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Simulating transient heat transfer in graphene at finite Knudsen number
via the Boltzmann transport equation and molecular dynamics
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The phonon Boltzmann transport equation (BTE) with the relaxation time approximation (RTA) scattering
model is used to calculate transient temperature profiles in graphene, and the results are compared to anal-
ogous molecular dynamics (MD) simulations. For the BTE calculations, the phonon dispersion relation and
frequency-dependent scattering rates are obtained from a combination of MD data and semi-empirical power-law
expressions for the normal and Umklapp phonon lifetimes. The dimensions and initial temperature conditions of
graphene are varied to study the size and temperature dependence of thermal transport physics at the mesoscopic
scale. Good quantitative agreement to within 5% is found between the BTE and MD results, over a wide
range of temperatures and lengthscales of the temperature variation in the graphene sheet. Small differences
are attributed to the inaccuracy of the RTA as applied to graphene, and to neglecting four-phonon scattering in
the BTE simulations. The present results may further understanding in applications such as the transient heating
of nanoelectronics.
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I. INTRODUCTION

Heat transfer at the nanoscale is an active area of research
with applications in diverse fields such as microelectronic
devices, thermoelectric materials, and high-energy-density
materials used to make explosives [1–7]. For such problems,
lengthscales and timescales can be comparable to the phonon
mean free path and relaxation time, respectively. Under these
conditions, energy transfer by phonons is at least partially
ballistic rather than fully diffusive, and the application of the
continuum heat equation with Fourier’s conduction law leads
to overestimated heat fluxes. Therefore, alternative methods
are needed to address these problems.

In this work, we assess the use of the phonon Boltzmann
transport equation (BTE) to calculate time-dependent ther-
mal phenomena in graphene, at lengthscales where there is a
significant ballistic heat flux contribution. Graphene is a two-
dimensional lattice of carbon atoms with one of the highest
known in-plane thermal conductivities [8], making it an at-
tractive material for microelectronic cooling applications [9].
The BTE describes the evolution of the phonon distribution
function via a quasiparticle description, which is valid when
phonon wavelengths are much smaller than the characteristic
lengthscales of interest. The BTE has been successfully ap-
plied to graphene in numerous studies that fall into two classes
[2,10]. The first treats the collision dynamics of the BTE
in a more complete sense, often under the assumption that
three-phonon processes are the dominant scattering mecha-
nisms [2,11–15]. A second class of solutions incorporates the
relaxation time approximation (RTA), which linearizes the
collisional dependence of the BTE, and which is the focus of
this study.

Methods in the first class offer great predictive power. For
example, Fugallo et al. [14] and Lindsay et al. [15] calculated
temperature-dependent thermal conductivities in graphite and
graphene, and obtained excellent agreement with experimen-
tal data. However, the more complete treatment of collision
dynamics is computationally expensive, possibly precluding
its use for studying transient energy transfer [2,10].

The RTA employed by the second class greatly simplifies
the solution of the BTE, relative to the first approach, by
linearizing its collisional dependence. To assess the accuracy
of the RTA, Ward and Broido [16] calculated temperature-
dependent thermal conductivities in Si and Ge, and showed
that, compared to a more sophisticated approach which
includes the full collision dependence of the BTE (with three-
phonon interactions), the RTA introduces a 5–10% error over
the temperature range 100–800 K. The RTA has been found to
be less accurate in materials such as graphene, which have a
strong normal, momentum-conserving scattering contribution
at room temperature [10,13–15,17]. For example, Lindsay
et al. [15] found that the RTA underestimates thermal con-
ductivities in graphene if relaxation times are taken to be the
inverse of scattering rates. The authors note that this under-
prediction is due to the RTA overemphasizing the effects of
Umklapp phonon collisions, which return the system to the
Bose-Einstein distribution and act as an impedance to the heat
flux [15,18]. Despite its shortcomings, Aksamija and Kneze-
vic [19–21] still found the RTA to be useful for graphene.

In this study, we further examine the applicability and
limitations of the BTE, with the RTA, for describing nanoscale
heat transfer in graphene. Our approach involves calculating
thermal transients in graphene sheets using both the BTE,
with the RTA, and molecular dynamics (MD) for comparison.
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Existing transient BTE-based studies of graphene are scarce
[17,22]. Most related studies tend to focus on the steady state,
often using the accuracy of thermal conductivity calculations
as a measure of performance. For transient calculations, bal-
listic transport, thermal conduction, and the heat capacity all
contribute to the temperature dynamics. Therefore, it remains
unclear whether steady-state calculations are a good gauge of
the BTE’s ability to describe thermal transients in graphene.
Such information is desirable for modeling transient heat-
ing of nanoelectronics, wherein heat pulses can occur over
50–100 ps [23], which is on par with or shorter than typical
phonon lifetimes in graphene and silicon [24–26]. We demon-
strate that the simplified collisional dependence of the BTE
yields excellent transient temperature predictions, relative to
MD, under certain size and temperature constraints, elucidat-
ing the conditions under which both theories are valid.

II. BOLTZMANN TRANSPORT EQUATION

A. Governing equations

The phonon BTE is given by

∂gωl

∂t
+ vg,ωl · ∇gωl = ∂gωl

∂t

∣∣∣∣
coll

, (1)

where gωl (r, t,�) is the phonon energy distribution func-
tion, � = (θ, ϕ) is the direction of phonon travel, vg,ωl is the
phonon group velocity, and ωl subscripts signify frequency
dependence for phonon branch l . The right side of Eq. (1)
represents the collision operator associated with phonon scat-
tering. In this work, we make use of the RTA [2,18,27],
linearizing that term as

∂gωl

∂t

∣∣∣∣
coll

= g0 − gωl

τωl

, (2)

where g0 denotes the equilibrium distribution function of the
phonon energy, and τωl the branch-specific phonon relaxation
time.

