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Heat current anticorrelation effects leading to thermal conductivity reduction in nanoporous Si
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Prevailing nanostructuring strategies focus on increasing phonon scattering and reducing the mean-free-path
of phonons across the spectrum. In nanoporous Si materials, for example, boundary scattering reduces thermal
conductivity drastically. In this work, we identify an unusual anticorrelated specular phonon scattering effect
which can result in additional reductions in thermal conductivity of up to ∼80% for specific nanoporous
geometries. We further find evidence that this effect has its origin in heat trapping between large pores
with narrow necks. As the heat becomes trapped between the pores, phonons undergo multiple specular
reflections such that their contribution to the thermal conductivity is partly undone. We find this effect to
be wave-vector dependent at low temperatures. We use large-scale molecular-dynamics simulations, wave-
packet analysis, as well as an analytical model to illustrate the anticorrelation effect, evaluate its impact
on thermal conductivity, and detail how it can be controlled to manipulate phonon transport in nanoporous
materials.
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I. INTRODUCTION

Nanostructuring has enabled an unprecedented control of
phonon transport with widespread applications ranging from
microelectronic devices [1] to data storage [2], and mi-
croelectromechanical systems [3,4]. Strong focus has been
placed on reducing thermal conductivity for thermoelectric
and heat insulation applications [5–8]. This is largely because
nanostructuring can significantly reduce a material’s thermal
conductivity—particularly in semiconductors and dielectrics.
Reductions of up to two orders of magnitude have been
observed over the last few years in several Si-based nanostruc-
tures, including rough Si nanowires [9,10], thin films [11,12],
and Si-based alloys and superlattices [13]. Recent works con-
cerning Si-based nanoporous materials have also shown that
the room-temperature thermal conductivity can be reduced be-
yond the material’s amorphous limit [5–7]. The consensus is
that porosity reduces the heat capacity of the material and thus
its thermal conductivity to some degree, but the additional
scattering of phonons on the pore surfaces reduces the thermal
conductivity even below the amorphous limit.

Existing nanostructuring strategies largely focus on al-
loying and introducing defects at different length scales to
increase “incoherent” phonon scattering and thereby reduce
the relaxation times of phonons across the spectrum. Most
often, the phonon-gas picture suffices to describe thermal
conductivity, even in nanoporous materials [14–16]. How-
ever, the issue as to whether “coherent” wave effects alter
the phonon dispersion relations—changing group velocities,
the density of states, and creating phononic band gaps—or
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result in the localization of modes is still an open topic [6,16–
19]. Herein, we report the emergence of anticorrelated (AC)
specular phonon scattering (and thus heat flux) as a result
of heat trapping between the pores, which can provide up
to ∼80% additional reduction in thermal conductivity for
specific nanoporous geometries. Anticorrelated heat flux has
been observed in amorphous and fluid materials, but not
in crystalline materials [20–23]. The AC effect can benefit
thermoelectric applications, but also find wider application
for the control and manipulation of heat-carrying phonons in
nanophononic metamaterials in general. In this work we use
large-scale equilibrium molecular dynamics (EMD), wave-
packet simulations, and develop an analytical model to:
(1) describe the anticorrelated heat-flux behavior and the con-
ditions that preclude it (heat trapping), (2) evaluate its impact
on thermal conductivity, and (3) detail how this effect can be
controlled to manipulate phonon transport in nanoporous ma-
terials. We begin by describing the approaches used (Sec. II),
followed by the observations of anticorrelated heat-flux be-
havior as a function of the nanoporous geometries (Sec. III),
obtained with the Green-Kubo approach. In Sec. IV, we dis-
cuss the results of wave-packet simulations, which provide an
illustrative picture of the underlying physical mechanism for
the heat-flux anticorrelation. These results indicate that heat
trapping and multiple reflections between the pores is what
manifests as anticorrelation effects in the heat flux and further
suggest the effect to be wave-vector dependent. Finally (in
Sec. V), a simple ray-tracing model is introduced, which con-
nects the behavior observed in Secs. III and IV by showing,
in a simple manner, how specular phonon reflections between
the pores with multiple reflections can lead to heat-flux anti-
correlation effects. Section VI offers a conclusion for the bulk
of the work presented.
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II. METHODS

Thermal transport in nanostructured geometries requires an
understanding beyond what is achievable at a continuum level,
and yet simulation domains larger than can be accommo-
dated by first-principles approaches. Methodologies available
to study nanoporous morphologies are thus limited to clas-
sical molecular dynamics (MD) [24–27], or semiclassical
approaches involving the numerical solution of the Boltz-
mann transport equation (BTE) [28–32], and, to some extent,
lattice dynamics [24,33,34]. In this work, we use a combi-
nation of both equilibrium molecular dynamics (EMD) and
wave-packet simulations to evaluate thermal transport in Si
nanoporous structures. We further develop a simple statistical
model of a gray population of heat-carrying acoustic phonons
to illustrate how heat trapped between the pores can lead
to anticorrelated behavior in the heat-current autocorrelation
function (HCACF). The model is described in Sec. V.

