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The low-energy physics of two-dimensional quantum anomalous Hall insulators like (Hg,Mn)Te quantum
wells or magnetically doped (Bi,Sb)Te thin films can be effectively described by two Chern insulators, including
a Dirac as well as a momentum-dependent mass term. Each of those Chern insulators is directly related to
the parity anomaly of planar quantum electrodynamics. In this work, we analyze the finite-temperature Hall
conductivity of a single Chern insulator in 2 + 1 space-time dimensions under the influence of a chemical
potential and an out-of-plane magnetic field. At zero magnetic field, this nondissipative transport coefficient
originates from the parity anomaly of planar quantum electrodynamics. We show that the parity anomaly itself is
not renormalized by finite-temperature effects. However, it induces two terms of different physical origin in the
effective action of a Chern insulator, which is proportional to the Hall conductivity. The first term is temperature
and chemical potential independent, and solely encodes the intrinsic topological response. The second term
specifies the nontopological thermal response of conduction and valence band states. In particular, we show that
the relativistic mass of a Chern insulator counteracts finite-temperature effects, whereas its nonrelativistic mass
enhances these corrections. Moreover, we extend our analysis to finite magnetic fields and relate the thermal
response of a Chern insulator therein to the spectral asymmetry, which is a measure of the parity anomaly in
orbital fields.
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I. INTRODUCTION

Back in the 1980s, Haldane proposed the first solid-state
model of a quantum anomalous Hall (QAH) insulator by
adding a parity-breaking1 Dirac mass term to an otherwise
gapless graphene structure [1]. Such a system features a
nonzero Hall conductivity even in the absence of Landau
levels (LLs). From a high-energy perspective, this model is
directly related to the parity anomaly of planar quantum elec-
trodynamics, which implies that it is not possible to quantize a
single Dirac fermion in a parity-symmetric manner with zero
Hall conductivity [2,3]. Strictly speaking, the Haldane model
contains two Dirac fermions as it is based on the hexagonal
lattice structure of graphene. However, by fine tuning the Hal-
dane mass, one of the Dirac fermion mass gaps can be closed,
whereas the other one remains open. In this parameter limit,
the band structure contains a single gapless Dirac fermion
with a nonzero Hall conductivity. This implies that in the
Haldane model one of the Dirac fermions alone is suitable
to realize the parity anomaly in 2 + 1 dimensions. Hitherto, it
was not possible to experimentally set up the Haldane model

1Instead of a parity-even Dirac mass term, initially studied by
Semenoff in Ref. [39].

in a crystalline structure.2 Instead, another type of QAH insu-
lators was predicted in spin-polarized topological insulators
(TIs) like (Hg,Mn)Te quantum wells [4,5] or magnetically
doped (Bi,Sb)Te thin films [6,7]. Their low-energy physics
is captured by the superposition of two Chern insulators [8].
Similar to the Haldane model, the gap of one of these Chern
insulators can be closed by magnetic doping of the system,
whereas at the same time the second Chern insulator remains
gapped. In this fine-tuned limit, the gapless Chern insulator
realizes the parity anomaly as its contribution to the Hall con-
ductivity is in general nonzero. Hence, the analysis of single
Chern insulators, which is the main purpose of this work, al-
lows to study measurable consequences of the parity anomaly
in a solid-state material. In contrast to the Dirac fermions
in the Haldane model, each Chern insulator is characterized
by two different parity-breaking mass terms: a conventional
Dirac mass, as well as momentum-dependent Newtonian
mass. As the Hall conductivity of a single Chern insulator is
unaltered if one takes the parity-symmetric zero-mass limit,
both the Dirac as well as the momentum-dependent mass
term are directly related to the parity anomaly. It was recently
shown that the momentum-dependent mass term acts simi-
lar to a Wilson fermion in a lattice regularization of a pure

2So far, this model has been only realized in optical lattices [40,41].
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Dirac system [9]. As such, it ensures an integer instead of a
half-quantized Hall conductivity associated to a pure Dirac
fermion [10,11].

The parity anomaly is a zero magnetic field effect because
an external magnetic field breaks the parity symmetry at the
classical level. However, it can be shown that even in quan-
tizing magnetic fields the signatures of the parity anomaly
persist. They remain encoded in the spectral asymmetry [12].
Below a critical magnetic field, the parity anomaly effectively
adds one LL to the entire Hall response of a Chern insulator.
Above this field, the magnetic field closes the Dirac mass gap
and the system exhibits a conventional QH response [13].

