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Gated two-dimensional electron gas in magnetic field: Nonlinear versus linear regime
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We study the effect of magnetic field on the properties of a high-mobility gated two-dimensional electron gas
in a field-effect transistor with the Hall bar geometry. When approaching the current saturation when the drain
side of the channel becomes strongly depleted, we see a number of unusual effects related to the magnetic field
induced redistribution of the electron density in the conducting channel. The experimental results obtained in the
nonlinear regime have been interpreted based on the results obtained in the linear regime by a simple theoretical
model, which describes quite well our observations.
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I. INTRODUCTION

We study the effect of magnetic field on the properties
of a high-mobility gated two-dimensional electron gas in a
field-effect transistor (FET) with the Hall bar geometry. In the
linear regime, we observe the well-known magnetoresistance
and Hall effect which were previously thoroughly studied
in many works, see, e.g., Refs. [1–11]. However, when ap-
proaching the current saturation in which the drain side of
the channel becomes strongly depleted, we see a number of
unusual effects related to the magnetic field-induced redistri-
bution of the electron density in the conducting channel.

The standard expressions for the components of electric
current density j in magnetic field are

jx = σxxEx + σxyEy, (1)

jy = σyxEx + σxxEy, (2)

where σik = enμik is the conductivity tensor, σxx = σyy, σyx =
−σxy, e is the electron charge, n is the two-dimensional
(2D) electron concentration, μik is the mobility tensor, Ex =
−∂V/∂x and Ey = −∂V/∂y are the components of the elec-
tric field, V (x, y) is the electrostatic potential in the channel,
which (due to the condition div j = 0) satisfies the Laplace
equation.

For a Hall bar with length L and width w the boundary con-
ditions correspond to fixed potentials Vs and Vd at the source
(x = 0) and the drain (x = L), respectively, and the absence of
current jy through the lateral boundaries at y = ±w/2.

In the presence of magnetic field B, the mobility tensor μik

generally depends on B, the simplest situation being described
by the well-known Drude-like expressions:

μxx = μyy = μ
1

1 + β2
, μxy = μyx = μ

β

1 + β2
, (3)

where μ is the mobility in the absence of magnetic field,
and β = �τ, � = eB/mc is the cyclotron frequency, τ is the
relaxation time, m, c are the electron effective mass and light
velocity, respectively.

It has been well known for a long time that in this simplest
case the effect of magnetic field is reduced to the Hall effect
and to the distortion of the equipotential lines in the vicinity of
the source and drain contacts (Fig. 1), which results in the so-
called geometrical magnetoresistance [2–4], which depends
on the ratio w/L and the dimensionless magnetic field β (or,
equivalently, the Hall angle).

There are also many reasons for the existence of a physical
magnetoresistance [5–11] due to the magnetic field depen-
dence of the mobility tensor μik different from that given by
the simple formulas in Eq. (3).

Here, our main goal is not in defining, nor studying the
mechanisms of magnetoresistance, but rather, in relating the
effects of magnetic field in the linear and nonlinear regimes,
in other words, in understanding the observed influence of
magnetic field in the nonlinear regime on the basis of our
experimental results obtained in the linear regime.

II. THEORY: LINKING THE EFFECTS OF MAGNETIC
FIELD IN THE LINEAR AND NONLINEAR REGIMES

The specific feature of the gated electron gas in a FET (see
Fig. 2) is that the local electron concentration, n, is controlled
by the so-called gate voltage swing V by the plane capacitor
law [12]:

en = CV, (4)

where en is the charge density in the channel, C is the gate-
to-channel capacitance per unit area, V (x, y) = Vch(x, y) − Vth

is the local gate voltage swing, Vch(x, y) is the local channel
potential with respect to the gate, Vth is the threshold voltage.
For V � 0 the channel does not contain any electrons.
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FIG. 1. Schematics of the equipotential lines for a Hall bar with
source (S) and drain (D) contacts: (a) at zero magnetic field, (b) in
the presence of magnetic field. Side contacts for measuring Hall and
longitudinal voltages are shown. In our samples, the contacts 1, 3
and 2, 4 are situated symmetrically with respect to the middle of the
sample.

As a consequence of Eq. (4), the basic equations (1) and
(2), as applied to a gated electron gas, become nonlinear, since
the conductivity tensor σik = enμik is now proportional to the
local voltage swing V. Thus

σxx
∂V

∂x
= μxxCV

∂V

∂x
= ensμxx

∂

∂x

(
V 2

2Vs

)
, (5)

and similar for sxy∂V/∂y. Here Vs is the gate voltage swing
at the source, ns = CVs/e is the electron concentration at the
source. Note that the current density in a gated electron gas is
proportional to the gradient of the square of the gate voltage
swing V.

