evaluated Eφ

by use of 2D color mappings. By comparing the wavelength
of the oscillations and the distance r from the dipole source
observed for Er in Fig. 7(a) to the corresponding quantities
in Fig. 4, we identify these oscillations with the plasmon. To
study the effect of the Hall viscosity on the angular component
Eφ , we turn off the Hall viscosity, setting ηH = 0 and the
Lorentz force ωc = 0 sequentially in our computations [cf.
Eq. (6b)]. The resulting color maps are shown in Figs. 7(b)
and 7(c), respectively. Since we consider a weak magnetic
field Bst = 0.01 T, the electric field shown in Fig. 7(a) is
approximately equal to the sum of the electric fields depicted
in Figs. 7(b) and 7(c). In these plots, we can see that the
contribution due to the Hall viscosity alone [Fig. 7(c)] has
an opposite sign compared to the Lorentz force contribution
[Fig. 7(b)]. This observation is consistent with previous stud-
ies performed by DC transport experiments [11].

Interestingly, the presence of the electric field angular com-
ponent (Eφ) spoils the longitudinal character of the plasmon
oscillation. This means that the vector-valued electric field
E = erEr + eφEφ + ezEz now oscillates also in the direction
perpendicular to the radial unit vector er , i.e., along the zφ-
cylindrical surface. To illustrate this feature, in all plots of
Fig. 7 we indicate by black arrows the orientation of the
constituent vector eφEφ . At this point, it is worth pointing
out that the diffusive mode remains transversal. This mode
contributes to all three electric field components as dictated
by the structure of our excitation dipole source in the presence
of a static magnetic field.
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FIG. 7. Two-dimensional representations of distinct contributions to the real part of the angular component Eφ (r, 0) of the electric field
excited by a dipole source on a 2D material sheet, by numerical evaluation based on integral (13b). For comparison purposes, we separately
turn off the effects of the Hall viscosity (ηH ) and the Lorentz force (ωc) in our computations [cf. Eq. (6b)]. (a) Real part of the total component
Eφ (r, 0). (b) Real part of Eφ (r, 0) with zero Hall viscosity (ηH = 0). (c) Real part of Eφ (r, 0) with zero Lorentz force (ωc = 0). The black arrows
illustrate the vector field associated with Eφ . The numerical values of parameters used in the computations are ω/(2π ) = 1 THz, γ = 0.01
THz, n0 = 1012 cm−2, s = 0.7 × 105 m s−1, η0(ω/(2π ) = 1 THz) ≈ 0.004 m2 s−1, B = 0.01 T.

VII. DISCUSSION

In this section, we discuss and compare the features of hy-
drodynamic modes studied in Secs. V and VI. In particular, we
outline possible implications of our results on the excitation
of these modes by electric-current-carrying sources for future
investigations in viscous 2DESs.

We should point out that both the diffusive mode and
the plasmon are, in principle, subwavelength modes: their
respective wavelengths can be much smaller than the wave-
length of the ambient space at a suitable frequency regime.
However, the diffusive mode is highly dissipative and can
have a propagation length smaller than the wavelength of the
plasmon. This property leads to the spatial separation of two
hydrodynamic modes: the diffusive mode, having a slightly
smaller wavelength, shows up closer to the excitation source
and quickly decays, as it propagates farther away from the
dipole, before the plasmon can manifest.

Although the two hydrodynamic modes can be spatially
separated, as explained above, one can isolate the diffusive
mode if needed. We described a scenario by which this isola-
tion can be achieved by applying an external static magnetic
field and choosing the frequency of the excitation source
such that the plasmon is gapped. Unlike the plasmon, the
diffusive mode (technically) exists for all frequencies even
in the presence of the static magnetic field. In this case, the
high-frequency oscillations in the resulting electric field in the
2DES can be attributed entirely to the diffusive mode.

Furthermore, we demonstrated that the momentum transfer
between the layers of the electron liquid, which is usually
carried out through the shear viscosity and is necessary for the
existence of the diffusive mode, can in principle be done en-
tirely by the Hall viscosity in the presence of the external static
magnetic field. In this setting, one can possibly observe the
Hall diffusive mode, which has a wavelength and propagation

distance comparable to the ones of the regular diffusive mode.
However, the dispersion relation of the Hall diffusive mode
appears to be much more peculiar since it exhibits positive
as well as negative group velocities at different frequency
ranges. This observation suggests that it will be worthwhile
for a future effort to study the response of graphene to an
excitation in the form of pulses (rather than monochromatic
waves) in the viscous hydrodynamic regime of the 2DES.