All these findings do not incorporate thermal effects. So
far, finite-temperature signatures in parity anomaly driven
systems are restricted to pure Dirac models. Calculating
the quantum effective action of these systems induces a
temperature-dependent and thus large gauge-noninvariant
Chern-Simons term originating from the parity anomaly
[14–19]. While it was shown that this noninvariance is ab-
sorbed by higher-order nonperturbative corrections to the
effective action [20–27], this feature still gives rise to a fun-
damental question: Does the parity anomaly get renormalized
by thermal effects? Answering this question is not only rel-
evant for the QAH effect in the materials mentioned above.
It is especially important in the case of interfaces between
ferromagnetic insulators and three-dimensional topological
insulators, where a proximity-induced interface magnetiza-
tion has been experimentally observed at high temperatures
[28,29]. In this case, the out-of-plane magnetization causes a
gap opening in the interface Dirac spectrum, which induces
a parity anomaly on the TI surface and a concomitant mag-
netoelectric torque in the Landau-Lifshitz equation [30–32].
A similar effect is expected to occur on the surface of the
recently discovered antiferromagnetic TI MnBi2Te4 [33,34],
where the gap in the surface Dirac spectrum is an intrinsic
feature of the system.

By definition, the parity anomaly only implies the break-
down of parity symmetry at the quantum level. This dictates
a certain form of the band structure, which is temperature
independent.3 Hence, the parity anomaly cannot obtain any
finite-temperature correction. In contrast, the prefactor of the
anomaly-induced Chern-Simons term in the effective action
corresponds to the finite-temperature Hall conductivity. We
calculate this nondissipative transport coefficient for Chern
insulators including both a Dirac as well as a momentum-
dependent mass. We studied these systems in the absence and
presence of a magnetic field, as well as with and without
particle-hole symmetry. This leads to the following results:
(i) The parity anomaly induces a topological part in the
Hall conductivity which is temperature as well as chemical
potential independent and described by the Chern number.
(ii) The nonquantized finite-temperature and chemical poten-
tial corrections to the Hall conductivity also originate from the
parity anomaly since they also depend on the band structure.

3Rigorously, this statement is only true for small temperatures. For
very large temperatures the system can deform, which essentially
changes the band structure. However, this scenario is beyond the
scope of our analysis.

However, they do not depend on its topology, being rather
related to the temperature-dependent filling of the valence
and conduction bands. As expected, an increasing Dirac mass
counteracts finite-temperature effects. On the other hand, we
show that in the nontrivial phase an increasing Newtonian
mass enhances the finite-temperature corrections. (iii) In finite
magnetic fields, the thermal LL response renormalizes the
parity anomalous part of the Hall conductivity. In the Dirac
mass gap it adds to the otherwise quantized parity anomaly
related contribution.

This work is structured as follows: In Sec. II, we discuss
the relation of magnetically doped two-dimensional TIs to the
parity anomaly and compare these systems to the Haldane
model. In this context, we analyze the band structure of Chern
insulators in the absence and presence of an out-of-plane
magnetic field and with, as well as without, particle-hole
symmetry. In Secs. III and IV, we analyze the parity-odd
transport of a Chern insulator for a finite temperature and
chemical potential, as well as for zero and finite magnetic
fields, respectively. In Sec. V we summarize our results and
give an outlook.

II. PARITY ANOMALY IN A QAH SYSTEM BEYOND
THE HALDANE MODEL

In this work, we consider (2 + 1)-dimensional Chern in-
sulators which are defined by two different mass terms:
a momentum-independent Dirac mass m, as well as a
momentum-dependent Newtonian mass term B|k|2. The La-
grangian of such an insulator is given by

L = ψ̄ (Aγμkμ − m + Bkik
i )ψ, (1)

where ψ and ψ̄ =ψ†γ0 are the two-component Dirac
spinor and its adjoint γμ = (σ3, iσ2, iσ1) are the (2 + 1)-
dimensional Dirac matrices, and we consider the metric gμν =
diag(+,−,−). Here and throughout the paper, greek indices
run over the space-time coordinates {0, 1, 2}, while roman
indices run over the spatial components {1, 2} only. Moreover,
the parameter A is proportional to the Fermi velocity and
σ1,2,3 define the Pauli matrices. In comparison to a pure Dirac
Lagrangian, the additional Newtonian mass term in Eq. (1)
breaks the Lorentz symmetry as it only involves spatial mo-
menta. Let us close the discussion of Eq. (1) by noticing
that a similar Lagrangian can also be used for the description
of (2 + 1)-dimensional superfluid Fermi liquids, as it is for
instance described in Ref. [35].

