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Chiral oscillations in electronic transport through graphene nanoribbons
induced by pseudospin filters
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We show here that the application of potential barriers that induce contributions of hyperboloid subbands
(pseudospin filters) in graphene nanoribbons locally breaks the chiral symmetry of the Dirac state, in the sides of
the barrier, with the consequent transition from Klein to anti-Klein behavior. With the increased filter potential
applied, resonances of Fabry-Pérot type with line widths that are decreasing are generated in the conductance,
which is associated with a pseudospin precession located on the sides of the barrier. Interestingly, throughout
this process the chiral symmetry of the state is conserved, and pseudospin oscillations (opposite) that increase
in intensity are observed on the sides of the filter. This is associated with a gradual loss of the electron-hole
correlation, with the increased filter potential, which ends with the formation of a transport gap when the electron-
hole symmetry is completely broken. This is an example of how the chiral symmetry can evolve and still be
conserved, during a tunneling process. All this leads to the generation of energy gaps, associated with anti-Klein
tunneling, which can be controlled using certain spatial configurations of the applied filters. The inclusion of a
new type of asymmetry (roughness in the filters) makes it possible to recover Klein’s tunneling in the region of
induced gaps. The interaction of the hyperboloid subbands with the Dirac band can be observed in density-of-
states maps using the pseudospin filters, following the behavior of the van Hove singularities as a function of the
filter potential.
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I. INTRODUCTION

Chirality in graphene is a geometric property, associated
with the existence of an object and its mirror image (left-
and right-handed counterparts) coexisting together, which are
intrinsically correlated. Thus the chiral property has two im-
portant characteristics: symmetry and correlation.

In graphene these counterparts are the sublattices A and B.
This chiral property of the lattice is transmitted for the states
of the system when we model these as a linear combination of
the atomic sites of the sublattices A and B [1,2]. In this way,
the state vector will have two components, called pseudospins
[3], and each pseudospin is associated with a single sublattice.
In the natural case (undisturbed graphene) the two sublattices
contribute in the same way, which is called chiral symmetry.
Thus, the symmetry observed between the two components
(pseudospins) of the state vector is a consequence of the chiral
property of the graphene lattice. An external disturbance can
break the chiral symmetry, leading to changes in the compo-
nents of the state vector, which generates a relative pseudospin
polarization (the state becomes more polarized in a sublattice).
For example, by applying a different potential to the two sub-
lattices, the chiral symmetry can be lifted. This can be done
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by aligning the flake on a hexagonal boron nitride substrate
[4,5]. The closely similar lattice structures of graphene and
hexagonal boron nitride result in local alignment of the atomic
site A of graphene with a boron atom and its B site with a
nitrogen atom (or vice versa). In this situation, the two carbon
sites therefore experience different potentials, leading to the
broken chiral symmetry, generating energy gaps associated
with anti-Klein tunneling, which is understood in terms of
lack of pseudospin matching.

In general, the two components of pseudospin are related
to each other, when one component increases, the other de-
creases. For this reason, one way of measuring the chirality
property is directly related to the relative phase between the
two components of pseudospin (correlation). In this way, an
increase in the polarization of pseudospin means an increase
in the loss of chiral symmetry.

Chiral materials, such as graphene, possess left- and
right-handed counterparts linked by mirror symmetry. These
materials are useful for advanced applications in polarization
optics [6,7], stereochemistry [8,9], and spintronics [10,11].
For example, if we pass a polarized light through a chiral
crystal, the polarization is maintained. On the other hand,
if we disturb the chiral crystal in such a way as to break
the chiral symmetry (nonhomogeneous contribution of the
counterparts), two new polarizations will be observed, which
are associated with the left- and right-handed counterparts.
In this way, using these ideas in bilayer graphene, a chiral
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stacking approach was reported, wherein two-dimensional
materials are positioned layer by layer with precise control of
the interlayer rotation and polarity, resulting in tunable chiral
properties of the final stack [12].

Chirality is determined by the relative phase in the
two-component wave function of the Dirac quasiparticle
(correlation between pseudospins), which arises from the
sublattice composition in graphene [13]. The phase shift in
the sublattice composition of the electron states in graphene
has been detectable by angle-resolved photoemission spec-
troscopy [14–17]. An alternative technique for pseudospin and
chirality detection is based on tunneling of electrons in van
der Waals heterostructures in which graphene and hexagonal
boron nitride are stacked in a multilayer structure. In that
work, it is shown that the tunneling current-voltage character-
istics, in the presence of an in-plane magnetic field, essentially
depend on the pseudospin orientation and enable detection of
the valley sublattice structure determined by the relative phase
between the two sublattice components of the Dirac spinor
vector wave function of electrons in graphene. For the case of
chiral electrons, different states in momentum space (and thus
with specific pseudospin orientation) have different tunneling
probability, depending on whether the interference between
the two components of electron wave function is constructive
or destructive as electrons tunnel out of the emitting graphene
layer [13].

In general, the chiral symmetry of the graphene lattice
generates the electron-hole state or Dirac state (around the
Dirac point), which was previously called the state vector.
A breakdown of chiral symmetry leads to a breakdown of
the electron-hole correlation. This correlation is related to
the correlation that exists between the pseudospins, the latter
being directly related to the correlation that exists between the
sublattices of graphene.

For the case of chiral symmetry, the Dirac state is a
solution of the Dirac equation for massless fermions. The
chiral symmetry or conservation of pseudospin (polarization
of pseudospin zero) leads to the absence of backscattering and
to Klein tunneling, in which the barrier behaves as transparent.
Thus, the chiral properties of Dirac electrons in monolayer
graphene have been used to explain Klein tunneling and the
absence of backscattering in graphene p-n junctions [18–22].
On the other hand, if the Dirac fermion acquires mass (be-
cause of the breakdown of chiral symmetry), a mass term is
necessary in the Dirac Hamiltonian, generating pseudospin
polarizations, and opens an energy gap around the Dirac
point, as happens in bilayer graphene [23–27]. In this way,
the mass signifies a break of the chiral symmetry and a
component of the pseudospin vector, perpendicular to the
graphene plane, is induced [28]. Also in bilayer graphene, sig-
natures of the broken chirality due to band gap opening should
be accessible in experiments as Fabry-Pérot resonances
[28–30].

Klein tunneling in graphene is a holonomic adiabatic cyclic
process, and for massless Dirac fermions it has an associated
Berry phase of π [31–37]; this phase characterizes the chi-
ral symmetry or polarization of pseudospin zero. Acquiring
a Berry phase of π means the inversion of the pseudospin
components of the state vector, thus conserving the chiral
symmetry.

On the other hand, it would be expected that, for the
breakdown of chiral symmetry (polarization of pseudospin
different from zero) due to the mass term in the Hamiltonian
of holonomic processes, the Berry phase is different from
π . This for example is observed in bilayer graphene, and
when disorder or impurities exist the Berry phase becomes a
function of the disorder (asymmetry) [28]. In general, changes
in chiral asymmetry of state lead to changes in the associated
Berry phase. This is why the Berry phase is often called
the pseudospin winding number [38]. This integer number
represents the degree of chirality [39].