Our analysis admits several tractable extensions and gen-
eralizations, which were not addressed in this paper. These
extensions include the effect of the bulk viscosity on the
computation of the electric field, momentum-dependent vis-
cosities, and the finite size of the 2DES when the electron fluid
is confined in a channel. Furthermore, it would be of interest
to study the effect of the nonlinear material response on the
diffusive mode and its extension beyond the regime in which
hydrodynamic theory applies [66].

VIII. CONCLUSION

In this paper, we described numerically and analytically the
spatial structure of the electric field excited by a Hertzian elec-
tric dipole on an infinite, translation-invariant sheet of a 2DES
in the viscous hydrodynamic regime. To this end, we solved
exactly a boundary value problem for the time-harmonic
Maxwell equations coupled with linearized hydrodynamic
(Navier-Stokes–type) equations for the 2D material. In our
formalism, we took into account an external static magnetic
field perpendicular to the sheet and included the possible
effects of the shear and Hall viscosities as well as the com-
pressional wave of the 2DES. We placed particular emphasis
on the amplitudes of collective modes that can be excited on
the sheet in the far-infrared and THz frequency regimes. Our
analysis singled out two types of modes, namely, the plasmon
and diffusive modes. In the presence of an external static
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magnetic field perpendicular to the plane of the 2DES, the
latter mode combines the features of both the conventional
and Hall diffusion and may have a negative group velocity. We
quantified the contributions of these modes relative to the ra-
diation field by numerically evaluating Fourier-type integrals
for the electric field tangential to the sheet.

By linear response theory, we also derived explicit formu-
las for the matrix elements of the resulting nonlocal surface
conductivity tensor. In this description, the nonlocality comes
from the effects of shear and Hall viscosities as well as that
of the compressional wave. By calculating the Fourier-type
integrals for the tangential electric field components, we in-
dicated a scenario of separating the two collective modes at
a suitable range of frequencies. We found that the plasmon
may dominate in the intermediate-field region of the dipole
source. In contrast, the diffusive mode prevails in the near-
field region.
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APPENDIX: INTEGRAL REPRESENTATIONS
FOR ELECTRIC FIELD

In this Appendix, we derive the Fourier-Bessel integral
representations for the electric field components [cf. Eq. (8)
in Sec. IV]. The starting point is the boundary value problem
for the time-harmonic Maxwell equations in the presence of
the sheet by use of the surface conductivity tensor of Eq. (7).

Because of the sheet translation invariance, let

H(r, z) = 1

4π2

∫∫
dk Ĥ(k, z) eik·r,

where Ĥ denotes the Fourier transform of the magnetic field,
r = (x, y), k = (kx, ky), and the integration range in the above
Fourier integral is the entire kxky plane. Accordingly, we trans-
form the curl laws of Maxwell’s equations with respect to x
and y. By solving the transformed Eq. (1a) for Ê j ( j = 1, 2)
and substituting the result into the transformed Eq. (1b), we
obtain the following differential equations (in the z coordi-
nate) for the tangential magnetic field components:

(
∂2

z − β2
)
Ĥjx = −4π i

c
ky δ(z − z0),(

∂2
z − β2

)
Ĥjy = 4π i

c
kx δ(z − z0),

where β2 = k2 − k2
0 and k0 = ω

√
ε/c; ∂z = ∂/∂z. Here, we

have set the dipole electric moment I0� equal to unity. By
symmetry, the magnetic field component perpendicular to the
sheet vanishes identically, viz., Ĥjz ≡ 0 for j = 1, 2 for all
z. Note that the real part of β is assumed to be positive
[Reβ(k) > 0].

The solutions of the above differential equations for
Ĥjx(k, z) and Ĥjy(k, z) must decay with respect to |z|, away
from the sheet (z = 0). Therefore, we obtain the expressions

Ĥx =
⎧⎨
⎩K1xe−βz + 2π i

c

ky

β
e−β |z−z0| for z > 0,

K2xeβz for z < 0,

(A1)

Ĥy =
⎧⎨
⎩K1ye−βz − 2π i

c

kx

β
e−β |z−z0| for z > 0,

K2yeβz for z < 0.