The first-quantized Hamiltonian associated to Eq. (1) can
be derived by a Legendre transformation:

H = A(k1σ1 − k2σ2) + (m − Bα)σ3. (2)

Here, we introduced the abbreviation α = k2
1 + k2

2 . Both of the
mass terms in Eq. (2), m and Bα, break the parity symmetry
of the Hamilton. In 2 + 1 dimensions, parity symmetry is
defined as invariance of the theory under P : (x0, x1, x2) →
(x0,−x1, x2). Consequently, the Dirac as well as the Newto-
nian mass contribute to the integer Chern number4[10,11]

CCI = [sgn(m) + sgn(B)]/2. (3)

4Adding higher-order momentum-dependent mass corrections to
the Hamiltonian of a Chern insulator changes its Chern number.
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Even in the parity-symmetric limit m, B → 0±, the two-
dimensional Chern number CCI does not vanish for
sgn(m/B) > 0. This effect is known as the parity anomaly of
Dirac-type systems in odd space-time dimensions. Initially,
the parity anomaly has been predicted for a pure Dirac spec-
trum in Ref. [3]. Due to the absence of a Newtonian mass
term, the Chern number of a pure Dirac system is given by
CQED = ±sgn(m)/2 before regularization. Hence, it is half-
quantized and always nonzero. In contrast, the Chern number
in Eq. (3) is integer quantized and defines two different
phases: For m/B > 0, the system is topologically nontrivial
with CCI = ±1, while for m/B < 0, the system is topologi-
cally trivial with CCI = 0. In a solid-state system with a crystal
lattice, Dirac fermions in 2 + 1 space-time dimensions always
come in pairs.5 The naive lattice discretization of a pure Dirac
fermion leads to a phenomenon called fermion doubling,
which predicts the existence of a second Dirac fermion of
opposite Chern number at the edge of the lattice Brillouin
zone. Thus, the entire system has Chern number zero and the
parity anomaly of a single Dirac fermion cannot be measured.
However, in his seminal work [1], Haldane found a way to
circumvent this difficulty in a condensed-matter system. He
proposed a way of how to realize a single Dirac fermion in
the bulk spectrum of graphene by separately manipulating the
two Dirac gaps at the K and K ′ points of the hexagonal lattice
structure via a complex hopping parameter. In particular, this
parameter allows to close only one of the Dirac gaps, whereas
the other one remains open. Hence, his model suggests a way
of how to realize a solid-state system which has a single gap-
less Dirac fermion in 2 + 1 dimensions but still a nonzero Hall
conductivity proportional to the integer Chern number CHM =
[sgn(mK ) − sgn(mK ′ )]/2. Here, mK and mK ′ are the Dirac
mass terms at the K and K ′ points in graphene, respectively.

While so far the Haldane model has not yet been realized
in a solid-state material, a closely related QAH effect has
been predicted in two-dimensional systems like (Hg,Mn)Te
quantum wells or magnetically doped (Bi,Sb)Te thin films. In
the vicinity of the bulk gap, these systems can be effectively
described by the Bernevig-Hughes-Zhang (BHZ) model

HBHZ =
(H+

CI(k) 0

0 H− �
CI (−k)

)
, (4)

To respect the Galilean invariance of the system, any additional
mass correction needs to be of even order in momentum. Essen-
tially, the prefactor of the highest-order mass correction replaces the
Newtonian mass parameter B in the Chern number Eq. (3). Since
higher-order mass corrections do change the band curvature, they
will also alter the nonquantized Hall response at finite temperatures
and chemical potentials. However, they will only change this re-
sponse quantitatively. In particular, they do not prevent the possible
gap closing apart from the � point which drives the low-energy
response studied in this paper [cf. Eq. (19)].

5If the (2 + 1)-dimensional manifold is the boundary theory of
a (3 + 1)-dimensional bulk, there could also be an odd number of
Dirac fermions living at the boundary. For instance, this is the case
at the boundary of (3 + 1)-dimensional topological insulators. How-
ever, we are not considering such systems but focus our analysis on
pure (2 + 1)-dimensional bulk materials.