The RTA assumes that the out-of-equilibrium distribution
gωl tends towards the equilibrium distribution g0,ωl at a rate
inversely proportional to τωl , implying that all phonon col-
lisions are directly responsible for bringing the system to
equilibrium. However, this is only true for Umklapp, or re-
sistive phonon collisions. Consequently, when temperatures
are low relative to the Debye temperature, the RTA has been
found to underestimate the thermal conductivity in materials
such as graphene for which normal collisions are the domi-
nant scattering mechanism [10,13–15,17]. In such cases, the
Callaway method, which distinguishes between normal and
resistive scattering, has been shown to be a better predictor of
thermal transport properties in graphene [10,13,17,22,28,29].
However, the Callaway approach requires explicit scattering
rates for normal and resistive processes, which are not always
available, and in particular, are not readily available for the
optical branches of graphene. It is therefore of interest to see
what insights can be gained with the simpler RTA approxima-
tion.

Noting that, under the RTA, Eq. (1) contains the unknown
functions gωl and g0, an additional constraint is needed. In-
tegrating Eq. (1) over frequency and solid angle, summing

over all phonon branches, and enforcing macroscopic energy
conservation, yields

NB∑
l=1

∫
∂ωl

∫
∂�

(
g0 − gωl

τωl

)
dωl d� = 0, (3)

where NB is the total number of phonon branches (NB = 6
for graphene). In addition, we expand the temperature depen-
dence of g0 around a reference temperature T0 [30]. With a
single, linear term, this leads to

g0 = 1

4π
Cωl

∣∣∣∣
T0

(T − T0), (4)

where the spectral heat capacity Cωl is given by

Cωl

∣∣∣∣
T0

= h̄ωlDωl

∂ fBE

∂T

∣∣∣∣
T0

. (5)

Here, Dωl is the phonon density of states, and fBE the Bose-
Einstein distribution,

fBE = 1

exp
( h̄ωl

kBT

) − 1
, (6)

where h̄ is the reduced Planck constant, and kB is the Boltz-
mann constant. Effects of including a second, quadratic term
in Eq. (4) are examined in Sec. IV C below.

B. Numerical implementation for graphene

The BTE is numerically difficult to solve due to its high
dimensionality. A general time-dependent problem with three
spatial dimensions has a total of seven degrees of freedom,
per phonon branch, when frequency and angular dependence
are included. The following discussion presents our numerical
method of solution. For simplicity, we focus on cases with
spatial variations in only one direction within a graphene
sheet. The method can easily be extended to problems with
variations in two spatial directions.

1. Problem discretization

We use the discrete ordinates method (DOM) to numer-
ically evaluate the angular dependence of phonon travel. In
general, the DOM is implemented by subdividing θ and ϕ into
Nθ and Nϕ parts, i.e., θ → {θi, i = 1, 2, . . . , Nθ }, and ϕ →
{ϕ j , j = 1, 2, . . . , Nϕ}, where 0 � θi � π and 0 � ϕ j � 2π ,
for all i, j. Here we consider a graphene sheet aligned with the
x-z plane, with temperature variations occurring only in the z
direction, so that there is no ϕ or x-dependence [Fig. 1(b)].
The DOM then yields the family of distribution functions
gωl ,i = gωl ,i(t, z, θi), whose evolution is described by Eq. (1).
To approximate the solid angle integral in Eq. (3), the θi are
chosen to coincide with the abscissae of the Legendre-Gauss
quadrature rule

∫ π

0
f (θ )dθ � π

2

Nθ∑
i=1

Wi f (θi), (7)

with θi = (π/2)θ̃i + π/2, and where the weights, Wi, and
abscissae, θ̃i, are tabulated for different values of Nθ [31].
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FIG. 1. (a) Snapshot showing a 3 × 1 × 3 replication of the or-
thorhombic graphene primary cell with the periodic cell edges drawn
with green lines rendered using OVITO [32]. (b) Initial value problem
setup for simulations of transient energy transport.

The frequency integral in Eq. (3) is numerically calculated
using the trapezoidal rule. For a particular branch l , the par-
tition of ωl takes the form {ωl,m, m = 1, 2, . . . , Nω}, where
the end points ωl,1 and ωl,Nω

correspond to the minimum
and maximum frequencies within that branch, respectively,
and where the interior points are ordered, i.e., ωl,2 < · · · <

ωl,Nω−1. A general frequency integral is then approximated as

∫
∂ωl

f (ω)dω �
Nω−1∑
m=1

1

2
[ f (ωm+1) + f (ωm)](ωm+1 − ωm). (8)

The spatial and temporal derivatives in Eq. (1) are dis-
cretized using finite differences. The time derivative is
approximated by the implicit Euler method, and the spatial
derivative by a first-order upwind scheme

gn+1
ω(l,m),i,k

− gn
ω(l,m),i,k

	t

+ cos(θi )vg,ω(l,m)

gn+1
ω(l,m),i,k+α

− gn+1
ω(l,m),i,k+α−1

	z

=
1
π

Cω(l,m)

∣∣∣
T0

(
T n+1

k − T0
) − gn+1

ω(l,m),i,k

τ n+1
ω(l,m),k

, (9)

where α = 1 for cos θi < 0, α = 0 for cos θi > 0, n super-
scripts denote the temporal index, with time step 	t , and k
subscripts the spatial index, with grid spacing 	z. In Eq. (9),
the spectral heat capacity depends on neither time nor space
due to its evaluation at the reference temperature T0, as a result
of linearizing the temperature dependence of g0,ωl in Eq. (4).
Additionally, in light of the frequency data discussed below,
we assumed that the group velocities are also temporally and
spatially independent, but have allowed for the relaxation
times to vary with these quantities. Finally, we note that the

factor (4π )−1 appearing in Eq. (4) is replaced by π−1 to
account for the two-dimensionality of graphene.