(A2)

The integration constants Kjα ( j = 1, 2 and α = x, y) should
be determined via the transmission boundary conditions
across the sheet (at z = 0) (see below).

By Eq. (1a), the components of the transformed electric
field are given by

Êx(k, z) = ic

ωεβ2

{(
k2

0 − k2
x

)
(∂zĤy) + kxky (∂zĤx )

}
,

Êy(k, z) = − ic

ωεβ2

{(
k2

0 − k2
y

)
(∂zĤx ) + kxky (∂zĤy)

}
,

Êz(k, z) = c

ωε
(kyĤx − kxĤy), z �= z0.

To express the components of Ê j in terms of the integra-
tion constants Kjα ( j = 1, 2 and α = x, y), we now invoke
Eqs. (A1) and (A2). Hence, we rewrite the transformed elec-
tric field components as

Êx = iω

ck2
0β(k)

⎧⎪⎨
⎪⎩

−{
kxkyK1x + (

k2
0 − k2

x

)
K1y

}
e−β(k)z

− 2π i
c kxβ(k) sgn(z − z0) e−β(k) |z−z0| for z > 0,{

kxkyK2x + (
k2

0 − k2
x

)
K2y

}
eβ(k) z for z < 0,

Êy = − iω

ck2
0β(k)

⎧⎪⎨
⎪⎩

−{
kxkyK1y + (

k2
0 − k2

y

)
K1x

}
e−β(k) z

+ 2π i
c kyβ(k) sgn(z − z0) e−β(k) |z−z0| for z > 0,{

kxkyK2y + (
k2

0 − k2
y

)
K2x

}
eβ(k) z for z < 0,
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Êz = c

ωε

⎧⎪⎨
⎪⎩

(kyK1x − kxK1y)e−β(k) z + 2π i
c

k2

β(k) e
−β(k) |z−z0|

for z > 0, z �= z0,

(kyK2x − kxK2y)eβ(k) z for z < 0.

The remaining task is to find the (k-dependent) coefficients Kjα ( j = 1, 2 and α = x, y). To this end, we use boundary
conditions (2b) and (2a), along with Eqs. (7a)–(7d) for the matrix elements of the sheet tensor conductivity. After some algebra,
we obtain the formulas

K1x = −2π iD0

cε
e−βz0

(
k2

0D0 + βω

)
ky + iβω
c(k)kx

D
,

K2x = 2π i

cβ
e−βz0

−A ky + iβ2D0ω
c(k)kx

D
,

K1y = 2π iD0

cε
e−βz0

(
k2

0D0 + βω

)
kx − iβω
c(k)ky

D
,

K2y = 2π i

cβ
e−βz0

Akx + iβ2D0ω
c(k)ky

D
,

where

A(k) = [(s2 − iωζ )k2 − ω
(k)](k2D0 + εω
(k)β(k)) + ω2εβ(k)
c(k)2,

D(k) = −A(k) − β(k)k2D2
0/ε − D0ω
(k)β2(k),


(k) = ω + iγ + iηk2,


c(k) = ω + iηH k2.

In the above, D0 = 2πe2n0/m is the Drude weight. The substitution of these expressions for Kjα into the formulas for the
transformed electric field components and Fourier inversion yield double Fourier integrals for Ejα (x, y, z). The use of cylindrical
coordinates (r, φ, z) instead of (x, y, z) via the corresponding change of variables kx = k cos φ′ and ky = k sin φ′ [k = (k2

x +
k2

y )1/2 � 0] in the double Fourier integrals then results in the Fourier-Bessel integral representations diplayed in Eq. (8) [42].

[1] R. N. Gurzhi, Sov. Phys.–Usp. 11, 255 (1968).
[2] L. W. Molenkamp and M. J. M. De Jong, Solid State Electron.