FIG. 1. Schematic illustration of how a single Dirac fermion or
Chern insulator realizes the parity anomaly in the Haldane (blue) or
BHZ (red) model. In the Haldane model, both Dirac fermions at the
K and K ′ points of the hexagonal lattice structure contribute ± 1

2 to
Chern number, whereas in the QAH phase of the BHZ model only
one of the Chern insulators is topologically nontrivial and has a finite
Chern number C = ±1. More explanations are given in the text.

which consists of two copies of the Chern insulators defined
in Eq. (2). Since for the scope of this work, off-diagonal
bulk inversion asymmetry terms which couple the two Chern
insulators are unimportant, we are neglecting them throughout
the paper. The ± index of each Chern insulator in particular
defines its (pseudo)spin polarization

H±
CI = A(k1σ1 − k2σ2) ± (m± − Bα)σ3 − Dασ0. (5)

In comparison to Eq. (2), Eq. (5) also includes a particle-hole
asymmetry Dασ0. Since this term is parity even, it neither con-
tributes to the parity anomaly nor changes the Chern number
in Eq. (3) [36]. Therefore, let us first consider particle-hole
symmetric systems with D=0. The Dirac masses m± of each
(pseudo)spin block in Eq. (5) can be tuned by magnetic doping
of the system. It is in particular possible to drive one of
the Chern insulators in the topologically trivial regime and
to close, at the same time, the gap of the second nontrivial
Chern insulator. Analogously to the Haldane model, in this
scenario the single gapless Chern insulator alone realizes the
parity anomaly of a Dirac-type system in 2 + 1 dimensions.
Schematically, this limit is illustrated in Fig. 1.

However, while in the Haldane model both Dirac fermions
contribute ± 1

2 to the Chern number, in the QAH phase of
the BHZ model only one of the Chern insulators has Chern
number CCI = ±1. The other one is topologically trivial with
CCI = 0. Hence, studying the single Chern insulator in Eq. (2)
is sufficient to analyze the consequences of the parity anomaly
in experimentally realizable systems like (Hg,Mn)Te quantum
wells or magnetically doped (Bi,Sb)Te thin films.

The spectrum associated to Eq. (2) is given by

ε±(α) = ±
√

A2α + (m − Bα)2, (6)

where ± encodes the conduction and the valence band, respec-
tively. In Fig. 2, we show the influence of the mass parameters
on the band structure. Depending on the values for m, B,
and A, the band structure changes significantly. For m/B > 0,
the system is topologically nontrivial with CCI = ±1. The
minimal gap can be either located at the � point or at αmin =
(2mB−A2)/(2B2), corresponding to a camel-back structure.

205407-3



CHRISTIAN TUTSCHKU et al. PHYSICAL REVIEW B 102, 205407 (2020)

FIG. 2. Band structure of a Chern insulator for zero magnetic
field and D=0. Red and blue curves encode topologically nontrivial
phases with m=A=1, and B=5 (red, camel-back), or m=1, A=3,
and B=0.1 (blue). The yellow curve corresponds to a topologically
trivial phase with m=1, A=5, and B=−0.1. The minimal gap is
either defined by 2|m| at the � point or by |
| at α = αmin, indicated
by the black or green arrow, respectively.

Thus, it is defined by 2|m| or by the absolute value of


 = A
√

4mB − A2/B. (7)

Increasing |m| or |B| in the nontrivial phase leads to a
camel-back structure if 2mB>A2, associated to αmin >0. The
camel-back gap |
| increases with m but decreases with B.
For 4mB=A2, 
 vanishes and the spectrum simplifies to

ε±(α) = ±|(m + Bα)|. (8)

For m/B < 0, the system is topologically trivial. In this case,
the minimal gap is always located at the � point.

