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Hole spin-flip transitions in a self-assembled quantum dot
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In this work, we investigate hole spin-flip transitions in a single self-assembled InGaAs/GaAs quantum
dot. We find the hole wave functions using the eight-band k · p model, and we calculate phonon-assisted
spin relaxation rates for the ground-state Zeeman doublet. We systematically study the importance of various
admixture and direct spin-phonon mechanisms giving rise to the transition rates. We show that the biaxial and
shear strain constitute dominant spin-admixture coupling mechanisms. Then, we demonstrate that hole spin
lifetime can be increased if a quantum dot is covered by a strain-reducing layer. Finally, we show that the spin
relaxation can be described by an effective model.
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I. INTRODUCTION

The dynamics of a carrier spin in semiconductor quantum
dots (QDs), as well as other semiconductor nanostructures, is
a subject of active study, both theoretical and experimental,
due to potential implementations in the fields of spintron-
ics and quantum information processing [1,2]. High-fidelity
initialization [3,4], control [5,6], readout, and storage [7] of
the information encoded in the spin are essential for future
applications. These can be achieved with hole spin due to
its relatively long coherence time [8], which is related to
significantly weaker hyperfine interaction as compared to the
electron case [9–11]. However, spin lifetimes and coherence
times can be limited by the coupling to a phonon bath, leading
to a loss of information to the environment [12–14].

The channels of phonon-induced spin-flip can be divided
into two classes [13,15]. The first one contains various ad-
mixture mechanisms resulting from the spin-orbit coupling
(SOC). Hence, a carrier state with some (dominant) spin
orientation has also an admixture of the opposite spin. As a
consequence, the coupling to a phonon bath can lead to spin-
flip transitions between such states [12,13]. The second class
of mechanisms results from direct spin-phonon coupling. In
this case, the displacement field related to phonons lowers
the symmetry, leading to spin relaxation in the presence of
spin-orbit coupling [13,15–17].

The processes of hole spin-flip transition in a QD due to the
mechanisms described above were widely studied [7,14,18–
25]. It has been shown that phonon coupling via a piezo-
electric field (PZ) is more important at small and moderate
Zeeman splittings, while deformation potential (DP) coupling
becomes dominate for larger splittings. In Ref. [25], the role
of substrate orientation on hole spin relaxation was explored.
It was shown that a self-assembled QD structure grown in the
[111] direction offers up to one order of magnitude longer
spin lifetimes compared to its [001]-oriented counterpart.
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A detailed comparison of various spin relaxation channels
was presented in Ref. [14]. Therein, the problem was studied
within a four-band k · p model, neglecting structural strain,
and combined with the approximation of parabolic potentials.
It is known, however, that strain provides channels of spin
mixing [26] that can significantly affect the spin relaxation
[19]. In fact, recent results show a significant contribution
from the structural shear strain to the s-p coupling between
the hole states in a self-assembled InGaAs QD [25]. Since
the s-p coupling is known as a major source of the opposite
spin admixture [12,13], this suggest an important role of shear
strain in phonon-assisted spin relaxation processes. Further-
more, biaxial strain opens also a spin-mixing channel [26–28],
and its impact on the relaxation in self-assembled QDs has not
been studied so far.

The spin-orbit interaction, combined with inversion sym-
metry breaking, creates a number of coupling mechanisms
[26,28,29] that need to be taken into account when simulating
spin relaxation processes. To associate these processes with
symmetry-lowering strain fields appearing on the mesoscopic
level, we propose a description in the framework of the multi-
band k · p model. In this approach, the physical processes
are accounted for by individual terms in the Hamiltonian
that follow from a rigorous symmetry-based analysis in terms
of invariants [28], and they are often related to effective
spin-orbit terms that have appeared in the literature over
many decades [15] (although mostly for electrons, rather than
holes). In this way, the k · p method provides an alternative
and complementary view of the nanostructure properties as
compared to the very exact but more computationally inten-
sive atomistic methods [30–33], while retaining a sufficient
accuracy. This approach not only allows one to identify the
relevant symmetry-related relaxation channels that might be
mitigated by QD structure engineering, but it also offers a
physical picture based on symmetry, in line with the gen-
eral development of condensed-matter physics [34]. Here, we
gain physical insight into the properties of interest, and we
compare the relevance of individual coupling mechanisms by
selectively “turning on/off” the corresponding terms in the
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FIG. 1. InxGa1−xAs distribution in the system for the single QD
(a) and the QD capped by the SRL (b).

k · p Hamiltonian. Furthermore, the eight-band k · p method
offers a well-established way to incorporate the carrier-
phonon interaction, which is based on the Bir-Pikus Hamil-
tonian, expressed in terms of the phonon modes [15,18,35].