Applying the integral approximations Eqs. (7) and (8)
allows us to write the energy conservation constraint Eq. (3)
as

π

2

NB∑
l=1

Nω−1∑
m=1

Nθ∑
i=1

Wi

2

×

⎡
⎢⎣

gn+1
ω(l,m+1),i,k

− 1
π

Cω(l,m+1)

∣∣∣
T0

(
T n+1

k − T0
)

τ n+1
ω(l,m+1),k

+
gn+1

ω(l,m),i,k
− 1

π
Cω(l,m)

∣∣∣
T0

(T n+1
k − T0)

τ n+1
ω(l,m),k

⎤
⎥⎦

× (ωl,m+1 − ωl,m) = 0. (10)

Equations (9) and (10) are a discretized system of algebraic
equations for the unknowns gn+1

ω(l,m),i,k
and T n+1

k , which can be
solved iterativley, for example, by Newton’s method [33]. We
achieved convergence to 1 × 10−4 K by the simpler method
of fixed-point iteration, typically within two to five iterations
per time step.

2. Boundary and initial conditions

Boundary conditions are derived by specifying the proper-
ties of phonons entering the domain. For a one-dimensional
problem with the endpoints z = 0 and z = L, boundary condi-
tions at z = 0 describe rightward traveling phonons, for which
cos θi > 0, and conditions at z = L correspond to phonons
traveling to the left with cos θi < 0. In the simulations to
follow, we make use of periodic boundary conditions, and an
initial temperature condition. Periodicity requires

gn
ω(l,m),i,0 = gn

ω(l,m),i,Nz
, (11)

where Nz	z = L represents the right-hand boundary.
We specify an initial temperature condition at t = 0 (n =

0) as

g0
ω(l,m),i,k = 1

π
Cω(l,m)

∣∣∣
T0

(Tinit,k − T0), (12)

where Tinit is the desired initial temperature distribution.

C. Frequency parameters

Several frequency-dependent parameters are needed to
solve the BTE form described above, including τωl , vg,ωl , and
Cωl . We note that previous BTE-based studies of graphene
involved the calculation of the thermal conductivity at steady
state, for which some, or all of the optical phonons are omitted
due to their relatively small contribution [10,19]. However,
since we are considering transient calculations, an analogy to
the continuum heat equation suggests that both the conductiv-
ity and heat capacity play important roles in thermal transport.
We therefore include the optical phonons due to their ability
to store energy [18].

To obtain the frequency-dependent phonon group veloc-
ities, we adopt the phonon dispersion relation calculated at
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300 K by Koukaras et al. [34]. Due to the relatively symmetric
shape of the graphene dispersion relation, we assume that the
first Brillouin zone is isotropic in the �–K direction. Other
groups found success using an isotropic approximation in the
�–M direction [10]. We calculate the branch-specific phonon
group velocities by numerically differentiating a linear inter-
polation of each branch of the dispersion relation according to

vg,ωl = ∂ωl

∂k
, (13)

where k is the wave vector. The frequency dependence of the
forthcoming equations is evaluated by setting the maximum
and minimum frequencies within each branch along the �–K
direction to ωl,max and ωl,min, respectively, and discretizing
the frequency range between the two endpoints as described
previously.

From Eqs. (5) and (6), the spectral heat capacity Cωl is
expressed as

Cωl

∣∣∣∣
T0

= (h̄ωl )2

kBT 2
0

Dωl

eh̄ωl /kBT0

(eh̄ωl /kBT0 − 1)2
. (14)

The bulk, or total volumetric heat capacity C is then given by

C =
NB∑
l=1

∫
∂ωl

Cωl

∣∣∣∣
T0

dωl , (15)

for which the classical, or high-temperature limit is

C∞ = lim
T0→∞

C = kB

NB∑
l=1

∫
∂ωl

Dωl dωl . (16)

To calculate the heat capacity, we use the density of states for
an isotropic two-dimensional (2D) material [18,35]

Dωl = k

2πvg,ωl

. (17)

We assess the error associated with using the simplified den-
sity of states Eq. (17) by comparing the high-temperature limit
of the heat capacity predicted by Eq. (16) with the theoretical
limit for graphene

C∞
th = 3nkB, (18)

where n is the atomic number density (per unit area) of
graphene. Taking n = 3.82 × 1019atoms/m2 [8] yields C∞

th =
1.58 × 10−3 J K−1m−2, while Eq. (16) gives C∞ = 1.82 ×
10−3 J K−1m−2. We note that C in Eq. (15) equals C∞

th at
1190 K.

Our relaxation times τωl are obtained by using the approach
of Ward and Broido [16], who calculated accurate thermal
conductivities in silicon and germanium with the RTA, using
a relaxation time of the form [16,36]

1

τωl

= 1

τN
+ 1

τU
. (19)

Equation (19) is an application of the Matthiessen rule [18],
where τN represents the relaxation times corresponding to the
so-called normal, or momentum-conserving scattering pro-
cesses, and τU represents the rates for resistive, or Umklapp
scattering. The combined relaxation time Eq. (19) should

―    Present BTE-RTA 3-ph              
- - Guo [10] BTE-Callaway 3-ph 
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FIG. 2. Temperature-dependent bulk thermal conductivities, in-
cluding data from Guo and Wang [10], Gu et al. [52], Chen et al.
[53], and Cai et al. [54].

become more accurate as temperatures approach the Debye
temperature, when in terms of calculating the conductivity,
normal, and Umklapp processes are indistinguishable [36].