If we include an out-of-plane magnetic field H , a LL spec-
trum forms if the magnetic length lH =√

h̄/|eH | is smaller
than the system size [37]. For s=sgn(eH ) and a finite particle-
hole asymmetry D, one obtains

ε±
n �=0 = −sβ/2−nδ ± λn, (9)

ε0 = s(m − β/2)−δ/2. (10)

Here, we defined α=√
2A/lH , β =2B/l2

H , δ=2D/l2
H , and

λn =
√

α2n + (m − nβ − sδ/2)2 with n ∈ N+. (11)

As shown in Ref. [13], H renormalizes the zero-field Chern
number CCI in Eq. (3) to

CCI(H ) = [
sgn

(
m − B/l2

H

) + sgn(B)
]
/2. (12)

Hence, a magnetic field counteracts the parity anomaly re-
lated contribution to the Chern number [Eq. (12)], which
survives the parity-symmetric limit m, B, H → 0. In partic-
ular, the magnetic field closes the Dirac mass gap at Hcrit =
sgn(eH )m/B. Beyond this critical magnetic field, the parity
anomaly vanishes.

This highly nontrivial statement deserves further clarifi-
cation. The parity anomaly of a single Chern insulator is a
zero magnetic field effect. It is directly related to the parity-
breaking elements of the zero-field Hamiltonian in Eq. (2) and
its band structure in Fig. 2. In quantizing magnetic fields, the

Chern number of each LL only results from the magnetic field
as it only depends on the magnetic length lH . Nevertheless, the
parity anomaly still has significant consequences in magnetic
fields. Namely, it defines the Chern number in the Dirac mass
gap [Eq. (12)], resulting from the spectral asymmetry of the
entire LL spectrum [13]. Since for |H | > |Hcrit| the spectral
asymmetry vanishes, there are no measurable consequences
of the parity anomaly beyond this value.

Above, we have introduced the concept of Chern insula-
tors and have discussed their concrete relation to the parity
anomaly in 2 + 1 space-time dimensions. Next, we study
finite-temperature and density effects on the parity anomaly
induced transport by calculating the Hall conductivity in zero,
as well as in finite out-of-plane magnetic fields.

III. ANOMALY-INDUCED TRANSPORT IN ZERO
MAGNETIC FIELD

In what follows, we calculate the finite-temperature Hall
conductivity σxy corresponding to a particle-hole symmetric
Chern insulator at zero magnetic field. This parity-odd and
nondissipative transport coefficient is directly related to the
parity anomaly in 2 + 1 space-time dimensions as it does
not vanish in the parity-symmetric limit m, B → 0±. In our
calculation, we disentangle topological from nontopological
contributions to σxy, the latter originating from thermal ef-
fects. For D=0, the finite-temperature Hall conductivity of
the Chern insulator in Eq. (2) is given by [9]

σxy(T, μ) = −e2

h

∫ ∞

0
dα

A2(m+Bα)[ fv(T, μ)− fc(T, μ)]

4[A2α + (m−Bα)2]3/2
,

(13)

where fc,v(T, μ) = [e[ε±(α)−μ]/(kBT ) + 1]−1 are the conduction
and valence band Fermi functions [18]. This result is ob-
tained by calculating the vacuum polarization operator or,
analogously, the current-current correlation function. In the
language of quantum field theory, this corresponds to the
evaluation of a one-loop Feynman diagram, whereas in the
solid-state community Eq. (13) results from the Kubo formal-
ism. To disentangle topological from thermal contributions to
σxy, we use that

fv(T, μ) = 1 − �(−ε) e(ε−μ)/(kBT )

e(ε−μ)/(kBT ) + 1
, (14)

where ε(α) encodes the entire spectrum and � is the Heav-
iside step function. With this identity, Eq. (13) decomposes
into two building blocks,

σxy(T, μ) = σ 0
xy + σ 1

xy(T, μ) (15)

with

σ 0
xy = − e2

2h
[sgn(m) + sgn(B)], (16)

σ 1
xy(T, μ) = e2

h

∫
dα

A2(m + Bα) sgn(ε)

4πε3

×
(

�(ε)

e(ε−μ)/(kBT ) + 1
+ �(−ε)

e−(ε−μ)/(kBT ) + 1

)
.

(17)
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Notice that due to the parity anomaly, neither Eq. (16) nor
Eq. (17) necessarily vanish in the parity-symmetric limit
m, B → 0. Equation (16) encodes the topological part of the
Hall conductivity. In contrast, Eq. (17) defines the corrections
originating from a finite temperature and chemical potential.
These nontopological and thus nonquantized corrections are
based on particle-hole excitations of the conduction and va-
lence bands. To solve Eq. (17), we use the assumption of a
particle-hole symmetric Chern insulator with D=0. In partic-
ular, this implies

σ 1
xy(T, μ) = σ corr

xy (T, μ) + σ corr
xy (T,−μ). (18)

To determine σ corr
xy (T, μ) in the energy space, we need to solve

Eq. (6) for α. Due to the possible camel-back structure, this
leads to two solutions

α± = αmin ±
√

ε2 − 
2

|B| with
dα±
dε

= ± ε

|B|√ε2 − 
2
.