The Green-Kubo is a well-established approach to deter-
mine the thermal conductivity of a system from its thermal
fluctuations at equilibrium, such that the thermal conductivity
along x [i.e., the length of the simulation cell as shown in the
inset in Fig. 1(a)], κx, is given by

κx = V

kBT 2

∫ ∞

0
〈Jx(t )Jx(t + τ ) 〉dτ, (1)

where V and T are the volume and temperature of the system
respectively, kB is Boltzmann’s constant, and Jx(t )Jx(t + τ ) =
A(τ ) is the averaged but non-normalized HCACF of the x
component of the instantaneous heat-flux, Jx(t ), at simulation
time t . The HCACF measures the size and longevity of ther-
mal fluctuations in the heat flux of a system in equilibrium,
and is central to revealing the anticorrelated behavior that we
describe below.

Simulations were performed with the large-scale
molecular-dynamics software LAMMPS [35], using the
Stillinger-Weber (SW) potential [36]. We have opted to use
the SW potential in this work in part because it is commonly
used to model heat transfer in silicon [24,37], and for consis-
tency with our previous work [14]. Although it overestimates
the thermal conductivity [38], the Stillinger-Webber potential
provides a reasonable match for the phonon dispersion
relations, in particular for the acoustic phonons [39]. The
results were averaged for sets of 15–20 simulations to mitigate
the large uncertainty in the Green-Kubo approach [14], and
smaller simulation cell sizes were used where possible to
reduce computational expense. Simulation cell sizes varied
between 40 × 10 × 10 and 200 × 10 × 10 unit cells for the
simulations associated with Figs. 1 and 3, and 100 × 10 × 10,
and 100 × 24 × 10 unit cells for the simulations in Fig. 2.
This corresponds to dimensions ∼21.72 × 5.43 × 5.43 to
∼108.6 × 5.43 × 5.43 nm3 for Figs. 1 and 3, and ∼108.6 ×
5.43 × 5.43 to ∼108.6 × 13.03 × 5.43 nm3 for Fig. 2,
respectively. System sizes are indicated in the figures, and
following common practice we report the fractional change
in thermal conductivity compared to the pristine system,
κporous/κ0. We considered porous Si as illustrated in the
inset of Fig. 1(a), where the pores are empty cylindrical
regions “etched” from the top all the way to the bottom of the
material. The systems were brought to and equilibrated

FIG. 1. (a) Normalized HCACFs, A(τ )/A(0), for the geometries
in (c). (Inset) κx/κ0 (extracted at the 75-ps cutoff) as a function of
porosity. (b) Evolution of κx/κ0 as a function of the HCACF time,
τ . The dashed/solid lines correspond to geometries without/with
anticorrelated heat flux (r = 1 nm/r = 1.5 nm). The cyan geometry
has an elongated pore, with a vertical (y direction) spacing of 3.43 nm
such that the neck size is equivalent to the geometries with r = 1 nm.
It has the same porosity and number of scatterers as the purple
geometry. The error bars correspond to the standard error across the
simulations performed for each geometry. (c) Cross section of the xy
plane (for a 108.6-nm width), for the geometries plotted in (a) and
(b). The actual simulation cell is indicated by the black box.

at ∼300 K, such that each system has its own initial
configuration. Temperature equilibration is done in two
parts: (1) the systems are brought to room temperature and
allowed to thermally expand in the isothermal, isobaric
ensemble (NPT) for 125 ps, and (2) equilibrated in the
microcanonical ensemble (NVE) for an additional 125 ps,
before any calculations are performed, also in NVE, for
10 ns. Equilibration is performed using a 0.5-fs interval,
whereas a 2-fs time step is used to record the heat flux for
the HCACF calculation. Transport properties reported in this
work are computed along the x axis, that is, along the long
direction of each simulation cell [as shown in the inset in
Fig. 1(a)], which is aligned with the [1 0 0] crystal direction.
Additional simulation details can be found in our recent
work [14].

For illustration of phonon propagation in the structures
we simulate, we form Gaussian phonon wave packets and let
them propagate while we monitor their trajectory. A Gaussian
phonon wave packet is a propagating wave function formed by
a linear superposition of plane waves weighted by a Gaussian
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FIG. 2. (a) A(τ )/A(0) for a range of geometries with the same number of pores, but varying pore radius and neck size. Simulation cell
sizes are indicated in the inset. Pore radii vary between 1 and 2.5 nm for the geometries in blue, 1.5 and 3.59 nm for the geometries in red, 2.44
and 4.83 nm for the geometries in green, and 3.6 and 5.92 for the geometries in cyan. (b) Evolution of κx/κ0 as a function of τ for the same
geometries. (c) Plot of the percentage reduction in κx due to the AC effect as a function of the radius to neck ratio. (Inset) Reduction in κx as a
function of the neck.

distribution around a localized wave vector, and defined by

uljμγ =
∑

q

Ao

(
1

σ
√

2π

)
e(q−qo/σ

√
2)

2

ε jμe−i(rl q+ωγ t ). (2)