We use empirical power-law expressions for the three-
phonon normal and Umklapp relaxation times, which were
used in previous studies of graphene [10,19,37,38]. The
three-phonon Umklapp lifetimes for the longitudinal acoustic
and transverse acoustic (LA and TA) branches are given by
[10,19,37–39]

1

τU (ωl , T )
= BU ω2

l T exp(−�l/3T ), (20)

where BU = h̄γ 2
l /(M�lv

2
s,l ). In these expressions, γl repre-

sents the per-branch Grüneisen parameters which are taken to
be 2 and 2/3 for the LA and TA branches, respectively [10],
M represents the molecular mass of carbon, which is assumed
to be purely carbon-12, vs,l represents the speed of sound in
graphene, which is approximated as the group velocity near
the � point and calculated to be 19.3 nm ps−1 for the LA
branch and 14.2 nm ps−1 for TA. The parameter �l is the
branch-specific Debye temperature given by [37]

�2
l = 5h̄2

3k2
B

∫
ω2

l Dωl dωl∫
Dωl dωl

, (21)

which we calculate as 1814 and 1586 K for the LA and TA
branches, respectively. The three-phonon normal lifetimes for
the LA and TA branches are expressed as [10,38,39]

1

τN (ωl , T )
= BNωlT

3, (22)

where BN = k3
Bγ 2

l V (2/3)/(h̄2Mv4
s,l ), and V is the average vol-

ume per carbon atom in graphene, which is taken to be
8.769 × 10−30m3 [10].

We note that Eqs. (20) and (22) have often been used for the
acoustic LA, TA, and ZA (out-of-plane) branches of graphene.
However, such expressions may only be accurate for the LA
and TA branches because they are typically obtained under
a linear dispersion assumption, whereas the frequency de-
pendence of the ZA branch is quadratic near the � point
[40–42]. We found Eqs. (20) and (22) to yield unphysically
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FIG. 3. Comparisons between first- and second-order temperature expansions of the Bose-Einstein distribution, T (L/4, t) (top curves) and
T (3L/4, t) (bottom curves), for the L = 50 nm case. (a) THot = 600 K, TCold = 300 K, (b) THot = 400 K, TCold = 300 K, (c) THot = 900 K,
TCold = 800 K, and (d) THot = 1200 K, TCold = 1100 K.

small relaxation times for the ZA branch. Therefore, we only
apply these expressions to the LA and TA branches. The
lifetimes for the remaining ZA and optical branches (LO,
TO, ZO) are obtained from Zou et al. [24], who reported
MD-calculated relaxation times for graphene along the �–K
direction, as a function of frequency at 300 K. Due to the
relatively flat dispersion of the optical branches, we assign
a uniform frequency-independent value of τωl to each of the
LO, TO, and ZO branches, which we take to be the mean
relaxation time within each branch, respectively. Therefore,
only the relaxation times for the LA and TA branches are
functions of temperature. This approximation is satisfactory
for the following BTE and MD comparisons because in MD
simulations, the LA and TA branches account for 70% of the
thermal conductivity in graphene, at room temperature [24].

III. MOLECULAR DYNAMICS

Classical molecular dynamics (MD) simulations of free-
standing graphene sheets were performed using LAMMPS

[43] and a version of the Tersoff force field [44,45] that
was specifically parametrized by Lindsay and Broido [46]
(hereafter, Tersoff-2010) to accurately capture the vibrational
density of states for graphene and related materials. All MD-
derived parameters for the BTE taken from the literature were
obtained using the same Tersoff-2010 force field model. Sim-
ulation cells were treated as three-dimensional (3D) periodic,

with the graphene sheet extending through two of the three
periodic boundaries and with a large 50-nm vacuum region
added in the third dimension to prevent self interactions.
Equilibrium simulations were performed to prepare initial
configurations that sampled the isothermal-isochoric (NV T )
and isothermal-isostress (NσT ) ensembles. Simulations of
transient energy transport were performed in the isochoric-
isoenergetic (NV E ) ensemble. All trajectories were integrated
with a 0.5-fs time step. Isothermal sampling was performed
using a Nosé-Hoover-style thermostat [47,48] and isostress
sampling was performed with a Nosé-Hoover-style barostat
[49] in which the three independent in-plane stress compo-
nents of the sheet were coupled to their respective cell lengths
and cell angle.

All production simulation cells were constructed using a
lattice constant of a = 0.24912 nm, which was obtained from
a 100 ps NσT simulation of a nonorthorhombic 16 × 16
graphene supercell containing 512 atoms at 300 K and 1 atm.
The generalized crystal-cutting method [50] (GCCM) was
used to obtain an oriented orthorhombic primary cell for
graphene, shown in Fig. 1(a), that contained four atoms and
had (x, y, z) dimensions (0.43150, 50.000, 0.24912 nm). Su-
percells for probing one-dimensional (1D) transient energy
transport along z were prepared by replicating the primary cell
along x and z following the schematic shown in Fig. 1(b). We
set the simulation cell width W transverse to the conduction
direction to be 10.356 nm (24 replications) and considered
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FIG. 4. (a) Transient temperatures T (L/4, t) (top curves) and T (3L/4, t) (bottom curves) with T0 = 450 K for L = 10 nm, (b) L = 200
nm, (c) L = 500 nm, (d) L=2000 nm. “Rescaled BTE” refers to the BTE with the classical heat capacity Eq. (16).

simulation cell lengths L along the conduction direction of
between ≈10 to ≈2000 nm (40 to 8000 replications). The
smallest supercell contained 3840 atoms and the largest con-
tained 384 000.