37, 551 (1994).
[3] M. J. M. de Jong and L. W. Molenkamp, Phys. Rev. B 51, 13389

(1995).
[4] B. A. Braem, F. M. D. Pellegrino, A. Principi, M. Röösli,

C. Gold, S. Hennel, J. V. Koski, M. Berl, W. Dietsche, W.
Wegscheider, M. Polini, T. Ihn, and K. Ensslin, Phys. Rev. B
98, 241304(R) (2018).

[5] P. J. W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, and A. P.
Mackenzie, Science 351, 1061 (2016).

[6] J. Gooth, F. Menges, N. Kumar, V. Süß, C. Shekhar, Y. Sun,
U. Drechsler, R. Zierold, C. Felser, and B. Gotsmann, Nat.
Commun. 9, 4093 (2018).

[7] D. A. Bandurin, I. Torre, R. K. Kumar, M. B. Shalom,
A. Tomadin, A. Principi, G. H. Auton, E. Khestanova,
K. S. Novoselov, I. V. Grigorieva et al., Science 351, 1055
(2016).

[8] J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas,
S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe et al., Science
351, 1058 (2016).

[9] R. K. Kumar, D. A. Bandurin, F. M. D. Pellegrino, Y. Cao,
A. Principi, H. Guo, G. H. Auton, M. B. Shalom, L. A.
Ponomarenko, G. Falkovich et al., Nat. Phys. 13, 1182 (2017).

[10] D. A. Bandurin, A. V. Shytov, L. S. Levitov, R. K. Kumar, A. I.
Berdyugin, M. Ben Shalom, I. V. Grigorieva, A. K. Geim, and
G. Falkovich, Nat. Commun. 9, 4533 (2018).

[11] A. I. Berdyugin, S. G. Xu, F. M. D. Pellegrino, R. K. Kumar,
A. Principi, I. Torre, M. B. Shalom, T. Taniguchi, K. Watanabe,
I. V. Grigorieva et al., Science 364, 162 (2019).

[12] P. Gallagher, C.-S. Yang, T. Lyu, F. Tian, R. Kou, H. Zhang,
K. Watanabe, T. Taniguchi, and F. Wang, Science 364, 158
(2019).

[13] J. A. Sulpizio, L. Ella, A. Rozen, J. Birkbeck, D. J. Perello, D.
Dutta, M. Ben-Shalom, T. Taniguchi, K. Watanabe, T. Holder,
R. Queiroz, A. Principi, A. Stern, T. Scaffidi, A. K. Geim, and
S. Ilani, Nature (London) 576, 75 (2019).

[14] G. Giuliani and G. Vignale, Quantum Theory of the Electron
Liquid (Cambridge University, Cambridge, UK, 2005).

[15] M. Müller, J. Schmalian, and L. Fritz, Phys. Rev. Lett. 103,
025301 (2009).

[16] A. V. Andreev, S. A. Kivelson, and B. Spivak, Phys. Rev. Lett.
106, 256804 (2011).

[17] I. Torre, A. Tomadin, A. K. Geim, and M. Polini, Phys. Rev. B
92, 165433 (2015).

[18] L. Levitov and G. Falkovich, Nat. Phys. 12, 672 (2016).
[19] P. S. Alekseev, Phys. Rev. Lett. 117, 166601 (2016).
[20] B. N. Narozhny, Ann. Phys. (NY) 411, 167979 (2019).

205411-16

https://doi.org/10.1070/PU1968v011n02ABEH003815
https://doi.org/10.1016/0038-1101(94)90244-5
https://doi.org/10.1103/PhysRevB.51.13389
https://doi.org/10.1103/PhysRevB.98.241304
https://doi.org/10.1126/science.aac8385
https://doi.org/10.1038/s41467-018-06688-y
https://doi.org/10.1126/science.aad0201
https://doi.org/10.1126/science.aad0343
https://doi.org/10.1038/nphys4240
https://doi.org/10.1038/s41467-018-07004-4
https://doi.org/10.1126/science.aau0685
https://doi.org/10.1126/science.aat8687
https://doi.org/10.1038/s41586-019-1788-9
https://doi.org/10.1103/PhysRevLett.103.025301
https://doi.org/10.1103/PhysRevLett.106.256804
https://doi.org/10.1103/PhysRevB.92.165433
https://doi.org/10.1038/nphys3667
https://doi.org/10.1103/PhysRevLett.117.166601
https://doi.org/10.1016/j.aop.2019.167979


DIPOLE EXCITATION OF COLLECTIVE MODES IN … PHYSICAL REVIEW B 102, 205411 (2020)

[21] A. Lucas and K. C. Fong, J. Phys.: Condens. Matter 30, 053001
(2018).