Here, uljμγ is the displacement of the jth atom in the lth unit
cell along a direction μ (in x, y, or z) for a given mode, γ .
Ao is the amplitude of the wave packet, which can be tuned to
a desired wave-packet energy. The wave packet is centered
at a desired carrier wave vector, qo, with an uncertainty in
momentum space specified by σ . The term ωγ is the frequency
of the mode γ at qo, and ε jμ is the eigenvector of the jth
atom along μ at the selected mode, γ . rl is a vector that
points to the lth unit lattice, and t is the time. The sum over
q is performed for all wave vectors in the first Brillouin zone
that are commensurate with the computed cell. The phonon
wave-packet simulations are centered at wave vectors qo =
0.46, 0.93, 1.45, 1.74, 2.89, 4.05, and 5.21 nm−1, along the
[100] crystal direction for both the longitudinal and transverse
acoustic modes (γ ). Large simulation cells, consisting of 800
× 10 × 10 unit cells for Si are used to precisely model the
wave packets with very fine uncertainty in momentum space
(σ = 0.05 nm−1). The initial position of the atoms in the MD
simulation is computed using Eq. (2) and the initial velocity

is computed from the derivative of ul jμγ with respect to time

(vl jμγ = dul jμγ

dt ).
In our wave-packet simulations the system is initially at

0 K and the wave packets are added with Ao for each wave
packet tuned so that it raises the temperature of the system by
around ∼5 K, rather than adding one phonon, h̄ω, of energy.
The reason for this is that, in the system sizes modeled, ωh̄
for wave packets near the Brillouin-zone center is too small
to be resolved above the numerical noise, while a single h̄ω

would raise the system temperature by hundreds of Kelvin for
wave packets near the Brillouin-zone edge. While the Green-
Kubo calculations were performed at 300 K, performing the
wave-packet simulations at lower energy (∼5 K) help keep
phonon thermalization at bay, such that the acoustic frequen-
cies selected for the packets do not easily decay into other
modes/frequencies due to anharmonicity. This allows us to ob-
serve the scattering behavior of specific wave-vector phonons
at the nanopores, as they are less likely to be obfuscated by
anharmonic effects. The actual values of Ao are included in
the Supplemental Material [40].

III. THE ANTICORRELATION EFFECT

In this section, we clarify and demonstrate the emergence
of anticorrelations [41] in the heat flux and quantify its effect

FIG. 3. (a) A(τ )/A(0) for the geometries in (e). All geometries have the same radius, r = 1.5 nm, but different pore concentrations.
(b) Evolution of κx/κ0 as a function of τ for the same geometries. The percentage change in κx due to AC is also indicated. (c) Zoom in
of the higher-porosity geometries. (d) Plot of the HCACF time at which point each HCACF dip minima (circles) occurs as a function of
the horizontal (x-axis) distance between the pores, and corresponding linear fit (green line); equivalent plot for the HCACF dip maxima
(corresponding to where the HCACF becomes negative) (stars/black line). The slope of each line is also shown. The circles and stars match
the color of the geometries. (e) Cross section of the xy plane for the geometries plotted in (a), (b), and (c).
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on the thermal conductivity as a function of pore and neck
sizes, as well as pore periodicity. Three sets of geometries are
considered in Fig. 1 (1) pores with a 1-nm radius (blue, green,
orange), (2) pores with a 1.5-nm radius (red, purple, and ma-
roon), and (3) an elongated pore (cyan), such that the “neck,”
i.e., the distance between the edges of the pores perpendicular
to the direction of transport (i.e., in the y direction), is 1 nm,
but its porosity is the same as that of the geometry in purple.
A cross section along the xy plane is shown in Fig. 1(c) for
each of the geometries. The length of the simulation cell varies
between ∼27.2 and 108.6 nm, and the width along the y direc-
tion is ∼5.43 nm for all of the geometries shown in Fig. 1. The
moving average of the HCACFs and the HCACF cumulative
integrals for these geometries are plotted in Figs. 1(a) and
1(b), respectively.

The HCACF can be decomposed into contributions from
short- and long length-scale interactions by fitting the HCACF
to a sum of exponentials [20], from which the relaxation
times for different length-scale phonon processes can be ex-
tracted. The rate of decay of the HCACF is thus a measure
of the relaxation times of the heat-carrying phonons in the
system. The typical HCACF for Si decays exponentially and
monotonically to zero. In our simulations, the geometries
with pore radius r = 1 nm [first triad of Fig. 1(c) struc-
tures], and the elongated pore geometry (cyan), all match
this behavior; the small oscillations around zero stem from
statistical noise in the HCACF and are to be expected [14,42].
However, the HCACFs of geometries containing uniformly
distributed 1.5-nm pores show anomalous behavior [second
triad of Fig. 1(c)]. The HCACFs become negative and de-
cay to zero from below the x axis. The negative correlation
or, equivalently, the anticorrelation [shown in Fig. 1(a) as
the region of the HCACF that is below zero] in the narrow
neck systems occurs when heat-flux fluctuations in one di-
rection are followed by fluctuations in the opposite direction.
This anticorrelation reduces the system’s thermal conductiv-
ity, creating a peak in the cumulative HCACF integral at
the point where the HCACF crosses the x axis as shown in
Fig. 1(b). We can observe in Fig. 1(a) that there are varia-
tions in the width, the minimum, and the time after which
each minimum occurs for the geometries shown. How these
characteristics are affected by the geometry is discussed later
in the text. We begin by quantifying the reduction in thermal
conductivity that is due to the anticorrelation of the heat
flux.