Initial states for simulations of 1D transient energy trans-
port were prepared through a multistep process. First, the
entire supercell was equilibrated at temperature TCold through
a 1-ns NV T simulation. A nonequilibrium step-wise tempera-
ture distribution was imposed by dividing the supercell in half
equally along z to form hot and cold regions. While holding
atoms in the cold region in fixed positions, we heated the
atoms in the hot region to THot through a 50-ps NV T simu-
lation in which velocities were randomly re-selected from the
Maxwell distribution at THot every 1 ps for the first 5 ps. An
analogous velocity randomization and equilibration procedure
was then applied to the atoms in the cold region with temper-
ature TCold while holding the atoms in the hot region fixed.
Following from this state, we simulated the relaxation of the
initial temperature distribution towards equilibrium through
NV E trajectory integration. The temperature profile T (z, t )
was was recorded every 10 fs during the relaxation simula-
tion by binning the supercell into contiguous, nonoverlapping
0.99648 nm bins along z, yielding discrete samples that cor-
respond to the instantaneous average kinetic temperature of
the 384 atoms in each bin. Ensembles of ten independent
relaxation simulations were performed for each supercell size,
aside from the largest (≈2000 nm) for which we ran five
independent simulations. All MD predictions for T (z, t ) re-

ported below correspond to ensemble averages. Additional
smoothing was performed by block-averaging in time within
contiguous nonoverlapping windows. Window sizes ranged
between 0.05 and 2 ps, with larger windows used for larger
(and thus longer) simulations. We verified that our results
were independent of W for cases with L � 50 nm by perform-
ing an analogous set of simulations with W = 51.780 nm (120
replications along x).

IV. RESULTS AND DISCUSSION

We assess the accuracy of our BTE formulation by first
calculating values for the thermal conductivity, and compar-
ing to results from the literature. We then use our numerical
solver to compute thermal transients in graphene for a range
of conditions, and compare to analogous results obtained by
MD and from the continuum heat equation (HE). As discussed
in the Supplemental Material [51], our solver was verified
by demonstrating convergence between the BTE and HE for
problem sizes approaching the continuum scale, i.e., for prob-
lems with small Knudsen number Kn, where Kn is the ratio
of the phonon mean free path to the problem’s characteristic
lengthscale.

For simulations of transient temperature changes, we use
the periodic graphene sheet with an initial step change in
temperature shown in Fig. 1(b). The lengthscale L is the dis-
tance over which the temperature variation is repeated in the
z-direction. The initial temperature is set such that T (z, 0) =
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FIG. 5. Transient temperatures T (L/4, t) (top curves) and
T (3L/4, t) (bottom curves) for (a) L = 10 nm and (b) 50 nm.

THot for 0 � z < L/2, T (z, 0) = TCold for L/2 < z � L, and
T (L/2, 0) = (THot + TCold)/2, where THot and TCold are varied.
Additionally, periodic boundary conditions are prescribed at
z = 0 and z = L, and the reference temperature T0 is set to
(THot + TCold)/2. There is no temperature variation in the x-
direction, which plays no role in the BTE simulations.

A. Temperature-dependent thermal conductivity predictions

To assess the validity of the frequency-dependent param-
eters presented in Sec. II C, we calculated the RTA thermal
conductivity given by

κ = 1

2

NB∑
l=1

∫
ωl

τωl v
2
g,ωl

Cωl

∣∣∣∣
T0

dωl , (23)

and compare to various literature sources in Fig. 2. The ex-
perimental results of Chen et al. [53] (isotopically purified
0.01% 13C) and Cai et al. [54] are for large-area suspended
graphene, where the two sets of data of Cai et al. corre-
spond to different laser objectives used to heat the sample
[20,54]. Three-dimensional units were obtained by dividing
the conductivity Eq. (23) by the approximate thickness of a
graphene sheet, 0.335 nm [10]. By including the work of Gu
et al. [52] who studied the effects of four-phonon scattering on
the thermal conductivity, we can consider the error associated

with only incorporating three-phonon scattering in our BTE
formulation.

In Fig. 2, we first note that the present BTE-RTA slightly
underestimates the conductivity relative to the three-phonon
BTE results of Guo and Wang [10] and Gu et al. [52], around
and below room temperature. As previously mentioned, an
even larger underprediction has been noted in other studies
[13–15,25]. With respect to the Callaway results of Guo and
Wang, the relatively good agreement seen here may be due
to our neglect of isotope scattering, which is present in their
results, as well as our incorporation of optical phonons via
the MD results of Zou et al. [24], which are not accounted
for by Guo and Wang. The inclusion and exclusion of optical
phonons and isotope scattering, respectively, serve to increase
our conductivity relative to Guo and Wang, thereby partially
offsetting the underprediction caused by our use of the RTA.

Our model agrees well with the four-phonon collision
results of Gu etal . [52] at room temperature, but at higher tem-
peratures tends towards the three-phonon collision results, as
four-phonon collisions become more prevalent. The relatively
good agreement between the present conductivity results and
those obtained from the literature justifies the use of the pa-
rameters presented in Sec. II C.

B. Rescaling the BTE and MD

At temperatures much lower than the Debye temperature,
direct comparisons between BTE and MD results are prob-
lematic because the classical equations of motion underlying
MD do not capture quantum effects in the heat capacity.
These effects are included in the BTE via the Bose-Einstein
distribution, Eq. (6). However, by rescaling time and atomic
mass in the BTE and MD equations, one can make the BTE
correspond to a classical limit, where quantum effects are
negligible. Such a rescaling allows for comparisons between
both methods with a consistent heat capacity.