In this paper, we systematically study the importance of
various phonon-induced spin-flip transition mechanisms for
a hole confined in an InGaAs/GaAs quantum dot system.
The hole states are calculated using the full eight-band k · p
method for a realistic geometry of the system. The structural
strain distribution is accounted for within the continuous elas-
ticity approach. The hole is subject to an external magnetic
field applied parallel to the growth direction as well as coupled
to an acoustic phonon reservoir via deformation potential and
piezoelectric field. We show that the effect of spin-admixture
mechanisms (dominant at low and moderate magnetic fields)
coming from the shear and biaxial strain can be limited by
the presence of a strain-reducing layer. Finally, we show that
transitions via the spin-admixture channels can be accounted
for using an effective model with Gaussian-like heavy-hole
wave functions.

The paper is organized as follows. In Sec. II, we describe
the QD geometry and discuss the model used in the calcula-
tions. In Sec. III, we present the results for various spin-flip
transition mechanisms, and we introduce an effective model
describing the relaxation due to spin-admixture effects. We
conclude the article in Sec. IV.

II. MODEL

We consider a single, self-assembled QD of
In0.5Ga0.5As/GaAs [structure A, Fig. 1(a)]. The material
intermixing is simulated by a Gaussian blur of the
composition with the standard deviation of 0.6 nm. We
model the dot as a lens-shaped structure with a base radius of
21a, a height of 7a, and a wetting layer of thickness a, where
a is the GaAs lattice constant. In the case of structure B [see
Fig. 1(b)], the QD is capped by an In0.188Ga0.812As/GaAs
strain-reducing layer (SRL) of constant thickness. The In
content in the SRL was chosen so that g-factors in both
structures are equal up to <1%. Such layers are often utilized
to tune QD emission to a desired range [36–38]. In this paper,
we use a SRL to soften strain at the interfaces.

The strain field caused by the lattice mismatch of InAs
and GaAs materials is calculated using the continuous

elasticity approach [39]. The piezoelectric potential (in-
evitable in zinc-blende structure in the presence of shear
strain) is calculated including polarization up to second or-
der in strain tensor elements [40], where we use parameters
from Ref. [41]. Hole wave functions are obtained using the
eight-band k · p model [28,42]. We incorporated magnetic
field according to the gauge-invariant scheme described in
Ref. [43]. The computational domain is discretized on a Carte-
sian mesh of a × a × (a/2) cell size. The k · p model and
its implementation are described in detail in the Appendix
of Ref. [44] [where we took the parameter κ ′ expressed
in terms of the modified Luttinger parameters, i.e., κ ′ =
− 1

3 (γ ′
1 − 2γ ′

2 − 3γ ′
3 + 3)].

The inversion symmetry breaking on the level of the zinc-
blende lattice structure gives rise to many spin-orbit couplings
between the bands. These effects are inherently accounted for
by the extended (14-band) Kane k · p Hamiltonian [28,45,46].
Such a model contains the valence bands (�8v and �7v band
blocks) built by the p-type bonding orbitals, and the con-
duction bands (�6c, �7c, and �8c) composed of the s- and
p-type antibonding orbitals. The reduction of this model to the
two-band k · p via Löwdin elimination leads to an appearance
of the ∝ k3 terms (known as the Dresselhaus term) [28]. In the
framework of the eight-band k · p, the Dresselhaus coupling
enters the Hamiltonian via the perturbative ∝ k2 terms [28],

H (D)
6c8v = i

√
3B+

8v[Tx{ky, kz} + c.p.]