[22] D. Svintsov, Phys. Rev. B 97, 121405(R) (2018).
[23] A. Lucas, Phys. Rev. B 93, 245153 (2016).
[24] A. Lucas and S. Das Sarma, Phys. Rev. B 97, 115449 (2018).
[25] Z. Sun, D. N. Basov, and M. M. Fogler, Proc. Natl. Acad. Sci.

USA 115, 3285 (2018).
[26] M. Semenyakin and G. Falkovich, Phys. Rev. B 97, 085127

(2018).
[27] P. S. Alekseev and A. P. Alekseeva, Phys. Rev. Lett. 123,

236801 (2019).
[28] P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, V. Y. Kachorovskii,

B. N. Narozhny, and M. Titov, Phys. Rev. B 98, 125111
(2018).

[29] D. Svintsov, V. Vyurkov, S. Yurchenko, T. Otsuji, and V.
Ryzhii, J. Appl. Phys. 111, 083715 (2012).

[30] T. V. Phan, J. C. W. Song, and L. S. Levitov, arXiv:1306.4972.
[31] Z. Sun, D. N. Basov, and M. M. Fogler, Phys. Rev. Lett. 117,

076805 (2016).
[32] D. Forcella, J. Zaanen, D. Valentinis, and D. van der Marel,

Phys. Rev. B 90, 035143 (2014).
[33] C. Hoyos and D. T. Son, Phys. Rev. Lett. 108, 066805 (2012).
[34] M. Sherafati, A. Principi, and G. Vignale, Phys. Rev. B 94,

125427 (2016).
[35] D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, Phys. Rev. B

88, 245444 (2013).
[36] F. M. D. Pellegrino, I. Torre, and M. Polini, Phys. Rev. B 96,

195401 (2017).
[37] D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A.

Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov,
T. Taniguchi et al., Nat. Commun. 9, 5392 (2018).

[38] M. Khavronin, A. S. Petrov, A. E. Kazantsev, E. I. Nikulin, and
D. A. Bandurin, Phys. Rev. Applied 13, 064072 (2020).

[39] U. Briskot, M. Schütt, I. V. Gornyi, M. Titov, B. N. Narozhny,
and A. D. Mirlin, Phys. Rev. B 92, 115426 (2015).

[40] Z. Sun, D. N. Basov, and M. M. Fogler, Phys. Rev. B 97, 075432
(2018).

[41] Y. V. Bludov, A. Ferreira, N. Peres, and M. Vasileskiy, Int. J.
Mod. Phys. B 27, 1341001 (2013).

[42] R. W. P. King, M. Owens, and T. T. Wu, Lateral Electro-
magnetic Waves: Theory and Applications to Communications,
Geophysical Exploration, and Remote Sensing (Springer, New
York, 1992).

[43] D. Margetis and M. Luskin, J. Math. Phys. 57, 042903 (2016).
[44] M. Maier, D. Margetis, and M. Luskin, J. Comput. Phys. 339,

126 (2017).
[45] P. Kovtun, J. Phys. A: Math. Theor. 45, 473001 (2012).
[46] A. L. Fetter, Phys. Rev. B 32, 7676 (1985).
[47] R. Cohen and M. Goldstein, Phys. Rev. B 98, 235103 (2018).
[48] J. E. Avron, J. Stat. Phys. 92, 543 (1998).
[49] A. Principi, G. Vignale, M. Carrega, and M. Polini, Phys. Rev.

B 93, 125410 (2016).
[50] M. Steinberg, Phys. Rev. 109, 1486 (1958).
[51] L. Pitaevskii and E. Lifshitz, Physical Kinetics: Volume 10

(Butterworth-Heinemann, Oxford, 2012).
[52] I. S. Burmistrov, M. Goldstein, M. Kot, V. D. Kurilovich,

and P. D. Kurilovich, Phys. Rev. Lett. 123, 026804
(2019).