The classical equations of motion for a system of N parti-
cles are given by

d2xi

dt2
= Fi(x1, x2, . . . , xN )

mi
, i = 1, 2, . . . , N, (24)

where xi, mi, and Fi are the position, mass, and force acting
on the ith particle, respectively. We rescale to a system of
geometrically identical particles, but with masses increased
by a scalar factor a2, i.e., mi → a2mi. If time is then scaled
by a factor a, or t → at , the equations of motion Eq. (24) are
unchanged.

We may perform a similar rescaling of the BTE to de-
rive an equation free of quantum effects, analogous to MD.
Consistent with our rescaling of time, we rescale frequency
according to

ωl → ωl

a
. (25)

With this frequency rescaling, the distribution function, gωl ,
and the group velocity in Eq. (13) become

gωl → agωl , (26)

and

vg,ωl → vg,ωl

a
, (27)
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FIG. 6. (a) Transient temperatures T (L/4, t) (top curves) and T (3L/4, t) (bottom curves) with T0 = 350 K for L = 10 nm, (b) L = 200 nm,
(c) L = 500 nm, and (d) L = 2000 nm.

respectively. Rescaling time requires

τωl → aτωl . (28)

Substitution of Eqs. (25) to (28) and the time rescaling t → at
into the BTE yields

∂gωl

∂t
+ vg,ωl · ∇gωl =

1

π
C̃ωl

∣∣
T0

(T − T0) − gωl

τωl

, (29)

where C̃ωl is the rescaled spectral heat capacity given by

C̃ωl

∣∣∣∣
T0

= (h̄ωl )2

kB(aT0)2

k

2πvg,ωl

eh̄ωl /kB (aT0 )

(eh̄ωl /kB (aT0 ) − 1)2
, (30)

and we used Eqs. (14) and (17). The rescaled BTE Eq. (29)
is therefore unchanged, except for the term involving the heat
capacity, where the factor a effectively increases the temper-
ature, so that the heat capacity attains its constant, classical
value. Equivalently, the factor a can be interpreted as reducing
the Planck constant to zero, which has been done in other
studies to derive a classical-based BTE [52].

In the limit that a becomes large, or in other words as the
particle masses increase, C̃ωl approaches the classical heat
capacity that follows as a consequence of Eq. (24) in the
MD simulations. For large a, the rescaled BTE, Eq. (29),
is equivalent to its original form, provided the spectral heat
capacity is replaced by its constant, high temperature limit.
Solution of the rescaled BTE permits direct comparisons

between the BTE and MD at a consistent heat capacity, with
the understanding that we are now considering a pseudo-
graphene system comprised of heavier atoms.

C. Nonlinear effects in Cω

In Sec. II A, we assumed that the Bose-Einstein distribution
fBE varied linearly with temperature, leading to the the linear
form of the equilibrium distribution g0 given by Eq. (4). Such
a simplification yields what is known as the linearized Boltz-
mann transport equation [18], which is commonly used in
studies involving three-phonon collisions [2]. Equation (4) is
most accurate when T is close to T0, or when the heat capacity
Eq. (5) does not change appreciably with temperature. Here,
we test the limit of the linear approximation in graphene, as
THot − TCold increases, and also examine the impact of includ-
ing a quadratic term in Eq. (4). We verified that the third- and
higher-order terms are negligible.

In Fig. 3, we plot transient temperature profiles for our
graphene sheet, at the centers of the hot (z = L/4) and cold
(z = 3L/4) regions, for the BTE both under the linear approx-
imation, and including the second-order term in the expansion
of fBE. Figure 3(a) shows the results for 	T0 = 150 K,
where 	T0 is half the initial temperature difference, 	T0 =
1
2 (THot − TCold). We see that the BTE predicts an upward shift
in the temperature profile when the second-order expansion is
used, whereas the linear BTE misses this behavior. Similar,
although less pronounced effects are observed in Fig. 3(b),
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FIG. 7. (a) Transient temperatures T (L/4, t) (top curves) and T (3L/4, t) (bottom curves) with T0 = 850 K for L=10 nm, (b) L = 200 nm,
(c) L=500 nm, and (d) L = 2000 nm.

where 	T0 = 50 K. We confirmed that the difference between
the final temperature and the average of the initial tempera-
tures for the second-order results in Figs. 3(a) and 3(b) are
consistent with overall energy conservation. In the higher
temperature simulations of Figs. 3(c) and 3(d), the linear and
second-order BTE results are indistinguishable.

The upward shift observed in the colder simulations can
be explained by the second-order expansion of fBE introduc-
ing an effective temperature-dependent heat capacity. In the
second-order case, the equilibrium distribution g0 becomes

g0 = 1

4π
Cωl

∣∣∣∣
T0

(T − T0) + 1

4π
Bωl

∣∣∣∣
T0

(T − T0)2, (31)

where

Bωl

∣∣∣∣
T0

= 1

2
h̄ωlDωl

∂2 fBE

∂T 2

∣∣∣∣
T0

. (32)

Now, defining

C(2)
ωl

= Cωl

∣∣
T0

+ Bωl

∣∣
T0

(T − T0), (33)

allows us to write Eq. (31) as

g0 = 1

4π
C(2)

ωl
(T − T0). (34)

Equation (34) is equivalent to Eq. (4), save for the
temperature-dependent thermal conductivity C(2)

ωl
. The equiv-

alence between the first- and second-order results of Figs. 3(c)
and 3(d) is due to the heat capacity approaching its constant

limit at the elevated temperatures [Bωl in Eq. (33) goes to
zero when evaluated at high temperatures], thus attenuating
the temperature dependence in Eq. (34).