As a metric of the reduction in the thermal conductivity, κ ,
due to the anticorrelation we consider the height of the peak
in the cumulative HCACF integral above its final converged
value. This value is indicated in Fig. 1(b) for the geometry in
purple, and corresponds to a 21.5 ± 6.5% decrease in the ac-
cumulated κ . For a more realistic comparison of the decrease
in thermal conductivity due to this effect, we considered a
reference geometry (in cyan) without AC effects [its pores are
elongated, such that the neck matches those of the geome-
tries in the first triad (top) of Fig. 1(c)], but with equivalent
porosity and number of scatterers as the geometry in purple
[which belongs to the second triad (bottom) of Fig. 1(c)].
Comparing the two geometries, the purple system yields a
37.4 ± 9.0% decrease in thermal conductivity [see inset in
Fig. 1(a)].

This estimated 37.4 ± 9.0% reduction in thermal con-
ductivity suggests that using the HCACF peak height to
estimate the effect of AC, which yields an estimated 21.5 ±
6.5% change in thermal conductivity [see Fig. 1(b)] under-
estimates the total reduction in κ . However, it would be too
computationally expensive to compute similar elongated pore
geometries to match each of the other geometries investigated
herein, and henceforth we use the peak height to compare the
impact of each geometry on the thermal conductivity. Overall,
the AC effect provides an additional path to reduce the thermal
conductivity, and the scale of the reduction is comparable to
that achieved by increasing the number and surface area of
the scattering features. For instance, the thermal conductivity
of the geometry in red (with AC effects) has a similar porosity
to the geometry in green (without AC effects), which has a
higher number of scatterers and thus also surface area [see
insets in Fig. 1(a) and Fig. 1(c)]. The same equivalence can
be observed between the geometry in purple and the system
in orange.

To further determine how the AC effect emerges with re-
spect to the porous geometry, in Fig. 2 we examine multiple
geometries with different pore and neck sizes. To vary the
pore and neck sizes independently, we selected four equal-
length sets of geometries, but with varying width (i.e., the y
direction in the simulation cell), as illustrated in the insets
in Figs. 2(a) and 2(b). This allows us to consider geometries
with the same neck size, but different pore size, and vice
versa, and in general various neck and pore sizes. Multiple
pore sizes are considered for each set of the characteristic
geometries of different widths [blue, red, green, and cyan as
shown in the insets of Fig. 2(a)]. Pore sizes are indicated in
the caption of Fig. 2. In all cases the distance between the
pores’ center is kept constant. The length of the simulation
cell is also fixed at 54.3 nm. Figure 2 shows the HCACFs
[Fig. 2(a)], and corresponding cumulative integrals [Fig. 2(b)]
for the various geometries. Much larger dips in the HCACF
can be engineered compared to Fig. 1, some affecting the
cumulative integrals and the thermal conductivity in a drastic
way.

If we again consider the height of the peak created in the
cumulative integral of the HCACF [Fig. 2(b)] to estimate the
effect of the AC in the heat flux, as we have done before,
we find that for any given geometry type (blue, red, green,
and cyan geometries), the percentage change in κ plateaus as
a function of the ratio between the pore radius and the neck
[Fig. 2(c)]. The neck [see inset illustration in Fig. 2(b)] plays
a major role in producing an anticorrelation in the heat flux.
Figure 2(c) illustrates that (1) the AC effect is better correlated
to the ratio of the neck to pore radius than to either the pore
radius, or neck width alone [see inset in Fig. 2(c)]. In other
words, a smaller pore system requires a smaller neck to yield
the same dip minima as a larger pore system, and the ratio
between the neck and pore diameter is a better metric of the
total thermal conductivity than either the neck or pore diam-
eter alone (see Fig. S5 in the Supplemental Material [40]).
This is consistent with results from Monte Carlo simulations
as well [43]. Similarly, we intuitively expect a smaller neck
and a larger radius to reflect (back) phonons more effectively
and create a stronger anticorrelation effect. The results in
Fig. 2(c) further indicate that beyond a certain point it makes
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no difference if the neck is further reduced for a given pore
size. One possibility for this plateau, which is reached at a
79.3 ± 12.6% reduction in κ for a fixed pore periodicity of
54.3 nm [see Fig. 2(c)], is that a limit is reached at which point
the remaining phonons, with short mean-free paths (smaller
than the pore periodicity), will thermalize before anticorre-
lated behavior can take place.

It follows from Fig. 2 that the extent to which the heat flux
is anticorrelated can be controlled by carefully selecting the
pore and neck sizes, that is, the lateral spacing between pores.
Next, we show that the spacing between the pores in the direc-
tion of transport can also affect the location of the HCACF dip
minima. We consider a set of geometries of periodically ar-
ranged pores, depicted in Fig. 3(e), with the same pore radius
(r = 1.5 nm) but varying pore density. All of the geometries
in Fig. 3(e) exhibit anticorrelated heat-flux behavior to some
extent, with the exception of the higher pore concentration ge-
ometry (in green). Each of the dips in the (moving average of
the) HCACFs shows up at a different instance of the HCACF
time, as seen in Fig. 3(a). Similarly, the HCACF cumulative
integral [Fig. 3(b)] shows peaks (labeled with stars) moving to
the left. The percentage change in thermal conductivity due to
the AC effect is indicated in Figs. 3(b) and 3(c). Notice that the
peaks occur earlier than the dip minima (labeled with dots), as
they correspond to the instance where the HCACF becomes
negative. Interestingly, we find that there is a linear correlation
between the distance between the pores, d [see Fig. 3(e)],
and when the anticorrelation dip minima and integral peak
maxima occur [Fig. 3(d)]. The slopes of the aforementioned
relationships are also indicated, in units of velocity.