[53] L. Onsager, Phys. Rev. 37, 405 (1931).
[54] J. M. Ziman, Principles of the Theory of Solids (Cambridge

University, Cambridge, UK, 1979).
[55] D. Abanin, S. Morozov, L. Ponomarenko, R. Gorbachev,

A. Mayorov, M. Katsnelson, K. Watanabe, T. Taniguchi, K.
Novoselov, L. Levitov et al., Science 332, 328 (2011).

[56] T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. Jarillo-
Herrero, Nat. Phys. 9, 225 (2013).

[57] M. B. Lundeberg, Y. Gao, R. Asgari, C. Tan, B. Van Duppen,
M. Autore, P. Alonso-González, A. Woessner, K. Watanabe, T.
Taniguchi et al., Science 357, 187 (2017).

[58] G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, Phys.
Rev. B 87, 115429 (2013).

[59] Y.-H. Chen, F. Wilczek, E. Witten, and B. I. Halperin, Int. J.
Mod. Phys. B 3, 1001 (1989).

[60] B. Bradlyn, M. Goldstein, and N. Read, Phys. Rev. B 86,
245309 (2012).

[61] P. Ledwith, H. Guo, A. Shytov, and L. Levitov, Phys. Rev. Lett.
123, 116601 (2019).

[62] P. J. Ledwith, H. Guo, and L. Levitov, Ann. Phys. (NY) 411,
167913 (2019).

[63] M. Blakemore, G. Evans, and J. Hyslop, J. Comput. Phys. 22,
352 (1976).

[64] S. K. Lucas and H. A. Stone, J. Comp. Appl. Math. 64, 217
(1995).

[65] P. Wynn, Math. Tables Other Aids Comput. 10, 91 (1956).
[66] A. Principi, D. Bandurin, H. Rostami, and M. Polini, Phys. Rev.

B 99, 075410 (2019).

205411-17

https://doi.org/10.1088/1361-648X/aaa274
https://doi.org/10.1103/PhysRevB.97.121405
https://doi.org/10.1103/PhysRevB.93.245153
https://doi.org/10.1103/PhysRevB.97.115449
https://doi.org/10.1073/pnas.1717010115
https://doi.org/10.1103/PhysRevB.97.085127
https://doi.org/10.1103/PhysRevLett.123.236801
https://doi.org/10.1103/PhysRevB.98.125111
https://doi.org/10.1063/1.4705382
http://arxiv.org/abs/arXiv:1306.4972
https://doi.org/10.1103/PhysRevLett.117.076805
https://doi.org/10.1103/PhysRevB.90.035143
https://doi.org/10.1103/PhysRevLett.108.066805
https://doi.org/10.1103/PhysRevB.94.125427
https://doi.org/10.1103/PhysRevB.88.245444
https://doi.org/10.1103/PhysRevB.96.195401
https://doi.org/10.1038/s41467-018-07848-w
https://doi.org/10.1103/PhysRevApplied.13.064072
https://doi.org/10.1103/PhysRevB.92.115426
https://doi.org/10.1103/PhysRevB.97.075432
https://doi.org/10.1142/S0217979213410014
https://doi.org/10.1063/1.4945083
https://doi.org/10.1016/j.jcp.2017.03.014
https://doi.org/10.1088/1751-8113/45/47/473001
https://doi.org/10.1103/PhysRevB.32.7676
https://doi.org/10.1103/PhysRevB.98.235103
https://doi.org/10.1023/A:1023084404080
https://doi.org/10.1103/PhysRevB.93.125410
https://doi.org/10.1103/PhysRev.109.1486
https://doi.org/10.1103/PhysRevLett.123.026804
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1126/science.1199595
https://doi.org/10.1038/nphys2549
https://doi.org/10.1126/science.aan2735
https://doi.org/10.1103/PhysRevB.87.115429
https://doi.org/10.1142/S0217979289000725
https://doi.org/10.1103/PhysRevB.86.245309
https://doi.org/10.1103/PhysRevLett.123.116601
https://doi.org/10.1016/j.aop.2019.167913
https://doi.org/10.1016/0021-9991(76)90054-1
https://doi.org/10.1016/0377-0427(95)00142-5
https://doi.org/10.2307/2002183
https://doi.org/10.1103/PhysRevB.99.075410