The nonlinear results presented here demonstrate that at
around room temperature, 	T0 must be smaller than 50 K to
justify the use of Eq. (4) in the BTE for graphene. However,
since the BTE is unaffected by the inclusion of the second-
order term in the high-temperature limit, the comparisons
that follow, between the rescaled BTE (with classical heat
capacity) and MD, are valid.

D. Comparison of BTE and MD predictions

We now compare transient results between the HE,
rescaled BTE, and MD, for the temperature evolution in a
graphene sheet, with initial condition shown in Fig. 1(b). We
first consider a series of sheets of increasing length, ranging
from 10 to 2000 nm, with THot = 600 K, TCold = 300 K,
T0 = 450 K, and with the rescaled BTE heat capacity set to
the constant high-temperature limit of 1.58 × 10−3 J K−1m−2.
We verified that our results are numerically converged by
independently varying the time step 	t , spatial step size 	z,
number of frequency points Nω, and number of angular points
Nθ (see the Appendix).

Figures 4(a) to 4(d) shows the transient temperature pro-
files at the centers of the hot and cold regions, i.e., z = L/4
and z = 3L/4, respectively. We first note that the continuum
model overpredicts the rates of heat transfer for all observed
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FIG. 8. (a) Transient temperatures T (L/4, t) (top curves) and T (3L/4, t) (bottom curves) with T0 = 1150 K for L = 10 nm, (b) L = 200
nm, (c) L = 500 nm, (d) L = 2000 nm.

problem sizes, compared to the BTE and MD. The reason
for this is that the parabolic form of the heat equation only
accounts for the diffusion of heat, and does not capture bal-
listic transport. In contrast, the BTE and MD both predict
ballistic phonon transport when length scales are small com-
pared to the phonon mean free path. At room temperature,
we calculated the weighted average mean free path (by the
heat capacity) to be 260 nm, in agreement with other results
[25]. As the problem size increases, the continuum results tend
toward the BTE and MD predictions.

Generally good agreement is observed between the
rescaled BTE and MD across all problem sizes, with max-
imum differences of ∼5%. There is better agreement for
the smallest, 10-nm sheet, and the intermediate sized 500-
nm sheet. Slightly underpredicted and overpredicted rates of
heat transfer, relative to MD, are apparent for the 200- and
2000-nm sheets, respectively.

The excellent agreement for the 10-nm sheet is due to
being in the ballistic regime, i.e., Kn � 1, so that the RTA
scattering model is a minimal source of error in the BTE. To
test the sensitivity to parameters in the RTA, we calculated
results for 10- and 50-nm sheets, with relaxation times that
were artificially increased to a level that rendered the collision
term of the BTE negligible. The results are shown in Fig. 5,
where they are labeled as “ballistic.” For the 10-nm case, we
see that the ballistic and rescaled BTE results are almost iden-
tical, indicating that the 10-nm graphene sheet is in the nearly
collision-free ballistic regime. However, in the larger, 50-nm
sheet, the ballistic result deviates from the rescaled BTE result

because of the stronger effect of collisions at the lower Kn.
Figure 5 confirms that, in the 10-nm results of Fig. 4(a), the
excellent agreement between the rescaled BTE and MD is due
to the insignificance of the RTA scattering term.

As the problem size in Fig. 4 increases above the ballistic
limit, a ballistic-diffusive regime is entered where scattering
becomes more prevalent. These effects are shown in Figs. 4(b)
to 4(d), where lengths of 200, 500, and 2000 nm are consid-
ered. Due to our use of the RTA, slightly worse agreement
is initially observed, where the rescaled BTE underpredicts
the rate of heat transfer relative to MD, for the 200-nm sheet.
The agreement then improves for the intermediate 500-nm
sheet, and the rescaled BTE ultimately predicts slightly higher
rates of heat transfer, relative to MD, for the largest, 2000-nm
sheet.

A first possible explanation for the behavior in Figs. 4(b)
to 4(d) is that upon entering the ballistic-diffusive regime, the
assumption invoked by the RTA of being close to thermo-
dynamic equilibrium is violated, i.e., the initial temperature
difference between the hot and cold regions is too large to
be considered a perturbation on an equilibrium state. To test
this, we reduced THot from 600 to 400 K, while keeping TCold

at 300 K. Figures 6(a) to 6(d) shows the results for the re-
duced temperature simulations. Comparison with Figures 4(a)
to 4(d) reveals qualitatively similar temperature profiles be-
tween the 	T0 = 50 K and 	T0 = 150 K cases. Therefore,
the disagreements between the BTE and MD results in the
ballistic-diffusive regime are unlikely to be due to large
perturbations from equilibrium.
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FIG. 9. Effective thermal conductivity as a function of problem size for (a) T0 = 350 K, (b) T0 = 450 K, (c) T0 = 850 K, (d) T0 = 1150 K.
Results from Guo and Wang [10] are included.

Next, we test the performance of the BTE with the RTA
at higher temperatures. Figures 7(a) to 7(d) and 8(a) to 8(d)
show the results for the cases THot= 900 K and THot= 1200 K,
respectively. Compared to the colder simulations, both sets
of data show improved agreement between the rescaled BTE
and MD, at L = 200 nm and L = 500 nm. Previous studies
demonstrated that the BTE with the RTA underestimates the
thermal conductivity in graphene, at room temperature, due to
ignoring the collective effect of normal scattering [13–15,25].
As temperatures approach the Debye temperature of 2100 K
[8], the relative importance of normal compared to Umklapp
scattering diminishes [36], and the RTA should become more
accurate. This may explain why the BTE-MD agreement im-
proves for the L = 200 nm and L = 500 nm sheets, at the
higher temperatures considered in Figs. 7 and 8.