The dip minima indicate the simulation time intervals
at which the anticorrelation effect is strongest. Using this
measure, we find the slope of the correlation between when
the anticorrelation effect is strongest (i.e., the dip minima)
and d to be vdips = 2845 m/s. (If instead we use the peaks
of the cumulative HCACF, we obtain vpeaks = 4395 m/s.)
As a reference to the reader, near the 	 point of the Si
phonon spectrum obtained with the Stillinger-Webber poten-
tial, the velocities for the (dominant) longitudinal acoustic and
transverse modes are ∼8100 and ∼5000 m/s, respectively,
yielding an average speed of ∼6033 m/s for the three modes.
There is clearly a linear relation between the appearance of
the anticorrelation effects and the pore distances.

IV. THE HEAT-TRAPPING ORIGIN OF THE
ANTICORRELATION EFFECTS

To investigate the origin of the AC effect on the porous
structures, wave packets centered at a wave vector qo, as
detailed in Sec. II, are propagated through two sets of systems
with pore radii of 1 nm [left-hand plots of Figs. 4(a)–4(h)] and
2 nm [right-hand plots of Figs. 4(a)–4(h)] with corresponding
3.4- and 1.4-nm necks. When we evaluate the thermal conduc-
tivity of the structures in the left and right columns with the
Green-Kubo approach, the structure in the left column does
not show AC effects, whereas the one in the right does. Both
longitudinal and transverse modes are considered for several
values of qo, for which heat maps are obtained showing the
evolution of the kinetic energy of the wave packets in the
geometries during simulation time. The values of qo are noted

in each subfigure, and they are also indicated by the vertical
lines in Fig. 4(k) on the q axis, where the frequencies and
velocities of the modes are plotted as well. This is shown
in Figs. 4(a)–4(h) for the transverse mode with polarization
perpendicular to the pore height [labeled TA ⊥ in Fig. 4(i)].
The longitudinal (LA) and parallel transverse (TA ‖) modes,
as well as other qo-centered packets for the same (TA ⊥)
mode are shown in the Supplemental Material [40]. In the
heatmaps [Figs. 4(a)–4(h), 4(j), and 4(l)] the ordinate indicates
the propagating time and the abscissa the length direction. The
positions of the pores are indicated by the white vertical lines
and are located at 216 and 270 nm.

From Figs. 4(a)–4(h) it is evident that (1) the amount
of heat reflected at the first pore is consistently greater for
the larger pore, narrower neck geometries (center column
in Fig. 4), and (2) the amount of heat that is transmitted
after the second pore is significantly reduced for the same
narrow-neck geometries. As a consequence of hindering heat
propagation through the spacing between the pores, it can also
be seen that for the narrower neck geometry (center column of
Fig. 4) phonons become trapped between the pores, causing
the packets to oscillate back and forth. This effect is also
clearly shown to be q dependent, in that it is more or less
prevalent at different wave vectors; roughly, the heat blocking
and accumulation becomes stronger for phonons with larger
wave vectors. This is most noticeable by considering the trans-
mission at the second pore (i.e., the amount of kinetic energy
that reaches past the second pore, located at 270 nm), which
disappears for qo values of 4.07 and 5.24 nm−1, but is present
at other values of qo.

We remark that, in the case of the wave packets, the pore
neck/size controls the amount of energy trapped between the
pores not only by not allowing heat to escape once through
the first pore, but also by limiting the amount of heat that
goes through the first pore. For instance, for qo = 4.07 nm−1

in the narrow-neck structure [Fig. 4(g)] the intensity of the
heat bouncing back and forth is somewhat less than that in
the wider neck case [Fig 4(c)]; however, this is most likely
because most of the kinetic energy is reflected at the first
pore, and less energy is therefore available to be reflected
between the pores. The multiple reflections observed in the
geometries with narrower neck/larger pores corroborate the
EMD simulation results discussed in the previous section,
which exhibit HCACFs with negative values evidencing an
anticorrelation of the heat flux. In short, like the packets which
bounce back and forth between the pores for geometries with
narrower neck, in the equilibrium calculations, heat similarly
fluctuates back and forth between the pores. As the necks
become smaller and the pores larger, more heat is trapped
and scattering between the pores is intensified. This agrees
with the observations in Fig. 2, which show an increase in
the (proportional) amount of anticorrelated heat flux for nar-
rower neck geometries (over positively correlated heat flux).
In Fig. 2(a), this is evident in how negative the HCACF be-
comes as the pore sizes increase and necks decrease.