Chirality also exists in the lattice of metallic armchair
graphene nanoribbon (metallic-AGNR), therefore the effects
discussed above can also be observed in these nanoribbons.
On the other hand, edge effects and topological states are
also observed in nanoribbons [34,40–42]. Here in our work,
we study a metallic-AGNR disturbed by a potential barrier
(pseudospin filter) [3,43–47] and we discuss the tunneling
process based on the characteristics of the applied barrier:
height V and width Lb.

One of our main results is the nonmonotonic behavior
of the conductance G(V ), with Fabri-Pérot resonances that
decrease its line width as V increases, until a transport gap is
generated. In general, our system presents quantum confine-
ment in the region of the applied barrier. The state associated
with the tunneling process (for energies around the Dirac
point) always has a special shape. Where pseudospin polar-
izations are observed on the sides of the barrier, then we have
partial polarizations on the sides [PP(V )] [3,43–47]. Inter-
estingly, the pseudospin on the right side is always opposite
to the one on the left, with a phase of π always between
them. This always happens, even as the PP(V ) oscillates and
increases on each side of the barrier as V increases. As a
consequence, the state’s pseudospin polarization (which ex-
tends throughout space) is always zero, even though there are
local polarizations (on the sides of the barrier) that are chang-
ing. Therefore, as long as there is tunneling, we have chiral
symmetry conservation, even though we do not have chiral
symmetry on the sides of the barrier. This is an example of
how the chiral symmetry can evolve and still be conserved.
The PP(V ) oscillations observed in our system are associated
with chiral oscillations.

In general, quantum electrodynamics and Gauge theory
predict chiral oscillations in a situation of quantum confine-
ment, which alters the effects of quantum interference that
can arise in the system [48–50]. On the other hand, Klein tun-
neling for graphene, widely explained in the literature, does
not present chiral oscillations (there are no local polarizations
of pseudospin) and there is no quantum confinement; for this
reason, only the chiral operator (without the use of a more
formal theory of quantum interference) is sufficient to explain
that process.

The Fabri-Pérot resonances [observed in G(V )] that de-
crease in line width as V increases, are associated with the
gradual loss of correlation between the components of the
state, associated with the correlation between the pseudospins.
In general, during the process of formation of the transport gap
as a function of V , the chiral asymmetry on the sides of the
barrier increases [PP(V ) increases periodically], which leads
to the gradual breakdown of the electron-hole correlation.
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When the transport gap is formed, two totally uncoupled states
are formed on the sides of the barrier, which have opposite
pseudospins. This would be associated with the total loss of
correlation between the pseudospins. In this way, the decrease
in the line widths, observed in G(V ), would be associated
with the decoupling of the hole-type wave inside the barrier
with the electron-type waves outside the barrier or gradual
breakdown of the electron-hole correlation.

Our results do not change as a function of the width W of
the nanoribbon. Our results only depend on the characteristics
of the barrier: V and Lb. On the other hand, we show here that
the imperfections both in the armchair edge of the ribbon as
well as in the bulk do not change the Fabri-Pérot resonances;
G(V ) is practically unaltered. This is totally different from the
case when we affect the coupling region between the external
and internal parts of the barrier, where the destruction of G(V )
is evident. In general, we can conclude that the region of the
barrier (especially the interfaces) with characteristics V and
Lb is the main cause of the effects observed.

We show here that hyperboloid subbands can reach the
Dirac point (E = 0) for high potentials V of the applied
barrier, consequently the Dirac band will be disturbed in
the barrier region. This changes the characteristics of the
bands within the barrier region, and for this reason the
nanoribbon-barrier interfaces control the tunneling. These in-
terfaces control electron-hole coupling, which is decreasing
with increasing V , due to chiral asymmetry in those regions
(on the sides of the barrier). In general, the hyperboloid
subbands that reach the Dirac point (induced by the chiral
disturbance generated by the barrier) are causing the quantum
confinement observed in the system. The displacement of the
hyperboloid subbands for the Dirac point is evident, where
clearly the van Hove singularities of the DOS (which are
found where a hyperboloid subband begins) are closer to the
point E = 0 as V increases.

In this way we use DOS(V, E ) to map as the energy bottom
(conduction) and energy top (valence) of the hyperboloid sub-
bands (closer to the Dirac point) arrive at the Dirac point; this
is done following the behavior of the van Hove singularities.
In these maps we can see how the system energies change as a
function of V . These maps show the disturbed energies E (V ).
On the other hand, these maps allow us to deduce that the
hyperboloid subbands (seen here as van Hove singularities:
bottom and top of the hyperboloid subbands closest to the
Dirac point) arrive at the Dirac point, touch, and then move
away from that point.

Finally, here in our work we also discuss how we can
induce all these effects for low V potentials of the applied
filter.

II. THE CALCULATION METHOD

In this work we consider systems composed of one metal-
lic armchair graphene nanoribbon of width W , perturbed
by potential barriers of height V and width Lb, Fig. 1(a).
Here, we considered systems with widths between W = 6
nm (graphene nanoribbon) and W = 40 nm (graphene ribbon)
[51].

Our simulations are based on the Green function tight-
binding formalism [52], where the first neighbors interaction

Lb=2.60 nm(b)
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FIG. 1. (a) Metallic armchair graphene nanoribbon with an ap-
plied pseudospin filter of potential V (eV). (b) Conductance maps
and partial pseudospin polarization maps, for two widths Lb of the
applied filter. (c) Energy bands within the applied pseudospin filter
region for some potential barrier energies V [0.0 (upper), 0.8 (cen-
tral), and 1.0 (lower)]. (d) Local density of states, showing the partial
pseudospin polarization at both sides of the applied filter.

Hamiltonian can be written as

H = −
∑

i, j

t |i〉〈 j| +
∑

j

V ( j)| j〉〈 j|. (1)

The hopping energy [14] t is approximately 3 eV and V ( j) =
V is the electrostatic potential that acts on the graphene
nanoribbons sites along Lb. We used this tight-binding Hamil-
tonian to built a bricklayer lattice [53,54], topologically
equivalent to a graphene lattice with sites i = (x, y).

The retarded Green propagators are calculated by

g(E ) = (E − H − �L − �R + i0+)−1, (2)

where the self-energies [55] �R (right) and �L (left) of the
contact leads are numerically calculated using the recursive
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Green function method [52,56,57], and H defines a central
region that does not consider the contact leads’ Hamiltonians,
HR and HL [all assembled via Eq. (1)]. Using the above defini-
tions we can write �R(L) = τ

†
R(L)gR(L)τR(L), where gR(L)(E ) =

(E − HR(L) )−1 and τR(L) represent the couplings between H
and HR(L) respectively. The propagators gR(L)(E ) are calcu-
lated recursively.