With these identities, we find the correction

σ corr
xy (T, μ) = e2

2h
�[αmin]

∫ √
m2

|
|

A2 + 2|B|
2

√
ε2 − 
2

Bε2(e(ε−μ)/T + 1)
dε

+ e2

4h

∫ ∞
√

m2

A2 + 2|B|
2

√
ε2 − 
2

Bε2(e(ε−μ)/T + 1)
dε. (19)

While in Eq. (19) the second term captures the correction
from a monotonic band structure, the first term encodes a
possible camel-back correction. For 4mB = A2 with 
 = 0,
σ corr

xy (T, μ) reduces to

σ corr
xy (T, μ) = me2

h

∫ ∞
√

m2

A2

ε2(e(ε−μ)/(kBT )+1)
dε, (20)

which is twice the QED2+1 result with B = 0. Analogously
to Eq. (16), the Newtonian mass provides a factor of 2 to
the thermal corrections of the QED2+1 conductivity. For the
solution in Eq. (20), we can define the corrections in terms
of the gamma function �(x) and the reduced Fermi-Dirac
integral Fj (x, b) (see AppendixA). In total, this leads to

σ 1
xy(T, μ) = e2

h

∑
s=±

A2 �(−1)F−2
( sμ

kBT ,
|m|
kBT

)
kBT

T �|m|= e2

h

A2 �
( − 1,

|m|
kBT

)
kBT

. (21)

In Eq. (21), we approximate the result for low temperatures in
comparison to the gap and for zero chemical potential. �(s, b)
is the incomplete gamma function (see AppendixA).

The general correction in Eq. (19) cannot be expressed via
the integral functions above since 
 �=0. In Fig. 3, we plot the
functional dependence of σxy(μ, T ) for different choices of m
and B. While increasing the Dirac mass always counteracts
the temperature, increasing B enhances temperature effects
in the topologically nontrivial phase. As discussed below
Eq. (7), this originates from the property that B decreases
the camel-back gap. Thus, both masses contribute equally
to the topological part of the Hall conductivity in Eq. (16),

FIG. 3. Finite-temperature Hall conductivity of a Chern insulator
with A=1 and D=0. In (a) and (c), we vary the Dirac mass while
B=±0.1, respectively. In (b) and (d), we vary the Newtonian mass
for m=1. In all subfigures we consider zero chemical potential. (a),
(b) Correspond to the topologically nontrivial regime, while (c) and
(d) correspond to the topologically trivial regime.

while they counteract each other in the thermal corrections
[Eq. (17)] for m/B > 0. Notice, that even in the topologically
trivial phase m/B < 0 the system has a finite Hall conduc-
tivity in the Dirac mass gap [cf. Figs. 3(c) and 3(d)]. This
is also directly related to the parity anomaly since it arises
from the broken parity symmetry of the band structure, which
is independent of sgn(m/B). However, in the topologically
trivial phase the Newtonian mass cannot generate a camel-
back structure. In this case, both the Dirac and the Newtonian
mass terms counteract the finite-temperature broadening of
the Fermi-Dirac distribution.

IV. ANOMALY-INDUCED TRANSPORT IN FINITE
MAGNETIC FIELDS

Having analyzed a particle-hole symmetric Chern insulator
at zero magnetic field, we now include a particle-hole asym-
metry and an out-of-plane magnetic field H , where the latter
gives rise to the LL spectrum in Eq. (9). The Hall conductivity
can be calculated by means of Streda’s formula via the expec-
tation value of the charge operator 〈N〉T,μ [14,38], yielding

σxy(T, μ) = −∂〈eN〉T,μ

∂H
= e

2

∂ηH

∂H
− ∂〈eN0〉

∂H
. (22)

Here, εz = −mD/B is the charge neutrality point, and

ηH =
∑

n

sgn(εn − εz) = −eH

h
[sgn(m − β/2) + sgn(B)],

〈N0〉 =
∑

n

sgn(εn − εz)