The transmission through the first pore as a function of qo

is shown in Fig. 4(i) (see the Supplemental Material [40] for
calculation details) for all acoustic modes. Overall, the trans-
mission is lower for larger wave vectors (and thus also higher
frequencies). This could account for why vdips [Fig. 3(d)] is
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FIG. 4. (a)–(h) Heatmap of the evolution of the wave-packet kinetic energies during the simulation time along the width of the nanoporous
geometries. The heatmap is shown for two systems with pore radii of 2 nm [left-hand-side plots (a)–(d)] and 1 nm [right-hand side plots
(e)–(h)] with corresponding 1.4- and 3.4-nm necks. The geometries are 800 × 10 × 10 unit cells and the kinetic energy is summed over each
10 × 10 cross section. The white lines indicate the pore location along the width (x direction) of the geometry. Each plot corresponds to a wave
packet centered at a given wave vector, qo, as indicated in the bottom-right side of each plot for the perpendicularly polarized transverse mode
(i.e., with polarization perpendicular to the height of the cylindrical pores). The distance between the pores is 54 nm. (i) Transmissions (i.e.,
the amount of kinetic energy that goes through) on the left-hand side pore, for the 2-nm (dashed lines with circle markers) and 1-nm (solid
lines with star markers) pore geometries obtained with the longitudinal (blue lines) and transverse modes polarized perpendicularly (indicated
by the symbol ⊥, and corresponding to the red lines) and in parallel (indicated by the symbol ‖, and corresponding to the green lines). (j)
Heatmap for a wave packet centered at qo = 1.75 nm−1 with a pore distance of 27 nm. This figure includes a color bar for figures (a)–(h),
(j), and (l). (k) Dispersion relation showing the acoustic transverse and longitudinal mode frequencies, as well as velocity, obtained with the
Stillinger-Webber potential. The vertical green shaded stripes indicate the width and weighing of each mode around qo used to construct the
wave packet. (l) Heatmap for a wave packet centered at qo = 5.24 nm−1 with a pore distance of 27 nm. (m) Example of geometry with a packet
propagating through it. The geometries are 800 × 10 × 10 unit cells, and the first pore is located in the middle of the supercell.

less than exactly half the speed of the average of the acoustic
modes. In other words, if higher qo phonons are most notice-
ably trapped between the pores, the overall velocity of these
modes would be lower than their velocity at 	, because the
velocity of the modes decreases a function of q [see Fig. 4(k)].
In fact, higher-frequency modes are more likely to be scattered
between the pores, while larger wave vectors are less likely

to “see” small-size features [43]. That said, the increased
scattering rate between pores for larger pores/smaller necks is
nevertheless still present at low wave vectors [see Fig. 4(a)].
Due to their weaker umklapp scattering, phonons with small
wave vectors are known to contribute more to the overall
thermal conductivity than large wave-vector phonons. On the
other hand, it is also known that the contribution of higher
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q values becomes more noticeable once lower q values have
been scattered, for instance due to defect scattering [44–47].

The trend observed in Fig. 3(a), whereby the HCACF
dip moves left as the periodicity between the pores becomes
smaller (i.e., as the pores become closer together in the di-
rection of thermal transport) can be understood as a function
of the maximum possible correlation distance (and thus time)
for heat scattering between the pores in each case. Consider
the heat trapped between the pores in the packet simulations:
the distance between the pores dictates the maximum distance
heat may travel from the moment it first crosses the left-hand
side pore until it finally dissipates. For this reason, the max-
imum correlation interval, τ , is smaller when the pores are
closer together: see Figs. 4(f) and 4(h), where the pores are
54 nm apart, in contrast with Figs. 4(j) and 4(l), in which
the pore separation is 27 nm. In other words, this is why the
HCACF correlation time, τ , shifts to the left in Fig. 3(a), as the
geometries become more densely packed [see corresponding
geometries in Fig. 3(d)]. In short, Fig. 3(d) shows that the
duration of heat-flux fluctuations before the reversal process
scales linearly with the distance, d , between the ranks of
pores—indicating that the fluctuation duration depends on the
time of flight to strike the pores and that pores must be causing
the reversal.

Finally, a reduction in the x component of the wave-
packets’ velocity after scattering at the pore surfaces, as
observed in Ref. [24], can also be observed in this work. In
other words, the split velocity observed in some of the packets
in Fig. 4 is likely the wave packet being scattered laterally by
the curved pore, which allows for different x-directed veloc-
ities (i.e., in the direction of propagation explicitly shown in
the heat map). Given that the simulation cell has a finite width
w, there are only a set number of directions θ that a lattice
wave of a wavelength can travel, while remaining coherent
with itself across the periodic boundaries of the computed cell.
Mathematically the periodic boundaries impose the condition
n λ = w sin θ, where n is an integer, λ the wavelength of the
carrier wave, and θ the direction of the wave vector relative
to the long axis of the simulation cell. In Fig. 4 the wave
packets have wavelengths of λ = 13.4, 3.6, 1.5, and 1.34 nm,
and the cell width is w = 5.4 nm. For the longest-wavelength
wave packet there is no oblique path that is commensurate
with the box boundaries (the equation above is only satisfied
for θ = 0). For the next-largest wavelength of λ = 3.6 nm,
there is one oblique direction possible at θ = 41.7◦. The wave
packet traveling along this direction would have an x com-
ponent of velocity that is 0.75 of that of the incident wave
packet with θ = 0, and so would leave a trace on the heat map
with a slope 1.34 times steeper than the incident wave. This
second possible ray is seen in Figs. 4(f) and 4(j). The other
waves in the wave packet would not be commensurate with
the box boundaries and so the wave packet reflected along
this oblique direction will be dispersed. For the wave packets
with q = 4.07 and 5.24 oblique reflections are permitted that
would leave traces on the heat map with slopes of [1.04, 1.22,
1.94] and [1.03, 1.12, 1.34, 2.18] times that of the incident
wave packet, and oblique reflections corresponding to these
are seen in the heat maps for these wave packets. (See Fig.
S5 and the Supplemental Material [40] for more details.) We
note, however, that there are still some issues that are not yet