Using the Green propagators g(E ) we calculate the local
density of states (LDOS) as

ρE (x, y) = − 1

π
Im[g(E , x, y)], (3)

where the LDOS is defined for each site i = (x, y) of the
lattice. Here, we used the LDOS to visualize the partial
pseudospin polarizations induced at both sides of the applied
barriers.

Using the LDOS the partial pseudospin polarization PP(E )
can be obtained by

PP(E ) =
∑

i ρE ,A − ∑
i ρE ,B∑

i ρE
. (4)

The partial pseudospin polarization is defined for a given
energy E using the sites i of the system, where the A (B)
subscript corresponds to the use of only A (B) sites in the
calculations. In this work we are interested in the partial
pseudospin polarization at each side of the applied barrier,
which is nonzero. For this reason, throughout the work the
PP is defined using only the sites on one side of the barrier,
which defines a partial polarization.

On the other hand, the expression for the density of states
(DOS) is written as

DOS(E ) = − 1

π
Im{Tr[g(E )]}. (5)

Finally, the conductance is obtained by the Fisher-Lee rel-
ation [58]

G(E ) = 2e2

h
Tr[�Lg(E )�Rg†(E )], (6)

where �L(R) = i[�L(R) − (�L(R) )†].
To illustrate what occurs within the applied barrier region,

we can use the method described in Ref. [59] to find the
dispersion relation of the π electrons. In general, this method
reproduces very well the Dirac cone around E = 0 and the
hyperboloid subbands for energies far from zero [see E (kx )
for V = 0, Fig. 1(c)]. We considered potential barriers with
several widths Lb and energies V up to 6 eV for illustration.
To simulate realistic cases, we have also considered large
values for the nanoribbon width W . This is done in order to
move the hyperboloid subbands close to the Dirac point (in
the system without applied barrier), and thus to be able to use
potentials barriers between 1 and 2 eV, which are the ones
usually considered in experiments. It is interesting to mention
here that a similar effect is achieved when interactions of
seconds and third neighbors are included in the tight-binding
method [60].

Another interesting effect of the increase in W is that the
number of resonances observed does not change to energies
around the Dirac point, because the number of oscillations
depends only on the Lb of the applied barrier. For this reason,

to be able to perform a systematic study of the decrease in line
widths depending on the applied barrier, we use throughout
the paper the smallest W possible (W = 6.2 nm); with that we
also save computational time. In general, the effects studied
here in this work do not depend on W .

Finally, throughout the work we will discuss other condi-
tions that can diminish the potentials used, to see the effects
studied here, in order to encourage future experimental work.

III. RESULTS AND DISCUSSION

In this part of the work, we will first discuss the main
effects generated by the application of a potential barrier
which induce contributions from the hyperboloid subbands
(pseudospin filter), on a metallic armchair graphene nanorib-
bon, Fig. 1(a). The width of the nanoribbon is W and the
characteristics of the applied filter are potential V and width
Lb.

The effects produced in the conductance G due to the
application of the pseudospin filter are shown in Fig. 1(b). The
conductance based on the incident energy of the carriers, E ,
and the applied potential, V , in the filter, are shown in the
upper panels for two values of Lb of the filter. In general, on
these maps G(V, E ) we see three regimes of transport. For low
potential V (little contribution from hyperboloid subband), we
have a pure Dirac regime, where Klein’s tunneling is perfect.
For intermediary V values (appreciable contribution of the
hyperboloid subband), minima arise between the maximum
of transmission (T = 1), and are getting deeper and deeper
with the increase of V . These minima are associated with a
gradual evolution of an anti-Klein tunneling for normal inci-
dence, similar to what happens in the case of bilayer graphene
[28,61]. This intermediate transport regime is characterized by
Fabry-Pérot resonances in conductance; note the dependence
of the resonances as a function of width Lb of the applied
filter. Finally, we arrive in a regime where the formation of
a transport gap is observed, for a strong contribution of the
hyperboloid subband (high V ).

Simultaneously, changes in the partial pseudospin polariza-
tion (PP, defined only on one side of the barrier) are observed
on the sides of the applied filter, with clear fingerprints ob-
served in this PP associated with the three transport regimes
discussed above; see lower panels of Fig. 1(b). Here, we see
that Klein’s pure regime is associated with very low partial
polarizations, with PP going to zero when V goes to zero. The
intermediary regime shows a PP that oscillates and increases
in intensity with the increase of V . Finally, the transport gap
regime is associated with a PP of greater intensity and that
does not present oscillations. All these effects are well appre-
ciated around the Dirac point (E ≈ 0).

In Fig. 1(c) we show qualitatively that the increase in
potential V drives the hyperboloid subbands up to the Dirac
point. In this situation, the transport of the quasi-particles
would be associated with bands that would be a combination
of the Dirac band with the hyperboloid subbands. To calculate
the energy dispersion relation we have used the method de-
scribed in Ref. [59]. The contributions of the potential barrier
V were added to the dispersion relation as energy of the site;
i.e., V is applied on whole graphene nanoribbon. This method
aims to show what happens when a potential is applied to
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the metallic armchair graphene nanoribbon; in that model the
boundary conditions are not of interest, and the barrier can
be understood as having an infinite width. In any case, this
method is useful to illustrate that hyperboloid subbands can
contribute, within the region of the barrier, to the properties of
electronic transport using high potentials. In the final part of
our work, we will show a technique for qualitatively mapping
the contribution of hyperboloid subbands in the system, which
takes into account all the characteristics of the pseudospin
filter.

The main effect produced by the pseudospin filter is the
generation of a polarization of pseudospin on the sides of the
filter, PP; see Fig. 1(d). A polarization A or B in a region
of space (x, y) induces a spatial asymmetry, because of the
imbalance between the contributions of sites A and B for local
densities. This PP induced by the V increase, associated with
the contribution of the hyperboloid subband in the region
of the applied filter, has opposite polarizations at both sides
of the filter, which can be reversed for certain values of V . In
general, the existence of an opposite PP at both sides of the
filter induces an extra asymmetry in the transport direction (x
axis), which increases with the increase of V .

It is important to mention here that the use of n =
1, 2, 3, 4, . . . sites to form Lb always generates polarizations
on the sides of the barrier that are opposite. That is, the fact
of these polarizations are opposite does not depend on Lb. On
the other hand, the nanoribbon-barrier interfaces are always
zigzag, which may be favoring the formation of topological
states [34,40–42] on the sides of the barrier to preserve chiral
symmetry during the tunneling process.