[
�(εn − εz)

e
εn−μ

kBT + 1
+ �(εz − εn)

e− εn−μ

kBT + 1

]
. (23)

The spectral asymmetry ηH counts the difference in the num-
ber of conduction and valence band states. Therefore, as long
as the band structure is not changed, it is temperature and
chemical potential independent and solely carries the infor-
mation of the topological contribution of the parity anomaly
to σxy in magnetic fields. This enables the connection between
the Hall conductivity and the parity anomaly even at finite
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magnetic fields. In contrast, 〈N0〉 encodes the thermal LL
response, as it defines the thermal occupation of the valence
and the conduction bands. Due to the associated flat dispersion
relation, this response entirely originates from the magnetic
field topology and no more from the parity anomaly. All LLs
with n∈N+ come in pairs. With the degeneracy |eH |/h, their
contribution to the charge operator is given by

〈N0〉n �=0 = |eH |
h

∑
n �=0,s=±

s

e
s(εs

n−μ)
kBT + 1

. (24)

Additionally to this conventional LL response for finite μ and
T , the zero LL also needs to compensate its contribution to ηH

outside of the Dirac mass gap. In particular, it needs to cancel
the term ∝sgn(m − β/2) in Eq. (23) for |μ + δ/2|> |m−β/2|
[13]. Since the zero LL can either be part of the conduction or
of the valence band, we can simplify its contribution to 〈N0〉.
By using the properties of the hyperbolic tangent, we find for
the zero LL with n = 0

〈N0〉0 = −|eH |sgn(ε0− εz)

2h

[
�(ε0− εz)

[
tanh

(
ε0− μ

2kBT

)
− 1

]

− �(εz − ε0)

[
tanh

(
ε0 − μ

2kBT

)
+ 1

]]
.

This expression can be simplified further via the identities

sgn(ε0 − εz) = sgn(ε0 + δ/2) = sgn(eH ) sgn(m − β/2),

�(ε0 − εz) − �(−ε0 + εz) = sgn(ε0 − εz),

�(ε0 − εz) + �(−ε0 + εz) = 1. (25)

Eventually, this implies the zero LL contribution

〈N0〉0 = |eH |
2h

[
sgn(eH ) sgn(m − β/2) − tanh

(
ε0 − μ

2kBT

)]
,

(26)

which reduces for T → 0 and μ̄ = μ + D/l2
H to (see

Appendix A)

〈N0〉0 = |eH |
2h

�(|μ̄| − |m − β/2|)
× [ sgn(eH ) sgn(m − β/2) + sgn(μ̄) ]. (27)

For T =0, the zero LL contribution to ηH clearly gets
compensated outside of the Dirac mass gap. As expected,
finite-temperature effects soften this property.

In Fig. 4, we used Eq. (22) to connect the charge operator
to σxy and plotted the Hall conductivity corresponding to the
parity anomaly and to each LL, separately. Moreover, we
show the entire signal as a function of the chemical potential.
While the Hall conductivity contribution related to the parity
anomaly is T and μ independent, each LL comes along with
an exponentially suppressed temperature broadening. Conse-
quently, all LLs contribute to the Hall conductivity in the
Dirac mass gap. This renormalizes the zero-temperature vio-
lation of the Onsager relation6 discussed recently in Ref. [13].

6At T = 0, the only contribution to the Hall conductivity in the
Dirac mass gap is given by the parity anomaly in terms of the spectral
asymmetry ηH [cf. Eq. (22)]. Due to Eq. (23) this contribution clearly

FIG. 4. Finite-temperature Hall conductivity of a Chern insulator
in a magnetic field H =3T with A=1, m=−1, B=−0.1, and D=
−0.05. The response of each valence (blue) and conduction band
(red) LL is shown separately. The zero LL response is illustrated in
black, the parity anomaly related contribution is depicted in green.
The combined signal is shown in orange. Dashed lines correspond to
kBT = 0, solid lines are associated to kBT = 0.01. The Dirac mass
gap is shown in gray.