+
√

3

6
B−

8v(Txx − Tyy)
(
2k2

z − k2
x − k2

y

)
−

√
3

2
B−

8vTzz
(
k2

x − k2
y

)
,

H (D)
6c7v = − i√

3
B7v[σx{ky, kz} + c.p.],

where {A, B} = 1
2 (AB + BA), σn are the Pauli matrices, Tn

are matrices connecting the j = 1/2 and 3/2 representations,
Jn are matrices of the j = 3/2 representation of angu-
lar momentum, Tnm = TnJm + TmJn (with the explicit forms
of the matrices provided in [47]), and c.p. denotes cyclic
permutations. The Kane off-diagonal parameters are given
by [28]

B+
8v = − i

2
P′Q

(
1

Eg − E ′
g − �′ − 1

E ′
g + �′

+ 1

Eg − E ′
g

− 1

E ′
g

)
,

B−
8v = − i

2
P′Q

(
1

E ′
g + �′ − 1

Eg − E ′
g − �′

+ 1

Eg − E ′
g

− 1

E ′
g

)
,

B7v = −iP′Q
(

1

Eg − E ′
g − �′ − 1

E ′
g + � + �′

)
,

where P′ and Q are parameters proportional to the inter-
band momentum matrix elements, Eg (E ′

g) is the energy gap
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between the 6c and 8v (7c and 8v) bands, and � (�′) is the
spin-orbit splitting between the 8v and 7v (8c and 7c) bands.

In Ref. [48], it has been shown that also the off-diagonal
spin-orbit parameter �− contributes significantly to the Dres-
selhaus coupling. Such a parameter is related to a different
ionicity of anions and cations in a crystal and couples the 8c
and 7c band blocks in the 14-band k · p model [48,49]. To
represent its influence in the eight-band k · p Hamiltonian, we
performed calculations within the Löwdin perturbation theory,
which gives the off-diagonal terms

H (�−)
6c8v =

√
3

2
D1(Txkx + c.p.),

H (�−)
6c7v = − 1√

3
D2(σxkx + c.p.),

where

D1 = −1

3
P′∗�−

(
1

Eg − E ′
g − �′ − 1

E ′
g + �′

)
,

D2 = 1

3
P′∗�−

(
1

Eg − E ′
g

− 1

E ′
g + �

)
,

where �−[InAs] = −0.05 eV and �−[GaAs] = −0.17 eV
[48], while the other parameters are given in Refs. [28,44].
Finally, the bulk inversion asymmetry enters via the k-linear
terms in the Hamiltonian [28,42],

H (k)
8v8v = 2√

3
Ck

({
Jx, J2

y − J2
z

}
kx + c.p.

)
,

H (k)
8v7v = −i

√
3Ck

(
T †

yzkx + c.p.
)
,

where Ck[InAs] = −0.0034 eVÅ and Ck[GaAs] = −0.0112
eVÅ [28].

In addition to the inevitable inversion symmetry breaking
due to the zinc-blende crystal lattice, the symmetry of the
system can be further reduced by the presence of strain. It is
known that uniaxial stress (for some crystal directions) leads
to a strain-dependent k-linear splitting in the conduction band
[27,50,51]. In the eight-band k · p model, this effect enters the
Hamiltonian via the off-diagonal terms [26],

Hstr,6c8v = i
√

3C2[Txεyz + c.p.],

Hstr,6c7v = −i
1√
3

C2[σxεyz + c.p.],

where εi j are strain tensor components. Due to the lack of
available experimental data for InAs, we assume the value of
parameter C2 for InxGa1−xAs as C2(x) = 0.4 Eg(x)[Eg(x) +
�(x)]/�(x), where 0.4 was extracted from the experimental
data for GaAs [52].

The symmetry reduction caused by the uniaxial stress leads
to spin-orbital effects in the valence band as well [27,53].
Such a strain-induced k-linear splitting is represented by the
terms [26,28]

H (k)
str,8v8v = [C4(εyy − εzz )kx]Jx + c.p.,

H (k)
str,8v7v = 3

2 [C4(εyy − εzz )kx]T †
x + c.p.,

H (k)
str,7v7v = [C4(εyy − εzz )kx]σx + c.p.,

where the form of H (k)
str,7v7v was derived from the table of

irreducible tensor components of the Td point group given
in Ref. [28]. There are significant discrepancies in the re-
ported values of the C4 parameter. While the empirical
pseudopotential method (EPM) gives C4[InAs] = 2.9 eVÅ
and C4[GaAs] = 3.2 eVÅ, the results of the sp3 tight-binding
(TB) model suggest C4[InAs] = 7.0 eVÅ and C4[GaAs] =
6.8 eVÅ [54]. In the present paper, we utilize the latter values.