As in the colder simulations, the rescaled BTE overpredicts
the rate of heat transfer, relative to MD, for problem sizes
approaching the continuum scale [Figs. 7(d) and 8(d)], where
the rescaled BTE and HE results converge. The dominance of
heat conduction in the continuum limit possibly magnifies the
effect of neglecting four-phonon scattering in our BTE formu-
lation, whose inclusion would lower the thermal conductivity
in graphene [52,55].

To further quantify differences between the rescaled BTE
and MD results, we calculated length-dependent effective
thermal conductivities, by fitting both sets of data to the con-
tinuum heat equation, as described in Kroonblawd and Sewell
[5]. Note that our fits included the complete time history over

the entire spatial domain, not just the L/4 and 3L/4 points.
Figures 9(a) to 9(d) shows the calculated effective conductiv-
ities for all four temperature differences that we considered,
along with the bulk conductivities predicted by the rescaled
BTE. For comparison, we also include in Fig. 9(a) values
from Guo and Wang [10], who reported effective conductiv-
ities for a one-dimensional graphene sheet with isothermal
boundaries, using the BTE with the Callaway collision model
at 300 K.

As discussed previously, the best agreement between the
rescaled BTE and MD results is observed for the smallest
lengthscales, due to ballistic transfer being the dominant mode
of heat transfer. We also see, as before, a trend for im-
proved agreement between both methods in the intermediate
ballistic-diffusive regime as temperatures increase. For the
largest, 2000-nm sheets we considered, Figures 9(c) and 9(d)
show effective conductivities that are 20% and 60% larger,
respectively, compared to MD. In contrast, this overprediction
is only 10% for the colder, THot = 400 and 600 K sheets
of Figs. 9(a) and 9(b). The increasing overestimation with
temperature may be due to neglecting four-phonon scattering
in our BTE formulation, the effects of which become more
significant at higher temperatures [52,55], and when conduc-
tion is the dominant mode of heat transfer. Additionally, we
see that in the continuum limit, the effective conductivities
predicted by the rescaled BTE correctly converge towards the
bulk values. Finally, we emphasize that the differences seen
here in the rescaled BTE and MD effective conductivities
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FIG. 10. Numerical convergence plots for (a) an L = 50 nm graphene sheet with 	z = 0.5 nm fixed, (b) L = 50 nm, 	t = 0.05 ps fixed,
(c) L = 500 nm with 	z = 5.0 nm fixed, (d) L = 500 nm, 	t = 0.5 ps fixed.

only lead to maximum differences of ∼5% in the transient
temperature profiles.

V. CONCLUSION

In this work, we presented a framework for making ac-
curate transient temperature predictions using the BTE with
a simplified RTA scattering model. We calculated transient
temperature profiles in graphene using the BTE, and devel-
oped a rescaling scheme to permit direct comparisons with
analogous MD results in the classical limit. We demonstrated
that the RTA is a computationally efficient alternative for tran-
sient thermal calculations in graphene, compared to MD, even
for temperatures significantly below the Debye temperature.
This method provides a means for studying transient heat
transfer in situations inaccessible to approaches that include
complete collision dynamics. Additionally, we demonstrated
that the accuracy of our BTE formulation, relative to MD,
is size- and temperature-dependent. The two methods yield
nearly indistinguishable results in the ballistic limit, and when
the effects of normal scattering are small. Our implemen-
tation depended on semi-empirical expressions for phonon
scattering rates caused by Umklapp and normal scattering, as
well as frequency-dependent parameters obtained from MD
simulations. This work therefore demonstrates that, under
many conditions of interest, the BTE can be an accurate and
computationally efficient tool for exploring the physics of

nanoscale transient heat transfer if reliable phonon dispersion
and relaxation-time parameters are available.
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APPENDIX: NUMERICAL CONVERGENCE

We tested for numerical convergence of our BTE results,
with respect to the step sizes 	t and 	z, by varying each
independently of each other. Results are shown in Fig. 10,
for a graphene sheet with L = 50 nm, THot = 600 K, and
TCold = 300 K. In Fig. 10(a), we kept 	z fixed at 0.5 nm, and
varied 	t . As in the main text, we plot the transient temper-
ature profiles at the centers of the hot and cold regions, i.e.,
z = L/4 and z = 3L/4, respectively. We see that with respect
to the time step, convergence is achieved when 	t = 0.05 ps.
Similarly, in Fig. 10(b) we fixed 	t = 0.05 ps and varied 	z,
and observed converged results when 	z = 0.5 nm. There-
fore, in the simulation results presented in the main text for
L � 50 nm, we set 	t = 0.05 ps and 	z = 0.5 nm. A similar
procedure was performed for the 10-nm simulations, and we
obtained converged results with 	t = 0.01 ps and 	z = 0.1
nm. We also varied Nω and Nθ , and observed convergence for
Nθ = 32 and Nω = 16.

205406-12



SIMULATING TRANSIENT HEAT TRANSFER IN … PHYSICAL REVIEW B 102, 205406 (2020)

To verify that results for L > 50 nm with 	t = 0.05 ps
and 	z = 0.5 nm are indeed converged, we carried out the
previous procedure for an L = 500 nm sheet in Figs. 10(c)
and 10(d). For the larger problem, convergence is achieved
with a coarser mesh of 	t = 0.5 ps and 	z = 5.0 nm. How-
ever, as noted before, all results presented in the main text

where L � 50 nm were calculated with the finer mesh of
	t = 0.05 ps and 	z = 0.5 nm. Finally, we note that the
convergence behavior show in Fig. 10 was also checked and
found to be unchanged at the higher temperature interval
of 1200 K-1100 K, corresponding to Fig. 8 in the main
text.
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