The state associated with the tunneling process (for ener-
gies around the Dirac point) always has the shape as shown
in Fig. 1(d). Where pseudospin polarizations are observed on
the sides of the barrier, then we have partial polarizations on
the sides [PP(V )]. Interestingly, the pseudospin on the right
side is always opposite to the one on the left, with a phase
of π always between them. This always happens, even as the
PP(V ) oscillates and increases on each side of the barrier, as
shown in Fig. 2. In that figure, the blue and red curves are
the relative PP(V ) for each pseudospin on one side of the
barrier [for the other side of the barrier, the blue and red curves
are interchanged; see Fig. 1(d)]. As a consequence, the state’s
pseudospin polarization (which extends throughout space) is
always zero, even though there are local polarizations (on
the sides of the barrier) that are changing. Therefore, as long
as there is tunneling, we have chiral symmetry conservation,
just as we do not have chiral symmetry on the sides of the
barrier. All this is possible because of the correlation that
exists between the sides of the barrier, for the state vector.
When this correlation disappears, the sides of the barrier are
disconnected, leading to the formation of the transport gap (lo-
calization of the state). In general, in Fig. 2 we are observing
a process, as a function of V , of the chiral symmetry breaking
in the system, which has an adiabatic character (the system
changes while preserving chiral symmetry), maintaining the
Berry phase of π during whole the process (as a function
of V ).

The hole-type wave inside the region of the filter is coupled
with the pseudospin on the sides of the filter (associated with
the electron-type wave), and this coupling is controlled by the
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FIG. 2. Conductance G depending on the voltage V of the ap-
plied filter, for different widths Lb of the filter (black curve), for
E ≈ 0. The polarizations of pseudospin A (red curve) and B (blue
curve), induced by the filter, are also shown. The G(V ) shows a
nonmonotonic behavior associated with the loss of the property of
chirality as V increases.

applied potential V ; see Fig. 1(d). The asymmetry induced in
the system due to the increase in the intensity of the PP favors
the decoupling between the electron wave and the hole wave,
or the loss of chirality [4,5,28]. To verify this we use Fig. 2,
where the conductance as a function of V , G(V ), is studied.

In Fig. 2, we show that the conductance G(V ) (for E ≈ 0),
the black curve, shows oscillations. In general, the G(V ) in our
work shows a transition from a Dirac type limit, represented
by Klein tunneling, to a disturbed Dirac limit, represented
by oscillations of G(V ) and PP(V ), with the final generation
of Klein antitunneling, associated with the formation of a
transport gap. All this is associated with the contribution of the
hyperboloid subband as the potential V of the filter increases.
The G(V ) shows resonances of Fabry-Pérot type, whose line
widths decrease with the increase of V , until this width be-
comes zero and the transport gap is formed. We also observe
here that the number of resonances depends on the number of
sites used to define the width of the filter (Lb). For large values
of Lb all the effects mentioned here are better defined.

On the other hand, as shown in the figure, the polarization
of the sublattice A (red curve) oscillates, alternating with the
polarization of the sublattice B (blue curve). This would be
the analog of the oscillations of spin up and spin down re-
ported for systems with spin precession. Here, the pseudospin
polarization happens at both sides of the applied filter [see
Fig. 1(d)], so we can infer that the state with contributions
only of the sublattice A comes in and the state with contri-
butions only of the sublattice B comes out, which is why we
call this partial pseudospin polarization (PP). For this reason
the red and blue curves were calculated to the left side of
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the filter (the region without an applied barrier) or the input
conductance region. In general, we observe that the PP to
the left of the filter is periodically inverted as a function
of V .

For Fig. 2, a relative PP (PPr) was used for sublattice A
(red curve) and another for sublattice B (blue curve), in order
to see the role of each sublattice. The PPr for sublattice A is
calculated using Eq. (4) without considering the contributions
of sublattice B. Similarly we calculate the PPr of sublattice
B without considering the contributions of sublattice A. The
PPr have the same information as the PP, but with the advan-
tage that they show the contributions of sublattices A and B
separately. In general, the difference between these two PPr

retrieves the PP defined in Eq. (4).
We observe here that for certain values of V a partial

polarization (PP) A or B is associated with the conductance,
and that this PP increases with the increase of V (watch the
red and blue curves move away more and more periodically).
In general, the hole-type wave within the region of the barrier
is modulated by the width Lb of the filter. This modulation
manipulates the coupling of the pseudospin (at both sides of
the filter) with the hole-type wave, which is manifested in the
conductance as resonances of Fabry-Pérot type that depend on
Lb (black curve). Here, the number of resonances is equal to
the number of sites occupied by Lb.

As mentioned before, chiral symmetry conservation
means, for the Klein tunneling, gaining a Berry phase of π

during the process, that is, inverting the pseudospin compo-
nents of the state. As explained here, in the whole tunneling
process (around the Dirac point as a function of V ), as shown
in Fig. 2, we have the conservation of chiral symmetry, that
is, the Berry phase of π does not change, except in the
presence of disorder in the nanoribbon-barrier interfaces; how
this occurs will be discussed later. In general, throughout the
tunneling process (for all V ), the state has the shape as shown
in Fig. 1(d), even as the PP(V ) oscillates and increases on
each side of the barrier as V increases (Fig. 2). The state’s
pseudospin polarization is always zero, even though there
are local polarizations that are changing. Therefore, we have
chiral symmetry conservation, even though we do not
have chiral symmetry on the sides of the barrier. This is an
example of how the chiral symmetry can evolve and still be
conserved. The PP(V ) oscillations observed in our system are
associated with chiral oscillations.

The Berry phase (φBerry) is half the solid angle subtended
by the pseudospin during its motion on the Bloch sphere
[28]. The polarization vector of pseudospin in that representa-
tion (spherical coordinates) would have the components Px =
sin θ cos φ, Py = sin θ sin φ, and Pz = cos θ (with polar angle
θ and azimuthal angle φ). On the other hand, φBerry = π (1 −
cos θ ). The condition for the tunneling of Klein [transmission
T (V ) = 1] is φBerry = π , therefore θ = π/2 and the compo-
nents would be now Px = cos φ, Py = sin φ, and Pz = 0, that
is, the vector of pseudospin is in the x-y plane (nanoribbon
plane). Out of this condition, there would be a Pz component
other than zero, and for the extreme case of θ = 0 only the Pz

component would exist [anti-Klein tunneling or T (V ) = 0];
in this case an energy gap is generated. All these charac-
teristics mentioned before, discussed a lot in graphene, can
be extrapolated for the metallic armchair graphene nanorib-

bons, studied here, for energies close to the Dirac point
[34,40–42].

The increase in the PP with the increase of V , together with
the evolution of anti-Klein tunneling [detected as a decrease
in line widths of Fabry-Pérot resonances in the G(V )], lead us
to interpret that an increase of lack of pseudospin matching is
happening between the filter region and at both sides of the
filter (loss of the existing correlation in the chiral property
[4,5,28]). As we find in the case of chiral symmetry con-
servation, as discussed before, mass effects and pseudospin
component perpendicular to the plane do not exist here in
this case. For our case, a decoupling of the state between the
internal and external parts of the barrier is happening, caused
by a quantum confinement in the barrier region. In general,
the increase in the lack of pseudospin matching is related to an
increase in the loss of correlation between state pseudospins.
The gradual loss of this correlation means the gradual loss of
the electron-hole correlation of the Dirac state.