The full Hamiltonian of the system can be written as [55]

H =
∑

n

Enh†
nhn +

∑
λ,q

h̄ωλ,qb†
λ,qbλ,q +

∑
i j

Vi jh
†
i h j,

where En describes the energy of the nth state, and h(†)
n is

the related annihilation (creation) operator. The second term
accounts for the phonon bath, where λ ∈ {l, t1, t2} denotes
the acoustic phonon branch (a single longitudinal and two
transversal modes, respectively), q is a wave vector, h̄ωλ,q is
a phonon mode energy, and b(†)

λ,q is the annihilation (creation)
operator of the mode. We assume the linear dispersion ωλ,q =
cλq with a branch-dependent speed of sound cl = 5150 m/s
and ct1/t2 = 2800 m/s [56]. The last term accounts for the
hole-phonon interaction

Vi j =
∫

d3r �†
i (r)

[
H (ph)

DP (r) + V (ph)
PZ (r)

]
� j (r),

where �i(r) is a wave function of the ith hole state in the form
of eight-component pseudospinors [28,57], while H (ph)

DP and
V (ph)

PZ represent the carrier-phonon couplings via deformation
potential and piezoelectric field, respectively.

The deformation potential coupling is described by the
Bir-Pikus Hamiltonian supplemented with the C2-strain terms
[26,28,42],

H (ph)
DP (r) = −

{
acTrε̂(r)I(6c) + avTr{ε̂(r)}I(8v+7v)

− bv

[(
J (8v)

x
2 − 1

3
J (8v)2

)
εxx(r) + c.p.

]

− dv√
3

[
2
{
J (8v)

x , J (8v)
y

}
εxy(r) + c.p.

]
− 3bv

[(
T (7v8v)

xx + H.c.
)
εxx(r) + c.p.

]
− 2

√
3dv

[(
T (7v8v)

xy + H.c.
)
εxy(r) + c.p.

]
+

√
3C2

[(
iT (6c8v)

x + H.c.
)
εyz(r) + c.p.

]
− 1√

3
C2

[(
iσ (6c7v)

x + H.c.
)
εyz(r) + c.p.

]}
,

where the global “−” sign results from the description in the
hole picture; ac, av, bv, and dv are deformation potentials; ε̂(r)
is the (phonon-induced) strain-tensor field; I is an identity
matrix; and σ, J, T are matrices used for the invariant ex-
pansion of the Hamiltonian, with the superscripts referring
to the band blocks [47]. We take GaAs values for all defor-
mation potentials and the C2 parameter. To obtain H (ph)

DP in
the representation of phonon normal modes, we perform the

205301-3



KRZYKOWSKI, GAWARECKI, AND MACHNIKOWSKI PHYSICAL REVIEW B 102, 205301 (2020)

expansion

εi j (r) =
∑
λ,q

ε
(q,λ)
i j eiq·r,

with the coefficients [55]

ε
(q,λ)
i j = −1

2

√
h̄

2V ρωλ,q
(êqλ,iq j + êqλ, jqi )(b

†
−q,λ + bq,λ),

where ρ = 5350 kg/m3 [56] and V denote the density and
the volume in the bulk crystal, respectively, and êqλ,i is the ith
component of the polarization unit vector.

The coupling via piezoelectric field potential is given by
V (ph)

PZ = eφ(r)I(6c+8v+7v), where e is the elementary charge,
φ(r) is the phonon-induced electrostatic potential given by
[55,58]

φ(r) = i
2d14

ε0εr

∑
q,λ

1

q2

(
qxε

(q,λ)
yz + c.p.

)
eiq·r,

where εr = 12.4 is the relative dielectric constant (here
assumed equal to the bulk GaAs value [59]), and d14 =
−0.16 C/m2 is the element of the piezoelectric tensor (in a
zinc-blende crystal only one component is linearly indepen-
dent) for GaAs [60].

The interaction Hamiltonian can be expressed by

Vint =
∑
λ,q

V (q, λ)eiq·r,

where V (q, λ) contains H (ph)
DP and V (ph)

PZ for a single-phonon
mode (q, λ). We calculate the phonon-induced relaxation rates
using the Fermi golden rule. The rate between the i and j
states is �i j = 2πRi j ji(ωi j ), where ωi j = (Ei − Ej )/h̄, and
Ri j ji(ω) is the phonon spectral-density given by [55]

Ri j ji(ω) = 1

h̄2

∑
λ,q

|〈ψi|V (q, λ)eiq·r|ψ j〉|2δ(ω − ωλ,q),

where we assume absolute zero temperature.