Let us emphasize that the Hall plateau originating from the
parity anomaly is much more robust than LL plateaus with
respect to finite-temperature effects. In the Dirac mass gap all
LL contributions to the Hall conductivity are exponentially
suppressed. Due to the lack of a zero-LL partner, the parity
anomaly response is approximately unaltered even beyond
this gap, until the chemical potential comes close to the n=1
conduction or valence band LL, depending on the sign of the
magnetic field. Quantitatively, this means

|ε+
1 − ε0| > |ε±

n+1 − ε±
n | ∀ n ∈ N+, (28)

assuming that the zero LL is part of the valence band (cf.
Fig. 4). Therefore, finite-temperature effects first smear out
the LL steps before they eventually prevent any quantization
for the finite-temperature Hall conductivity.

V. SUMMARY AND OUTLOOK

In this work we analyzed the finite-temperature Hall
conductivity of two-dimensional Chern insulators under the
influence of a chemical potential and an out-of-plane mag-
netic field. At zero magnetic field, this quantity originates
from the parity anomaly, as it persists the parity-symmetric
limit. As such, we were able to show that the parity anomaly
is not renormalized by finite-temperature effects. Instead, it
induces two terms of different physical origin in the effec-
tive action of a Chern insulator, which add up to its Hall
conductivity. The first term is temperature and chemical po-
tential independent, solely encoding the intrinsic topological
response. The second term specifies the nontopological ther-
mal response of conduction and valence band states. We
showed that in the topologically nontrivial phase, an increas-
ing relativistic mass term of a Chern insulator counteracts

violates the Onsager relation defined as σxy(−H ) = −σxy(H ). In
contrast, this identity is fulfilled by any (thermal) LL contribution.
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finite-temperature effects, whereas an increasing nonrelativis-
tic mass term enhances these corrections. In contrast, both
mass terms counteract the finite-temperature broadening of
the Fermi-Dirac distribution in the topologically trivial phase,
as the Newtonian mass cannot cause a camel-back gap in this
case. In magnetized II-VI QAH insulators, like (Hg,Mn)Te
quantum wells, these parameters can be tuned by changing the
quantum well width, or by changing the concentration of the
magnetic dopants. Moreover, we derived the thermal response
of a Chern insulator in a magnetic field and clarified its rela-
tion to the spectral asymmetry ηH. This quantity is a measure
of the parity anomaly in magnetic fields. In particular, we
derived in which way the thermal LL response renormalizes
the parity anomalous part of the Hall conductivity in magnetic
fields. Especially in the Dirac mass gap, this response adds
to the otherwise quantized and temperature-independent part
of the Hall conductivity arising from the parity anomaly. We
showed that the anomalous part of the Hall response in the
Dirac mass gap is much more robust than the common LL
contributions with respect to finite-temperature effects. Our
findings should be experimentally verifiable in QAH insula-
tors such as (Hg,Mn)Te quantum wells, magnetically doped
(Bi,Sb)Te thin films, or bilayer structures of three-dimensional
topological and ferromagnetic insulators.

In the future, it would be interesting to extend this analy-
sis to different anomalies in various space-time dimensions.
For instance, the chiral, gravitational, and conformal anomaly
should not depend on thermal effects, whereas they necessar-
ily induce a temperature dependence at the effective action
level.
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APPENDIX

The reduced Fermi-Dirac integral is defined by

Fj (x, b) = 1

�( j + 1)

∫ ∞

b
dt

t j

et−x + 1
. (A1)

The incomplete � function is defined by

�(s, b) =
∫ ∞

b
dt t s−1e−t . (A2)

Let us comment on how to derive Eq. (27) from Eq. (26). In
the zero-temperature limit, the hyperbolic tangent in Eq. (27)
becomes a sign function limT →0 tanh(x/T ) = sgn(x). Due to
this property, we need to distinguish two cases. The chemical
potential is either located inside (i) or outside (ii) of the Dirac
mass gap:

(i) |μ + δ/2| < |m − β/2|, (A3)

(ii) |μ + δ/2| > |m − β/2|. (A4)

For case (i), the hyperbolic tangent in Eq. (27) reduces to
sgn(eH )sgn(m−β/2) and consequently leads to 〈N0〉0 = 0.
Instead, for case (ii), it reduces to sgn(μ + δ/2), eventually
implying Eq. (27). While the first, temperature-independent
term in Eq. (27) describes the asymmetry of the zero LL
with respect to zero energy, the second term encodes its
temperature-dependent response. This term ensures that at
T =0 the zero LL only contributes outside of the Dirac mass
gap, exactly compensating its contribution to the spectral
asymmetry. As expected, this property becomes softened by
finite-temperature effects.
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