Thus, during the process shown in Fig. 2 (as a function of
V ) a decrease in the correlation between the components of
the Dirac state is happening. This is related to the line shape
observed in G(V ). In general, the interference process (associ-
ated with tunneling) that couples the internal part of the barrier
with the external ones defines a line width for the tunneling
peak. It is known that when the line width of the tunneling
peak decreases, it is because the coupling between the parts
is decreasing. In this way, the decrease in the line widths,
observed in G(V ), would be associated with the decoupling
of the hole-type wave inside the barrier with the electron-type
waves outside the barrier. This is associated with the loss of
correlation between the components of the state, associated
with the correlation between the pseudospins, which are asso-
ciated with the A and B sublattices that maintain the chirality
of the system. In general, during the process of formation of
the transport gap as a function of V , the chiral asymmetry
on the sides of the barrier increases [PP(V ) increase]. When
the transport gap is formed, two totally uncoupled states are
formed on the sides of the barrier [see Fig. 3(a), lower left],
which have opposite pseudospins. This would be associated
with the total loss of correlation between the pseudospins.

In Fig. 3(c), for E = 0, it is observed that the conductance
as a function of Lb, G(Lb), has a frequency that remains
constant for a given V ; when V changes to another value it
is observed that the frequency in G(Lb) also changes, but it
remains constant in the function of Lb. That is, for the same
asymmetry (PP) the resonance conditions are periodic as a
function of Lb, which confirms quantum confinement with
Fabry-Pérot resonances.

On the other hand, this type of nonmonotonic resonance
behavior [in G(V ); see the black curve in Fig. 2] was recently
also reported in another work, and was associated with a
Rashba-type spin-orbit coupling in graphene [61]. The G(V )
shown in Fig. 2 is identical to those calculated in that work,
with the difference that it is the spin, in that work, that is
responsible for the effects. This is different from the case
of Rashba-type spin-orbit coupling observed in the spin-field
effect transistor based on the two-dimensional electron gas
(2DEG) of GaAs [62], where the G(V ) oscillates differently.
In a transistor of GaAs the polarized and opposite conduc-
tances oscillate in a sinusoidal way, alternating between them,

205404-6



CHIRAL OSCILLATIONS IN ELECTRONIC TRANSPORT … PHYSICAL REVIEW B 102, 205404 (2020)

0.01

(a)
E≈  0V1 ,

X

LD
O

S

0.00

0.02 V3 ,  E≈  0B A

X

LD
O

S

0

1
E≈ 0(b)

A B A B

G
 (

2e
2 /h

)

-0.3

0.0

0.3

 0  2  4  6

PP

V (eV)

0

1
E≈ 0(c)

A B A B

G
 (

2e
2 /h

)

-0.1

0.0

0.1

 0  2  4  6  8  10

PP

Lb (nm)

0

1

0.0

0.4

V=4.20 eV

E≈ 0

G
 (

2e
2 /h

)

PP
r

0.01

V2 , E≈  0
B A

Y X

LD
O

S

0.00

0.02 V3 , E > 0A B

Y X

LD
O

S

Lb=2.13 nm E > 0

 0  2  4  6
V (eV)

V=1.40 eV E > 0

 0  2  4  6  8  10
Lb (nm)

0

1

 0  2  4  6  8  10
0.0

0.4
E > 0

G
 (

2e
2 /h

)

PP
r

Lb (nm)

FIG. 3. (a) Typical LDOS for the pure Dirac regime (V1 =
0.02 eV and E = 0), for the regime with contributions from the
hyperboloid subband (V2 = 1.01 eV and E = 0), and for the regime
of potential V3 = 7.0 eV of conductance G = 0, with E = 0 (lack of
backscattering) and with E > 0 (presence of backscattering). Pseu-
dospintronics is based on the potential V of the applied filter (b) and
on the width Lb of the filter (c). For E > 0 the PP remains in one
sublattice. Different potential V changes the frequency in the G(Lb).

similar to how the PPr oscillate here in this work, but keeping
the frequency. On the other hand, in our work we observe that
the PP oscillate between the conductance maximums, this can
be deduced by comparing the black curve with the oscillations
of the red and blue curves of Fig. 2. Observe here that the
conductance maxima are associated with PP = 0, and on the
sides of these maxima the PP are opposite. The similarity of
the G(V ) curves, between our results and those reported in the
literature, would require further study in the future.

The transport regimes of the charge carriers, discussed
earlier in Fig. 1(b), can be observed here in greater detail in
Fig. 2. The pure Dirac regime, even before the resonances of
Fabry-Pérot type in the G(V ) (for low potential V ), has a PP
going to zero [see also Fig. 3(a)] for potential V1 associated
with the first regime (pure Dirac regime with E ≈ 0). This
indicates that the contributions PPr-A and PPr-B are similar,
as shown in Fig. 2. We will find here a perfect match in the
interfaces, in relation to the pseudospin orientation. On the

other hand, the transmission regime with disturbances from
the hyperboloid subband, for medium values of applied V ,
has typical LDOS (with PP �= 0) of the same type as shown
in Fig. 3(a) for the range of potential V2 associated with the
second transport regime [the range of Fabry-Pérot resonances
in G(V ); black curve in Fig. 2]. We observe in these LDOS the
lack of undulations at both sides of the filter; this is associated
with the lack of backscattering for E ≈ 0. Finally, in the last
regime a transport gap is generated [see also Fig. 1(b)] for
the range of potential V3. In this case of G(V3) = 0, the PP
is frozen in one sublattice, and reaches the maximum value.
Here, the states show a total decoupling between the hole-type
wave (within the barrier) and the electron-type waves at both
sides of the barrier, as shown in Fig. 3(a) for the range of po-
tential V3 and energy E ≈ 0. In general, when we move away
from the Dirac point (E > 0, outside the influence of the pure
Dirac regime), undulations (associated with backscattering) at
both sides of the filter are observed in all cases; as an example
we show Fig. 3(a) for V3 and E > 0. Here the tunneling would
be carried out through spatial regions that would have the
same type of band; all would be of the hyperboloid subband
type for incident particles with high energies, in which case
backscattering exists in a natural way.

In Figs. 3(b) and 3(c) we show that a total control of
the polarizations PPA and PPB (pseudospintronic), can only
be obtained around the Dirac point (E ≈ 0). For E > 0 the
PP remains frozen in one sublattice; this freezing can be a
fingerprint of the emergence of backscattering with increasing
energy. For energies (of incident particles) very close to the
Dirac point, the PP(V ) on the sides of the barrier fluctuates
from P-A to P-B in functions of V ; for this situation the LDOS
on the sides of the barrier have no oscillations. We do not
have backscattering associated with normal incidence here.
As explained before, we have localization of the state due
to the chiral asymmetry localized on the sides of the barrier
that increases with V . On the other hand, for energies that
move a little away from the Dirac point, we have oscillations
of the PP(V ) alternating from P-A to zero (or P-B to zero),
that is, we have a freezing of the PP(V ); for this case also
are no observed LDOS oscillations on the sides of the barrier.
Finally, for energies well away from the Dirac point, the
PP(V ) cannot be better defined and only the value of zero is
observed; here undulations (from LDOS) on the sides of the
barrier are observed, associated with backscattering. In this
way, the intermediate regime [with PP(V ) freezing] would
be associated with the transition between the absence and the
presence of backscattering for normal incidence in the barrier.