III. RESULTS

A. Full model

In this section, we analyze hole spin-flip transitions due
to two distinct classes of mechanisms. The first class is
induced by band-off-diagonal terms in the multiband carrier-
phonon interaction Hamiltonian. As discussed in detail in
Ref. [15], when the multiband Hamiltonian is reduced to
an effective two-band model (describing the two heavy-hole
subbands in the present case) via Löwdin perturbational de-
coupling, such terms lead to direct spin-phonon couplings
in the effective Hamiltonian. The second mechanism relies
on the band-off-diagonal terms unrelated to phonons that
express various spin-orbit couplings. As a result, the predomi-
nantly heavy-hole state with a certain nominal spin orientation
has contributions (admixtures) of states with the opposite
spin. Therefore, states with nominally opposite spins may be
coupled via spin-conserving phonon terms (stemming from
the diagonal elements in the k · p representation). Although
Löwdin elimination is of less practical use for holes than for

FIG. 2. Phonon-induced spin-flip relaxation rate in the lowest-
energy Zeeman doublet as a function of axial magnetic field for the
QD structures A and B. Solid black line indicates total rate, while
dashed colored lines indicate various contributions. The lines are
ordered depending on their contribution to the considered process
from greatest to lowest at low magnetic fields. The inset in panel
(b) presents the ratio between total relaxation rates in the considered
structures.

electrons, the relation between the location of the phonon term
in the k · p Hamiltonian and the form of the resulting effective
term still holds in principle and allows one to classify the
numerous spin relaxation channels. Therefore, we will use
the terms spin-phonon and admixture to label spin-flip mech-
anisms in the following discussion, even though we study the
full multiband k · p model.

In Fig. 2, we present spin-flip relaxation rates due to the
interaction with the acoustic phonon reservoir as a function of
the magnetic field B applied parallel to the growth axis [001].
Various lines in the figure correspond to particular contribu-
tions to the interaction Hamiltonian. The rates are given for
the two QD structures (see Fig. 1) differing by the presence
or absence of the SRL and therefore strain distribution in
the system. For low-to-moderate magnetic fields, the coupling
via piezoelectric field dominates, however above 10 T for
the structures this effect starts to saturate and the coupling
via the deformation potential becomes dominant. This effect
is caused by different power dependencies of various spin-
flip channels on magnetic field [14,15]. The coupling via a
phonon-induced piezoelectric field exhibits ∝ B5 behavior.
On the other hand, the coupling via a deformation potential
contains terms that increase like ∝ B5, ∝ B7, and even ∝ B9,
which is clearly visible in the line slopes in the logarithmic
scale. The ∝ B9 contribution is related to some of the dv shear-
strain off-diagonal terms in H (ph)

DP . Since in our approach V (ph)
PZ

is diagonal, it is spin-conserving and gives rise to the spin-flip
relaxation due to the admixture mechanisms only. On the
other hand, for the coupling via the deformation potential, the
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FIG. 3. Phonon spectral density at B = 1 T for the QD struc-
tures A and B, representing the absence and presence of a SRL,
respectively. The solid black line represents the background related
to various contributions, with all explicit Hamiltonian terms being
turned off. Colored dashed lines represent cases of explicit terms
being taken into account. The vertical line corresponds to the energy
difference E2 − E1 between the states in a Zeeman doublet.

off-diagonal terms clearly dominate over the diagonal part. As
a consequence, for high magnetic fields the direct spin-phonon
coupling is the most significant class of mechanisms.

We have compared the relaxation rates for the structures
with and without the SRL [see the inset in Fig. 2(b)]. In
the presence of the SRL, the relaxation due to strain-related
spin admixtures slows down. As a consequence, the SRL
increases the spin lifetime for weak and moderate magnetic
fields, where the admixture mechanisms dominate, in this case
by about 50%. On the other hand, in structure B the direct
spin-phonon mechanism is also weaker. This leads to up to
a twofold increase of spin lifetime in the high magnetic field
regime.