It is remarkable that Fig. 1 remains valid for the gated elec-
tron gas, but with the important difference that now the lines
correspond to fixed values of the square of potential V 2, rather
than of the potential V itself, like in the linear regime where
the electron concentration is fixed. The difference becomes
important when the variation of V in the channel becomes
strong enough, i.e. in the nonlinear regime, especially when
approaching the current saturation caused by the depletion of
the drain side of the channel.

In the absence of magnetic field, this nonlinearity is
well known [12] and is described by a simple equation for
the drain current I = jw following from Eqs. (1)–(5) for

FIG. 2. The image of our sample and schematics of a FET with
the Hall bar geometry, w/L ≈ 0.1.

B = 0, Ey = 0:

I = Vsd

R

(
1 − Vsd

2Vs

)
= 1

R

V 2
s − V 2

d

2Vs
, (6)

where Vsd = Vs − Vd is the voltage applied between the source
and the drain, Vs and Vd are the gate voltage swings at the
source and the drain, respectively, R is the resistance of the
two-dimensional slab with electron concentration ns = CVs/e.
This equation is valid up to Vsd = Vs (or Vd = 0), when the
channel becomes strongly depleted at the drain and the current
saturates. With further increase of Vsd the current remains con-
stant while the mechanism of conduction in the drain region
changes as described in Ref. [12].

We now come to our main point: establishing a simple
relationship between the effects of magnetic field in the linear
(Vsd � Vs) and nonlinear (Vsd ∼ Vs) regimes.

As shown above [see Eqs. (5) and (6)] for a gated electron
gas in magnetic field, the potential V in Eqs. (1) and (2), as
well as in the boundary conditions, should be replaced by
V 2/(2Vs), similar to Eq. (5), and this is our main idea. After
this replacement, it will follow from Eqs. (1) and (2) that
now the quantity V 2/(2Vs) must satisfy the Laplace equation
(equivalent to div j = 0) with the same boundary conditions
as for the potential V in an ungated electron gas.

This means that the result obtained for the magnetoresis-
tance R(B) in the linear regime

I = Vs − Vd

R(B)
, (7)

can be directly applied to the nonlinear regime by a simple
replacement of V by V 2/(2Vs).

Thus, for a gated electron gas we obtain

I = V 2
s − V 2

d

2VsR(B)
(8)

which is equivalent to Eq. (6) with the constant resistance R
replaced by R(B) measured in the linear regime.

We stress that this simple recipe is valid if the current
density j is proportional to the first power of the electron
concentration n, i.e., it does not apply to the case when
Shubnikov–de Haas oscillations or the quantum Hall effect
become important. (Those effects essentially depend on the
position of the Fermi level, i.e., on the electron concentration.)
In other words, Eq. (8) strictly stands when the resistance
R(B) is due to the combination of geometrical magnetoresis-
tance and the dependence of the mobility tensor on magnetic
field (but not on the electron concentration). Our experimen-
tal results presented below belong to the regime where this
condition is fulfilled (the amplitude of Shubnikov-De Haas
oscillations is small).

The simple rule Vs − Va → (Vs
2 − Va

2)/(2Vs) for the tran-
sition from the linear to nonlinear regime in a gated electron
gas should be equally valid for any side contact a. To prac-
tically apply this rule, one needs to determine in the linear
regime the “resistance” Rsa = (Vs − Va)/I , where I is again
the drain current. We stress that Rsa is not the resistance
that could be determined by applying the voltage difference
Vsa = Vs − Va and measuring the current in the s-a circuit.
Rather, it is a coefficient that determines the voltage difference
Vsa induced by the drain current I.
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FIG. 3. Measured I-V dependencies at B = 0 for different values
of the gate voltage Vg = Vth + Vs.

Thus, in the nonlinear regime we have

I = (
V 2

s − V 2
a

)
/(2VsRsa), (9)

where the resistance Rsa and its dependence on magnetic field
can be established in the linear regime. From Eq. (9) we
deduce the expression for Vsa at arbitrary values of the drain
current I:

Vsa = Vs
(
1 −

√
1 − 2RsaI/Vs

)
. (10)

For low drain currents, Eq. (10) reduces to Vsa = IRsa.