Also, the line forms observed in the G remain unchanged as
a function of V [see (b)], and also as a function of Lb [see (c)],
for all energies close to the Dirac point. Both in (b) and in (c),
around the Dirac point (E ≈ 0), it is observed that the maxima
and minima of G are associated with PP = 0; between these
maxima and minima, the maximum PP are observed. Here, in
the intervals between the maxima and minima of the G(V ),
it is observed that the LDOS have the typical form as shown
in Fig. 1(d), from which it can be intuited that a wave type A
(or B) enters and a wave type B (or A) leaves; that is, at both
sides of the filter the pseudospins have a phase difference of
π at those intervals. The periodically uniform behavior of the
conductance G(Lb), observed in (c) for E ≈ 0, is analogous
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to that reported in graphene systems with Rashba spin-orbit
interaction [61]. Here, the frequencies observed in the con-
ductance G(Lb), discussed above, for different potentials V
of the filter, are associated with the PPA and PPB, as shown
in the figure. In general, in all cases, we observe the inverse
relationship between the G and PP, as well as the freezing of
PP for E > 0.

On the other hand, an interesting application of the tun-
ability of the anti-Klein tunneling induced by the filters of
pseudospin is related to a technique that provides modulatable
gaps in the conductance, i.e., we can manipulate the semi-
conductor properties of the graphene nanoribbon. In Fig. 4(a),
we show the results obtained with a mixed filter (top), i.e., an
effective potential that is obtained by applying simultaneously
a potential V and a potential V1 = −V − δV , with V always
positive. In this figure, we can see an increase of the partial
pseudospin polarization PP(V ) with the application of the
mixed filter. Also, we suppress the freezing of the PP inversion
away from the Dirac point, favoring in this way polarizations
that can be inverted for a greater energy interval. The PP(V )
increases as we increase the difference δV between the applied
potentials, which leads to an increase in the depth of the
minima in G(V ) and the subsequent formation of transport
gaps.

The most important results about the appearance of ad-
justable gaps for high applied voltages V are shown in
Fig. 4(b). In those maps [G(V, E )], the gaps appear more
clearly as we increase V . Note that there are regions in which
the gap can be increased or decreased. In general, a periodic
modulation as a function of V is obtained. The difference
between the potentials V and V1 generates displacements in
the gaps’ energy and also they are tilted in relation with the
vertical axis E . When the absolute value of V1 is greater than
the potential V , the gaps are tilted to the left, and when the
potential V is greater than |V1|, the gaps are tilted to the right.
Therefore, the application of the potential V (V1) displaces the
lower (upper) hyperboloid subbands for the Dirac point, as
will be explained later. The symmetric contributions of the hy-
perboloid subbands (lower and upper) generate the symmetric
gaps around the Dirac point, as shown by the configuration
/V/V1 = −V/. This will be discussed in the following figure.

In Fig. 4(c), we use V1 = −V and study effective potentials
of the type /V/V1/V/V1/V/V1/ · · · , with n filters applied.
The filter V raises the lower hyperboloid subbands (found
below the Dirac point) and the V1 = −V filter lowers the
upper hyperboloid subbands (found above the Dirac point),
all contributing near the Dirac point. Here, n odd means an
asymmetric contribution between the upper and lower hyper-
boloid subbands (column on the left). On the other hand, n
even means that the upper and lower hyperboloid subbands
contribute symmetrically to the Dirac point (column on the
right). The asymmetric system (n odd) shows in the maps of
G(V, E ) also an asymmetry, here we see asymmetric forms in
the gaps and intensities of G below a quantum of conductance
(orange regions on the map). On the other hand, the symmetric
system (n even) shows a decrease of the orange regions (G
increase) and it is also observed that the shapes of the gaps on
the map are symmetrical. In general, with the increase of n we
can better define the gaps, that is, we see a better definition of
the black regions on the map. An interesting and unexpected
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FIG. 4. (a) Conductance and partial pseudospin polarization
based on V for the mixed filter (/V/V1/) shown in the inset. (b) Con-
ductance maps for different configurations of /V/V1/, showing the
manipulation of the induced gaps. (c) G(V, E ) for the mixed filter
with n = 3 (asymmetric) and with n = 4 (symmetric). At the bottom
we have DOS(V, E ) maps, showing the contribution of the hyper-
boloid subbands (lower and upper) for the Dirac point.

result is that the asymmetric and symmetric contributions of
the hyperboloid subbands seem to be mapped in DOS(V, E )
maps; see the lower panels of Fig. 4(c). In these maps, we
observe that the upper and lower hyperboloid subbands (red
curves) are closer and closer to the Dirac point with the
increase of V , and that these contributions are symmetric for
n even (right panel), differently from what is observed in the
left panel for the asymmetric system (n odd). Later, we will
further discuss these DOS(V, E ) maps.

In the following, in Fig. 5, we will discuss how to optimize
the technique of inducing controllable gaps, to encourage
experimental work. We will also test here the robustness of our
results in relation to the imperfections of the system and we
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FIG. 5. (a) By increasing the number of filters (n = 8) of the
mixed filter, we can induce gaps for low potential V . (b) Roughness at
the ends of the mixed filter induces a recovery of the Klein tunneling
in the gap regions. (c) The increase in the intensity of the potential VI

of the roughness, maintaining the number of roughness nI , destroys
the nonmonotonic behavior. (d) The nonmonotonic behavior is robust
against imperfections in the borders and bulk of the nanoribbon.

will study the recovery of Klein’s tunneling associated with
these imperfections. In (a) we show that for n = 8 we can
induce controllable gaps for low potentials V . In general, the
increase of n improves the definition of gaps, which from the
experimental point of view is important. With an appropriate n
we can adjust an interval of V for a specific need. In (b), with
the inclusion of roughness at the ends of the effective barrier,
we observe a recovery of the Klein tunneling in the gap re-
gions. This effect of suppressing Klein’s antitunneling using
disorder is analogous to that observed in bilayer graphene p-n
junction, here induced now in graphene monolayers (nanorib-
bons). This implies that, under certain circumstances, a revival
of the Klein tunneling in monolayers graphene is possible,
by manipulating the gap-controlled Berry phase. Also, in
monolayer graphene (nanoribbons), signatures of the broken
chirality due to band gap opening should appear in the Berry
phase, which varies as a function of the induced asymmetry
(roughness) and might be accessible in the Fabry-Pérot reso-
nances, [28] found in G(V ).