FIG. 5. Stochastic model results. (a) (Solid blue) Contribution to
the heat current from a single phonon with lifetime τo that is reflected
after time ατo, its ACF (solid green), and the integral of its ACF
(solid red). The dashed lines show the corresponding functions if
the phonon was not reflected. (b) The net HCACF averaged over all
τo, and α for varying scattering probability distributions (inset). The
black line is for no scattering. The green curve is for scattering with
a uniform probability in α, and shows a 10.6% dip in the ACF due
to anticorrelation. In purple and brown, we show the case where the
scattering probability is strongly skewed to the middle of the phonon
lifetime with much larger dips in the ACF.

clear and would be revisited in future studies, for example why
some transmissions show an increase and then a decrease as a
function of q.

V. RAY-TRACING MODEL

We develop a simple analytical model, as a gedanken ex-
periment, to show how different types of phonon scattering
manifest as signatures in the HCACF. The purpose of this is
to ensure that we are correctly interpreting the anticorrelation
features in the HCACF seen in panel (b) of Figs. 1–3. This
model is not intended to be predictive, but to illustrate how
heat trapped between the pores, as shown by the wave-packet
simulations (Fig. 4), can lead to the negative values in the
HCACF. We consider a simple statistical model of a gray
population of heat-carrying acoustic phonons that pop in and
out of existence completely uncorrelated (for example from
scattering with a bath of optical phonons, although the details
of this are not required for this exercise) with a lifetime τo.
Each acoustic phonon contributes a stepwise heat current,
Jp(τ ), which has an autocorrelation function Ap(τ ) [dashed
blue and green lines in Fig. 5(a), respectively], that is positive
and linearly decreases over time. The instantaneous heat cur-
rent of the entire system is the superposition of Jp(τ ) from all
active phonons, but as the acoustic phonons are not correlated
with one another, the system’s HCACF is simply the phonon
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density times the average of each phonon’s correlation with
itself. The dashed red line in the lower panel of Fig. 5(a)
shows the integrated average of Ap(τ ). To explore the effect of
specular (perfectly correlated) scattering on the HCACF, we
assume that each acoustic phonon experiences some scattering
at a time ατo (where 0 < α < 1) during its flight, that reflects
the phonon, reversing its direction, and causing the flux and
HCACF plotted with solid lines in Fig. 5(a). This correlated
scattering allows the autocorrelation to become negative. We
have further considered a Poisson distribution of lifetimes
τo, and the distribution of scattering times, Pα , such that the
duration of the AC is controlled by the scattering time, ατo,
and the amount of the AC is controlled through the probability
of reflection at α, Pα (α). The Poisson distribution implies that
the scattering event that annihilates the phonon is completely
uncorrelated with the event that created it, and is commonly
used in kinetic Monte Carlo simulations to describe the free
path distribution of particles in an ideal gas [48]. Averaging
over a Poisson distribution of phonon lifetimes and directions,
and also the distribution of scattering times one can show that
this correlated scattering reduces the thermal conductivity by

κx

κo
=

∫ 1

0
Pα (1 − 2α)2dα, (3)

where Pα is the probability distribution that a phonon is re-
flected at fraction α of the way through its flight. Additional
details, and a derivation of the model are included in the
Supplemental Material [40].

During diffuse scattering the incident and scattered
phonon trajectories are uncorrelated which in the stochastic
phonon model has the same effect as reducing the mean
phonon lifetime τo. This hastens the decay of the HCACF,
reducing thermal conductivity, but it does not lead to the
HCACF becoming negative. Specular scattering on the other
hand can be significantly more resistive for heat transport in
geometries that allow anticorrelation effects, particularly if
phonons live long enough after they are reflected that they
undo the heat current they generated before scattering. En-
forcing specularity causes anticorrelated heat-flux fluctuations
similar to those observed in MD.

Figure 5(b) shows the collective effect on correlated scat-
tering on the net HCACF computed for a series of Pα

distributions (plotted inset) for which the probability of scat-
tering is shifted systematically from near the ends of the
phonon flight to its middle. If the likelihood of reflection is
evenly distributed throughout each phonon’s lifetime [Pα = 1,
green line in Fig. 5(b)] then the total thermal conductivity
is reduced to one-third of its intrinsic value, and a 10.6%
dip emerges in the integrated HCACF. A larger reduction
in the thermal conductivity and a more prominently peaked
integrated HCACF are obtained when the probability of re-
flection is weighted towards the middle of the phonon flight,
i.e., α = 0.5τo, to maximize the anticorrelation time (e.g.,
the purple and brown plots in Fig. 5(b) show 45 and 92%
reduction, respectively, similar values to those observed in
some of the MD simulations). The key result from this model
is that the anticorrelated heat flux observed in MD can only be
achieved if phonons live long enough after they are reflected
that they undo the heat current they generated before scatter-

ing. In the wave-packet simulations the phonon reflections are
not limited to a single back and forth oscillation, and instead
multiple reflections are observed. When multiple reflections
are included in the ray-tracing model multiple oscillations
show up in the computed ACFs. As only one dip is observed in
the ACF of the Green-Kubo molecular dynamics simulations
(the first panel of Figs. 1–3) this implies that, in contrast to
the wave-packet simulations, at 300 K phonons only remain
(anti)correlated for about one reflection. One reason for this is
that the wave-packet simulations are performed at low tem-
peratures and thus phonons have a much longer mean-free
path than in the Green-Kubo simulations at 300 K. A second
probable reason is that, since the pores are cylindrical, the
wave packets can reflect off the pores in different directions, as
can be seen, for instance, in Fig. 4(h). A phonon’s contribution
to the ACF along the x direction is proportional to its velocity
along x squared. Thus elastic scattering that bends a wave
packet away from x- will quash the x-direction HCACF.