We have investigated the importance of various spin
admixture mechanisms to the phonon-assisted spin-flip relax-
ation rate. This could be done by artificially turning on and
off relevant explicit terms in the eight-band k · p Hamiltonian.
However, this may strongly affect the hole g-factor, hence
the resulting relaxation rates correspond to different energies,
making them hard to compare. Instead, we studied the relevant
spectral densities (Fig. 3). To remove all of the contributions
coming from the direct spin-phonon mechanisms, we took
into consideration only the coupling via the piezoelectric field.
We performed the simulations for both considered QD sys-
tems at B = 1 T (where, according to Fig. 2, the coupling via
the PZ field is the dominant contribution).

In the case of the QD without the SRL [Fig. 3(a)], the
dominant contribution is the biaxial strain (terms proportional
to C4). Other significant contributions come from the shear

strain in the valence band (terms proportional to dv in the
Bir-Pikus Hamiltonian) as well as the background related to
the remaining contributions, such as the Rashba effect com-
ing from structure inversion asymmetry (SIA), represented
in Fig. 3 as a solid black line. These results are consistent
with Ref. [25], where dv shear-strain terms were shown as
one of the most important contributions determining the hole
s-p coupling. The contribution from the Dresselhaus bulk
inversion asymmetry (BIA) spin-orbit coupling is relatively
small for structure A, and it interferes destructively with the
background.

In the case of structure B [where SRL is included,
Fig. 3(b)], the dominant C4 contribution is significantly
quenched, leading to an almost threefold reduction in spec-
tral density. The Dresselhaus term remains mostly unchanged
while the background contributions are reduced. This is to
be expected for a low-strain regime, where the Dresselhaus
effect can be the dominant spin-admixture-related relaxation
channel [14]. In contrast to the electron case [15], for both
considered structures the effect of off-diagonal terms linear
in momentum and strain (in H6c8v and H6c7v blocks) is negli-
gible. Furthermore, the influence of C2-strain is small and is
included in the background for clarity.

The exact values obtained in our calculations depend, to
some extent, on the assumed values of the parameters and on
the choice of the theoretical approach. For instance, atomistic
calculations, commonly considered to be the most accurate
method available for QD structures, might yield slightly dif-
ferent values. It has been shown, however, that the agreement
between the k · p and tight-binding methods is good upon
appropriate extension of the strain terms in the former [61].
To check the robustness of our conclusions, we have repeated
our calculations using a model from Ref. [61] with nonlinear
corrections to the strain terms that yield good quantitative
agreement with the tight-binding approach. We have found
that the change in the spectral densities is almost unnoticeable,
and the relaxation rates do not change considerably when
comparing structures with the same Zeeman splitting. The
major effect of the nonlinear corrections is a modification of
the g-factor by several percent, which corresponds trivially
to a noticeable increase of the spin-flip rate via a strong
dependence of the phonon-assisted relaxation on the Zeeman
splitting. Therefore, there are no reasons to expect that another
choice of parametrization or even switching to an atomistic
method would affect our main qualitative conclusion on the
predominant role of strain-induced symmetry lowering in gen-
erating spin-relaxation channels in a self-assembled structure.

B. Effective model

The hole phonon-assisted spin-flip relaxation rates can be
accounted for using wave functions obtained from the ef-
fective model with empirical parameters fitted to the k · p
simulation data (see Table I). We use heavy-hole Gaussian
wave functions and a simple hole Hamiltonian based on the
Fock-Darwin model, supplemented by additional terms ac-
counting for the spin-orbit interaction [25].

Let us consider the basis of s- and p-type states
{|0⇑〉, |0⇓〉, |+1⇑〉, |+1⇓〉, |−1⇑〉, |−1⇓〉}, where the in-
dices correspond to the axial projections of envelope and
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TABLE I. Effective Hamiltonian and Gaussian wave-function
parameters used in the effective model calculations.