To understand the role of the disorder (roughness on the
sides of the effective barrier) on the Fabry-Pérot resonances,

and the relationship with the loss of chirality discussed above,
we use parts (c) and (d), where to simplify we use n = 1, and
so we can also complement Figs. 2 and 3. Here, we use a phe-
nomenological model of imperfections, and we fix the number
of perturbed sites or impurities (nI ) and their potentials (VI ),
with the positions of impurities randomly distributed. Then,
we study several configurations. The values used for nI and
VI are in Figs. 5(c) and 5(d). As discussed before, the filter-
nanoribbon interfaces are the regions where the coupling of
the pseudospin (of the electron-type waves on the sides of
the filter) occurs with the hole-type wave (inside the filter).
In Fig. 5(c), we observe that the coupling is damaged by
fluctuations and freezing of the PP(V ) at both sides of the
filter, caused by asymmetry in the interfaces when we increase
the intensity VI of the roughness. This leads to a gradual
destruction of the Fabry-Pérot resonances [detected in G(V )]
as we increase the asymmetry in the filter. Here, similarly
to what happens in bilayer graphene p-n junction, the Berry
phase [accordingly PP(V )] also depends on the asymmetry
(roughness in the filter). We observe in panel (c) an difference
in phase in the PP(V ), between the black (with roughness)
and red (without roughness) curves, which increases when
we increase the asymmetry, which is directly associated with
freezing of PP. Note that for disturbed cases (black curve) the
PP(V ) is not zero for the maxima (and minima) of the G(V )
for high values of VI . In general, with the increase of VI , the
conductance G(V ) associated with the loss of chirality shows
strong localizations (dips) with frozen of the PP; generally, we
have a destruction of the Fabry-Pérot resonances, which does
not characterize the conservation of chiral symmetry of the
state.

On the other hand, imperfections on the borders of the
nanoribbon and also within the bulk [panel (d)] do not gener-
ate localizations (dips), showing only the freezing of the PP,
that is, that type of imperfections alters less the electron-hole
coupling of state, when compared with the roughness at the
ends of the filter. Also in Fig. 5(d), a system with imperfec-
tions (asymmetry) in the edges and bulk of the nanoribbon, the
chiral symmetry of the state is conserved. With the increase of
the asymmetry (imperfections), the system, to preserve the
chiral symmetry of the state, increases the asymmetry on the
sides of the barrier, that is, the PP goes from a pseudospin
oscillation regime (A to B) to a regimen where a type of
pseudospin (A or B) is conserved, here called freezing. This
last regime includes the increase of asymmetry caused by
the increase of imperfections. Thus, before the state loses
chiral symmetry, the PP freezes, as a sign of the increase
in asymmetry before backscattering is generated. In general,
the system evolves, increasing the local asymmetry (PP) and
preserving the chirality of the state, as imperfections increase.
This is an example of how the chiral symmetry can evolve and
still be conserved.

In Fig. 6, we discuss a technique to qualitatively map
the contributions of the hyperboloid subbands to the Dirac
point, using DOS(V, E ) maps. This procedure shows how the
hyperboloid subbands evolve because of the applied filter, as
the potential V increases. In (a), we observe that those effects
cannot be mapped when a single filter is used (+V or −V ).
On the other hand, the use of two filters to form an effective
filter of / + V/ − V/ type [see inset of the Fig. 4(a)] allows
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FIG. 6. Mapping of electronic bands E (V ) and the effects asso-
ciated with the loss of the chirality property on DOS(V, E ) maps,
using pseudospin filters. (a) Using a single filter we cannot perform
the mapping (Lb = 4 sites). (b) The use of a mixed filter of the
type / + V/ − V/ allows mapping (with Lb = 4 sites per filter). By
increasing the width Lb of each filter, the mapping is optimized and
induced for low potential V . (c) Lb = 8 sites and (d) Lb = 14 sites.

mapping the contributions of the hyperboloid subbands [(b),
(c), and (d)].

The DOS(V, E ) maps shown in Figs. 6(b), 6(c), and 6(d)
map the energy bottom (conduction) and energy top (valence)
of the hyperboloid subbands (closer to the Dirac point) arriv-
ing at the Dirac point; this is done following the behavior of
the van Hove singularities (which are found where a hyper-
boloid subband begins). These van Hove singularities on the
maps are the most intense points of light color. For reference,
look at the two vertical lines in Fig. 6(c) [which would be
DOS(E ) for different V ]. Where the straight lines intersect
the curves on the map are the van Hove singularities. In these
maps we can see how the system energies change as a function
of V . These maps show the disturbed energies E (V ). On the
other hand, these maps allow us to see that the hyperboloid
subbands (seen here as van Hove singularities: Bottom and top
of the hyperboloid subbands closest to the Dirac point) arrive
at the Dirac point, touch, and then move away from it. Inter-
estingly, before they touch, the mapped format is parabolic
and, when they touch at E = 0, the mapped format is linear,
reminiscent of hyperboloid subbands and Dirac bands respec-
tively. On the other hand, it is known that, in materials called
topological isolators, when the parabolic bands (conduction
and valence) are pushed in order to touch, for example by
pressure on the material, the bands are linearized when they
touch, forming a format of Dirac bands. Also, in general,
around the Dirac point [where the E (k) bands are linear] it is

known that the DOS is proportional to the energy E . All this
is indicating that the E (V ) mapped (close to the Dirac point)
from the DOS would be including the information of the E (k)
disturbed by V .

Even if the contributions of the hyperboloid subbands to
the Dirac point are symmetrical for this effective filter (n = 2),
we observe an asymmetry of the bands in relation to the
horizontal axis. Also in this figure [panel (b)], we observe
that for low applied potentials V the mapping effect is not
induced. On the other hand, the increase in the width Lb of the
filters (+V and −V ) allows the increase the intensity of the
contributions of the hyperboloid subbands, and also induces
such contributions for lower applied potential V [see (c) and
(d)], as also observed in Fig. 2.

The main effects on the mapped bands E (V ), depending
on the applied potential V , are shown in panels (c) and (d).
In (c), for example, we can observe some electronic transport
regimes that can be well differentiated. For low V , we do
not have mapped bands E (V ), which indicates a pure Dirac
regime. With the increase of V , the bands are observed, es-
pecially as the hyperboloid subbands are getting closer and
closer to the Dirac point, to contribute to electronic transport.
Subsequently, for higher potentials V the bands are repelled,
that is, the formation of a transport gap is observed (a known
effect in the literature from the loss of chirality), until resonant
tunneling states are formed with the increase of V [associated
with the fine peaks observed in the G(V ) for high poten-
tials, discussed earlier in Figs. 2 and 3]. This last transport
regime is associated with the thick yellow lines observed in
the DOS(V, E ) maps, which resemble Dirac’s bands (cones).
Finally, we have a total localization of the states, shown on
the maps; everything that follows after the thick lines (cones)
disappears.