III. EXPERIMENT

The gated structures were fabricated on the base of the
AlGaAs/GaAs heterostructure with two-dimensional electron
gas (electron density ns = 6.5 × 1011 cm−2, mobility μ =
106 cm2/V s) by Ti/Au metallic layer evaporation (Ti layer of
20 nm thickness and Au layer of 100 nm thickness) on top
of the AlGaAs/GaAs structure. The studied Hall bar shaped
structures (length L = 600 μm, width w = 50 μm) were cov-
ered by a metallic gate 650 μm long and 150 μm wide. Side
voltages were measured between contacts spaced by 250 μm
and located at 200 μm from source and drain boundaries of
the gated structure (see Fig. 2).

Ungated access zones of 2DEG between the gated structure
and source and drain contact pads were 750 μm long and 100–
200 μm wide. At B = 0 the access zones’ resistance and the
contact resistance at low drain voltage were estimated to be
∼100 and ∼ 950 �, respectively.

The presence of additional access and contact resistances
practically does not influence the gate voltage swing Vs, nei-
ther in the linear regime, nor in the nonlinear regime.

Current-voltage characteristics and voltages were mea-
sured at 4.2 K in magnetic fields up to 2 T using the Keithley
source meter and Agilent voltmeters.

In Fig. 3 we present the measured I−V dependencies at
B = 0 for several values of the gate voltage Vg. The results are
quite typical for gated structures: the current linearly increases
with Vsd and saturates when Vsd approaches Vs, so that the
condition Vd = 0 at the drain side is achieved.

We remind that the usual notation Vg for the gate voltage
with respect to the source, habitually used by experimental-

FIG. 4. (a) Magnetoresistance R(B) in the linear regime (Vsd =
0.1 V) for several values of Vg. Inset: R(B)/R(0) and R21(B)/R21(0)
at Vg = −0.8 V, Vsd = 0.1 V. (b) Product R·Vs as a function of B for
the same values of Vg.

ists, is linked to the value of Vs as Vg = Vth + Vs. The measured
value of the threshold voltage is Vth ≈ −1.8 V.

A. Effects of magnetic field in the linear regime

We now present our experimental results for the magne-
toresistance, the Hall effect, and the side voltages in the linear
regime where Vsd � Vs, so that the electron density in the
channel, n ∼ Vs, is homogeneous.

1. Magnetoresistance

Figure 4(a) presents the magnetoresistance R(B) in the
linear regime for several values of Vg. In Fig. 4(b) we plot the
magnetic field dependence of the product R(B) · Vs to check
our assumption above that R(B) ∼ 1/n ∼ 1/Vs, i.e., that the
mobility tensor does not depend on the electron concentration.
It can be seen that for B < 2 T, to a reasonable approximation,
this is indeed the case.

To estimate the role of geometrical magnetoresistance
which originates in the vicinity of the source and drain con-
tacts [2,3], we have measured the magnetic field dependence
of the resistance R21 between side contacts 2 and 1 [see inset
to Fig. 4(a)], thus excluding the effect of geometrical mag-
netoresistance. Above 0.5 T the ratio R21(B)/R21(0) increases
nearly linearly in magnetic field, similar to the total resistance.
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FIG. 5. Voltages measured between side contacts 1–4 and the
source as functions of magnetic field B. Note the saturation at
B > 1 T.

This shows the existence of a physical magnetoresistance,
which is linear in magnetic field. Positive magnetoresistance
was previously observed experimentally [5–7] and discussed
theoretically [8–11].

Thus above ∼ 0.5 T, the measured resistance R(B) (i.e., the
resistivity ρxx) increases linearly with B. On the other hand,
the Hall resistivity ρxy is also linear in B. This means that the
topography of the equipotential lines becomes frozen above
∼0.5 T.

2. Hall effect and side voltages

In Fig. 5 we show the measured voltages at contacts 1,2,3,4
with respect to the source as functions of magnetic field. All
voltages are linear in magnetic field up to ∼1 T and saturate at
higher fields. These measurements allow us to extract the Hall
voltages V31 and V42, as well as the side voltages V12 and V34.
One can see that, as expected, V31 = V42 and V12 = V34 (this is
no longer true in the nonlinear regime, see below).

The experimentally observed saturation of all measured
voltages at B ∼ 1 T in the linear regime means that in our
sample the pattern of equipotential lines defined by the ratio
σxy/σxx is frozen for higher magnetic fields. Whatever the
physical reasons for this, we must take into account this exper-
imental fact when discussing the following results obtained in
the nonlinear regime.

B. Effects of magnetic field in the nonlinear regime

1. Magnetoresistance

The measured I-V characteristics for different magnetic
fields in the range 0–2 T are presented in Fig. 6(a). In Fig. 6(b),
for the same values of magnetic field, we plot the ratio I/Isat,
where Isat is the saturation current for a given magnetic field.
One can see that the dependence R(B) in the nonlinear regime
is indeed practically the same as in the linear regime, resulting
in the remarkable merging of all the I/Isat vs V curves for
different values of B, as it is predicted by Eqs. (7) and (8).