In light of the model, we can now explain the behavior
observed in Figs. 2 and 3 regarding dip “height” and “loca-
tion.” In Fig. 2, what causes the peaks to change height is
the density of inversely correlated phonons due to changes
in pore size and neck width, which control the strength of the
reflections. In Fig. 3, the location of the peaks shifts according
to the duration for which the phonons are inversely correlated,
which is in turn a function of the distance between the pores.
For the geometry in green, the distance between the pores
along the direction of transport, d , is small and, therefore, the
AC effect is not visible on the HCACF. In previous work, we
concluded that merely reducing the line of sight of phonons,
i.e., narrowing the region available for phonon propagation, is
the most important mechanism in reducing thermal conduc-
tivity in nanoporous materials [14]. The same mechanism is
at play here, with the additional reduction effect due to the
anticorrelation of the backscattered phonons.

Finally, we note that the effect we observe is a nega-
tively correlated heat current which undoes its own work,
which could happen in the case of coherent, or incoherent
phonon propagation. Phonons need to be anticorrelated (i.e.,
propagate in the exact inverse direction), and in that way,
they do “interfere” with each other in that they annihilate
each other in the heat-transfer accountancy. This coherence
is coherence over time, not the spatial coherence and wave su-
perposition that leads to constructive/destructive interference.
This is independent of wave-coherent or -incoherent transport
conditions (superposition and constructive/destructive inter-
ference), and it can show up in either case. In fact, the
simple model above demonstrates that an “incoherent” par-
ticle phonon picture can explain this. However, as phonon
transport involves a range of phonon mean-free paths and
coherence lengths, it could be possible that both effects
are present. In our MD simulations it is quite possible that
phonons can scatter specularly on the pores, reflect, and travel
backwards to meet the previous array of pores before they
undergo phonon-phonon scattering and lose coherence (the
mean-free path for scattering in Si is ∼130 nm, more than
twice as large as the pore separation). In that case they can
interfere coherently with “themselves” and undo their work.
Physically this leads to heat trapping within the pore regions,
as suggested by our wave-packet simulations in Fig. 4. It
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is also possible that phonons with short coherent lengths
can undergo an incoherent diffusive reflection, but with a
sizable x-directed component and reflect backwards. Our re-
sults indicate that the magnitude of the AC effect is tied
to the neck to pore ratio, not merely the neck size. This
suggests that scattered phonons, possibly from across the
spectrum, affect the negatively correlated HCACF regions.
These phonons do not need to be spatially coherent, but
could lose coherence after scattering and yet travel back and
forth between the pore, thus giving rise to the “AC” effect
in time, essentially canceling their contributions to thermal
conductivity.

VI. CONCLUSIONS

To conclude, we have shown that special arrangements
of closely packed pores in nanostructured Si can lead to
anticorrelation effects in the heat flux, due to the specular
backscattering of phonons at the pores. This can result in
additional thermal conductivity reductions of up to ∼80%
for certain porous geometries. We surmise that AC effects
could be present at experiments reporting remarkable thermal
conductivity reductions in Si nanomeshes [5,49]. To investi-
gate the origin of the anticorrelated behavior of the heat flux,
we propagated wave packets through two sets of geometries
(with and without AC effects). These indicate that heat can
become trapped between the pores. We have observed the AC
effect in (wave-based) MD simulations and have been able
to replicate it with a simple (particle-based) model assuming
specular reflection between the pores. References [18,50] in-
dicate that coherent reflections are only possible when surface
roughness is on the order of 2–3 atomic layers, and that other-

wise boundary scattering is incoherent. This is consistent with
the degree of roughness in our simulations. However, while
specular reflections are a necessary requirement for coherent
interference [50], the mere presence of specular reflections
is not in itself sufficient evidence that phonon (waves) are
interfering with each other or that the AC effect is due to
phonon coherence. It is possible that both coherent wavelike
phonons, and incoherent particlelike phonons are present, and
both to some degree undo their own work of heat propagation.

We have furthermore determined that the AC can be
controlled in terms of both the amount and duration of an-
ticorrelated specular phonon scattering. The pores provide
two functions: the periodicity (along the transport direction)
controls the lifetime over which a phonons’ momentum is
correlated, and the packing, determined by pore sizes and
necks (perpendicular to transport), controls the strength of
correlated phonon reflections. These functions can be engi-
neered by tuning the spacing/periodicity between pores along
the transport direction, and the pore and neck sizes, respec-
tively. Our results suggest that the AC effect is determined
by the diameter/neck ratio, and AC effects are observed for
necks of at least up to ∼6 nm. This result suggests that the
porous structures can be scaled to such technologically feasi-
ble pore/neck sizes, making it easier to be used as a design tool
to control thermal conductivity beyond traditional boundary
scattering.
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