All these effects can be carried for lower potential V , as
shown in (d), by increasing the width Lb of the filter, which
is very important from the experimental point of view; that is,
we can induce these effects for low potentials. This technique
proposed here in this work to map the bands E (V ) results in
an interesting tool for theoretical and experimental investiga-
tions.

On the other hand, it is interesting to discuss here the
suspicion of a possible pseudospin-orbit interaction in our
system, which could occur for large values of the width Lb

of the applied filter. The spin-orbit interaction present in two-
dimensional electron gas systems is due to the lack of spatial
symmetry [63–66]; as a consequence, the spin degeneracy
in k-space is lifted, which is known as Rashba splitting. It
induces a spin precession in the carriers moving in the gas
(detected in conductance as oscillations), and the strength
of this spin-orbit interaction can be tuned using an electric
field perpendicular to the gas [62]. These spin effects are also
observed in the transport of charge through graphene-based
systems.

It is interesting to observe a possible effect related to
the Rashba pseudospin-orbit split in the second and third
mappings of the Fig. 6(d) (between 0.7 and 1.3 eV), for the
bands closest to Dirac’s point. We observe here that, in the
second mapping, the second band is dislocated to the right,
and, on the other hand, the second band in the third mapping is
dislocated to the left. This effect could be related to the
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decoupled branches of opposite pseudospin [66], which is
in evidence before V = 1.5 eV, where these subbands meet,
before the formation of the energy gap.

In general, the G(V ) in our work already has a pseudospin-
orbit coupling fingerprint, because it is identical with the
G(V ) observed in the literature, with respect to its spin-orbit
coupling analog [61]. Here we reinforce this suspicion, map-
ping the energy bands E (V ), where other fingerprints are
observed, such as the Rashba pseudospin-orbit split (decou-
pled branches of opposite pseudospin) [62–64,66]. In these
maps the different known characteristics of the Rashba effect
seem to be a function of the strength of this pseudospin-orbit
interaction (potential of filter, V ) for filters with large widths
Lb. In general, all these suspicions can only be verified if we
use a model Hamiltonian to support this analogy; this could
be part of future research.

In the Figs. 1(c) and 6 we show that hyperboloid sub-
bands can reach the Dirac point (E = 0) for high potentials
V of the applied barrier, consequently the Dirac band will
be disturbed in the barrier region. This changes the charac-
teristics of the bands within the barrier region and causes
the effects seen in Fig. 2. In general, the tunneling observed
in Fig. 2 occurs through regions that contain different types
of bands (not all of the pure Dirac type); for this reason
the nanoribbon-barrier interfaces control the tunneling. These
interfaces control electron-hole coupling, which is decreasing
with increasing V , due to chiral asymmetry in those regions
(on the sides of the barrier). The displacement of the hyper-
boloid subbands for the Dirac point is evident in Figs. 6(c)
and 6(d), where clearly the van Hove singularities of the
DOS (which are found where a hyperboloid subband begins)
approach each other again for the point E = 0 as V increases.

IV. CONCLUSION

We have shown here in this work that a gradual and
controlled loss of chirality can be induced in graphene
nanoribbons using pseudospin filters. These filters generate
contributions from the hyperboloid subbands for regions near
the Dirac point. As a consequence, opposite polarizations of
pseudospin are generated at both sides of the applied filter,
which creates a spatial asymmetry. This asymmetry disfavors
the coupling of the pseudospin at both sides of the filter
with the hole-type wave inside the filter, as a function of the
potential of the applied filter.

The oscillations observed in the conductance as a function
of the potential of the applied filter, are related to Fabri-Pérot
resonances with frequencies that depend on the applied po-
tential. In this way, a gradual evolution of Klein antitunneling
is observed, with the final generation of an transport gap.
Using specific configurations of the applied filters, we can
manipulate the induced energy gaps to have better control
that can be tested experimentally. The Klein tunneling can be
recovered by the introduction of another type of asymmetry,
for example, roughness on the edges of the applied filters;
this effect is similar to that observed in bilayer graphene p-n
junction.

We also show here that pseudospin filters can be used to
map the energy bands E (V ) [on DOS(V, E ) maps], which
allows the gradual observation of the effects produced in the
energies caused by external disturbances. Here, in this work,
we observe in the bands E (V ) the different effects caused by
the contributions of the hyperboloid subbands. This technique
proposed here results in an experimental and theoretical tool
capable of complementing different studies based on graphene
systems; it is also possible to be able to extrapolate for systems
that have the property of pseudospin.

In general, the increase in V carries the hyperboloid sub-
bands to the Dirac point; this leads to a transition from a
Dirac type regime to a disturbed Dirac-type regime, with a
gradual loss of chiral correlations as a function of V . This
transition depends on the width Lb of the applied barrier.
The transition is observed as a periodic loss of the chirality
property (correlation between pseudospins), consequently we
have a gradual loss of coupling between the electron-type
wave on the sides of the barrier with the hole-type wave inside
the barrier. This is observed as a decrease in the line width of
the resonances in G(V ) as V increases. This can be interpreted
as a decoupling between the pseudospin on the sides, with the
wave confined in the barrier. The fingerprint of this transition
in the G(V ) would be the nonmonotonic behavior; here the
minima of G(V ) would be associated with the evolution of
the gap as a function of V . Interestingly, throughout the tun-
neling process with local pseudospin oscillations, the chiral
symmetry of the state is preserved. This is an example of how
the chiral symmetry can evolve and still be conserved, during
a tunneling process.

Transmission oscillations with a nonmonotonic behavior
were also recently reported (through a barrier with potential
energy V ), as a product of a spin-orbit coupling of Rashba
type, in graphene monolayers [61]. The line form of the
conductance G(V ), found in that paper, is identical to that
observed in our work, which raises a suspicion about a pos-
sible Rashba pseudospin-orbit interaction in our work. That
reference notes a decrease in the resonance line width as a
function of V to finally form a transport gap. The appearance
of a gap due to spin-orbit coupling in graphene is a fingerprint
of this coupling [67–70]. The latter reference is interesting
because it exploits the chirality of the low-energy states to
resolve this gap.

In this way the nonmonotonic behavior of the conductance
G(V ) for large widths Lb (Fig. 2) and the effects observed
in the mapping of the bands E (V ) [Fig. 6(d)] show evi-
dence of possible pseudospin-orbit coupling in our system.
In general, the manipulation of the coupling between the
pseudospin inversions observed on the sides of the barrier,
with the wave confined within the barrier, could generate a
Rashba pseudospin-orbit coupling as a function of V . The
asymmetry caused by the polarization PP on the sides of the
barrier could favor the Rashba effect. Suspicions regarding
the Rashba effect are not conclusive and further work on this
matter is needed in the future.

Finally, the studies carried out here in this work show that
the pseudospin has an important effect, capable of being able
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to compete with the effects of spin, as shown by the similarity
between the conductances reported here with the conduc-
tances associated with Rashba-type spin-orbit coupling. In
this way it would be necessary in the future to pursue a deeper
study of the competition between the pseudospin and the spin.
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