2. Hall effect

In Fig. 7 we present the voltage differences V31 and V42

between edge contacts 3,1 and 4,2, respectively. In the linear

FIG. 6. (a) I vs Vsd dependencies for several values of magnetic
field at Vg = −0.8V . (b) I/Isat vs Vsd curves for several values of
magnetic field and fixed Vg = −0.8V .

regime when the electron concentration is homogeneous along
the sample, these voltages are obviously equal because of the
symmetry of the equipotential lines.

In the nonlinear regime, the equipotential lines correspond
to fixed values of V 2 rather than of V; see Eq. (9). Thus, in

FIG. 7. The Hall voltage VH as a function of magnetic field
measured between two pairs of contacts, 3, 1 and 4, 2 in the linear
regime (Vsd = 0.1 V), weakly nonlinear regime (Vsd = 0.4 V), and
strongly nonlinear regime (Vsd = 0.9 V). Dashed lines: calculation
on the basis of results for the linear regime in Fig. 5, using Eq. (10).
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the nonlinear regime symmetry requires that V 2
1 − V 2

3 = V 2
2 −

V 2
4 . Hence

V1 − V3

V2 − V4
= V2 + V4

V1 + V3
. (11)

This ratio is less than 1, because contacts 2 and 4 are closer
to the drain than contacts 1 and 3, respectively (see Fig. 1), and
thus correspond to regions where the electron concentration n
∼ V is lower. Also, as we have seen in the preceding section,
the equipotential lines become frozen for B > 1 T. Thus, in the
nonlinear regime the equipotential lines of V 2 should remain
unchanged above 1 T, resulting in saturation of all magnetic
field effects.

These considerations explain qualitatively the results for
Hall measurements in Fig. 7:

(1) The difference between Hall voltages V42 and V31 ap-
pears in the nonlinear regime (V42 > V31) and increases with
Vsd when approaching current saturation.

(2) Both voltages V42 and V31 tend to saturate at B>1 T.
The measurements are in a good agreement with the pre-

dictions given by Eq. (10) (dashed lines in Fig. 7).
The difference between the Hall voltages V31 and V42 in the

nonlinear regime can be qualitatively understood as a result
of the decrease of the electron concentration on the way from
source to drain. Because of this, V42 > V31.

3. Side voltages

We have measured the voltage differences V21 and V43

between edge contacts 1, 2 and 3, 4, respectively. At zero
magnetic field we have V21 = V43 [see Fig. 1(a)]. Because of
the symmetry of equipotential lines, the same is true in the lin-
ear regime for any value of magnetic field. In the presence of
magnetic field, the difference appears in the nonlinear regime.
Similar to Eq. (11), we now have

V4 − V3

V2 − V1
= V2 + V1

V4 + V3
. (12)

Depending on the sign of magnetic field, this ratio is either
greater or smaller than 1. In our experimental configuration,
the upper edge of the sample has a potential closer to that of
the source Vs, while the lower edge has the potential closer
to that of the drain Vd [see Fig. 2(b)]. Thus, in the nonlinear
regime: V43/V21 > 1. We note that, in contrast to the relation
between Hall voltages considered above, this qualitative result
a priori is not evident.

FIG. 8. Measured side voltages V21 and V43 as functions of the
source-drain voltage Vsd . Solid line at B = 0. Open and full circles at
B = 2 T. Inset: Full symbols and solid lines: measured ratio V43/V21

as a function of magnetic field for several values of Vsd . Open sym-
bols and dashed lines: calculation on the basis of results for the linear
regime in Fig. 5, using Eq. (10).

Figure 8 shows the side voltages V21 and V43 at B = 0 and
at B = 2T as functions of Vsd . As we approach the nonlinear
regime, those voltages start to diverge with increasing mag-
netic field. The inset shows the measured ratio V43/V21 as a
function of magnetic field for several values of Vsd together
with the results of calculations using Eq. (10) and our exper-
imental data for the linear regime in Fig. 5. One can again
see a good agreement between experiment and theory. This
shows that the difference between the real equipotential pat-
tern accounting for the ungated access zones and the idealized
pattern in Fig. 1 has no significant consequences.

IV. CONCLUSIONS

In summary, we have measured the magnetoresistance, the
Hall effect, and the side voltages in a gated 2D electron gas
in magnetic field. The experimental results obtained in the
nonlinear regime, when approaching the drain current satura-
tion, have been interpreted based on the results obtained in the
linear regime by a simple theoretical model, which describes
quite well our observations.
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