�V (p)
0 16.04 meV V (so)

pp 6.063 meV

Va 2.849 meV V (so)
sp 165.2 μeV

gs 1.182 αs 2.212 μeV/T2

gp 4.596 αp 4.572 μeV/T2

W −0.335 meV/T

lz 15.69 nm lp 55.79 nm

band angular momentum ( jz = ±3/2), respectively. The wave
functions used for the calculations are Gaussians expressed in
a cylindrical coordinate system,

ψ
(ν)
0 (r, z) = 1√

π
3
2 l2

plz
exp

(
− r2

2l2
p

− z2

2l2
z

)
χν,

ψ
(ν)
±1(r, φ, z) = r√

π
3
2 l4

plz
exp

(
− r2

2l2
p

− z2

2l2
z

)
exp(±iφ)χν,

where χν is a spinor corresponding to the axial projection of
the band angular momentum, and lp and lz describe the spatial
extension of the wave function in the xy plane and along the
z axis, respectively. The effective Hamiltonian written in the
considered basis is given by [25]

Heff = �V (p)
0 (|1〉〈1| + |−1〉〈−1|) ⊗ I2

+ 1
2 eV (so)

pp Lz ⊗ σz + W BzLz ⊗ I2 + 1
2μB[gs|0〉〈0|

+ gp(|1〉〈1| + |−1〉〈−1|)]Bz ⊗ σz

+ Va(|1〉〈−1| + |−1〉〈1|) ⊗ I2

+ V (so)
sp [(|0〉〈−1| ⊗ |⇑〉〈⇓|

− |0〉〈1| ⊗ |⇓〉〈⇑|) + H.c.]

+ [αs|0〉〈0| + αp(|1〉〈1| + |−1〉〈−1|)]B2
z ⊗ I2,

where �V (p)
0 is a bare energy difference between s- and p-type

states at B = 0, Va is a parameter related to the anisotropy,
W is a parameter accounting for the influence of the en-
velope angular momentum, μB is the Bohr magneton, gs/p

are effective g-factors for s- and p-type states, respectively,
V (so)

pp corresponds to the spin-orbit coupling for the p-type
states, V (so)

sp describes coupling between s- and p-type states
involving change in both envelope and band angular momenta,
αs/p are diamagnetic parameters for s/p-type orbitals, Lz is
the operator of the axial component of the envelope angular
momentum, σz is the axial Pauli matrix, and finally In is an
identity matrix of order n. All of the parameters describing
the effective Hamiltonian are fitted to the magnetic-field de-
pendence of the energy levels obtained from the eight-band
k · p (see details in Refs. [25,44]). The numerical values of
the parameters are compiled in the Table I. Since the fitting
procedure gives only the absolute values of parameters, the
relative phases of terms in Heff are assumed. We also ne-
glected terms |0〉〈−1| ⊗ |⇓〉〈⇑| + H.c. and |0〉〈1| ⊗ |⇑〉〈⇓| +
H.c. since they are not represented by any avoided crossing
in target magnetic-field energy dependence [25]. The param-

FIG. 4. Phonon-induced spin-flip relaxation rate via piezoelec-
tric effect (a) and deformation potential (b) couplings as a function
of magnetic field B for realistic k · p calculations (solid black) and
the effective model (dashed red).

eters describing the wave-function spatial extension (lp, lz)
are extracted from probability density maps at B = 0. Fi-
nally, the effective Hamiltonian 6 × 6 matrix is diagonalized,
and relaxation rates are calculated using the Fermi golden
rule (with the same interaction Hamiltonian as in the full
model).

We compare the values of relaxation rates obtained from
the effective model and eight-band k · p calculations for the
QD without SRL (structure A). Figure 4(a) presents the spin-
flip relaxation rate via piezoelectric field alone. The results
show a reasonable agreement, and the characteristic ∝ B5

dependence. In Fig. 4(b) we present a similar comparison,
but for the coupling via the deformation potential alone. In
this case, the results strongly disagree. In particular, the effec-
tive model does not reproduce the ∝B5 and ∝B9 dependence
regimes characteristic for direct spin-phonon coupling.

IV. CONCLUSIONS

We have presented a theoretical study of the hole phonon-
assisted spin-flip relaxation in a self-assembled QD systems.
With wave functions found using the eight-band k · p method,
we have calculated relaxation rates related to the phonon
coupling via the deformation potential and the piezoelectric
field. In this framework, we have investigated the con-
tributions coming from various channels belonging to the
spin-admixture and direct spin-phonon classes of mecha-
nisms. We have shown that the dominating spin-admixture
terms come from the biaxial and shear strain. We have shown
that (for low and moderate magnetic fields) the QD covered
by a strain-reducing layer offers a significantly longer spin
lifetime compared to the bare QD system. Finally, we have
demonstrated that a relatively simple effective model yields
reasonable agreement with the k · p simulation data.
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