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Impurities in three-dimensional quadratic band-touching Luttinger semimetals:
Friedel and RKKY oscillations
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We investigate the response of three-dimensional Luttinger semimetals to localized charge and spin impurities
as a function of doping. The strong spin-orbit coupling of these materials strongly influences the Friedel
oscillations and RKKY interactions. This can be seen at short distances with an 1/r4 divergence of the responses
and anisotropic behavior. Certain of the spin-orbital signatures are robust to temperature, even if the charge and
spin oscillations are smeared out, and give an unusual diamagnetic Pauli susceptibility. We compare our results
to the experimental literature on the bismuth-based half-Heuslers such as YPtBi and on the pyrochlore iridate
Pr2Ir2O7.
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I. INTRODUCTION

Luttinger semimetals [1] such as HgTe, α-Sn, YPtBi [2],
and Pr2Ir2O7 [3] play an important role in the field of three-
dimensional (3D) topological materials. Their conduction and
valence bands meet quadratically at a time-reversal-invariant
and inversion-symmetric point. This degeneracy can be lifted,
for example, by applying strain, to obtain a Dirac semimetal
[4,5] or a topological insulator [6]. In these materials, the
nontrivial topology is responsible for unusual magnetic [7–9],
surface [10–12], and transport [7,13,14] properties, which can
also be met in Luttinger semimetals [15]. In particular, a way
to probe the strong spin-orbit properties of these materials is
through their response to charge and spin impurities, respec-
tively, referred to as Friedel oscillations [16,17] and RKKY
interactions [18–20].

The Friedel oscillations and RKKY interactions are a
consequence of the sharp Fermi surface of the conduction
electrons. In a 3D normal electron gas they typically scale
as cos(2kF r)/r3, where r is the distance from the impurity
and kF the Fermi wave vector [21]. But in general, this re-
sponse depends on the dimension [17,22,23], band dispersion
[24–30], and temperature [31,32]. For example, in Dirac and
Weyl semimetals these responses decay more rapidly at large
separations, r−5 [25–27], when the carrier density vanishes.
The quadratic dispersion of Luttinger semimetals leads to a
slower decay, which may prove useful to explore the con-
sequences of the strong spin-orbit interaction. Also, on the
contrary to a Luttinger metal with heavy and light carriers
[33], the chemical potential can serve to explore the spin-orbit
coupling of each band separately.

In this work we study the Friedel oscillations and RKKY
coupling of 3D Luttinger semimetals at finite doping. This is
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inspired by recent experimental results on the bismuth-based
half-Heuslers [2] and the tentalizing phase diagram of the
pyrochlore iridate Pr2Ir2O7 [3,34,35]. We compute the charge
and spin response analytically at zero temperature and nu-
merically at finite temperature. Also, because it was recently
shown that Luttinger semimetals have a paramagnetic Landau
susceptibility [36], which is opposite to what is expected for a
normal electron gas, we compute the Pauli susceptibility and
find that it is diamagnetic.

This work is organized as follows. In Sec. II we introduce
and discuss the underlying model of a Luttinger semimetal.
Section III contains our main results, with the expression of
the charge and of the spin response to a localized inhomo-
geneity. We discuss our results at zero temperature and as a
function of the temperature and compute the spin suscepti-
bility of a Luttinger semimetal. In Sec. IV, we compare our
results to the existing litterature on Luttinger semimetals like
bismuth-based half-Heuslers (YPtBi, LuPtBi, etc.) and the
pyrochlore Pr2Ir2O7. We compare our results with the known
literature on Dirac semimetals.

II. MODEL

At a quadratic band touching, the behavior of noninteract-
ing electrons can be described with the Luttinger Hamiltonian
[1]

Ĥ0(k) = h̄2

2m

[
−5

4
k21̂ + (k · Ĵ)2

]
− EF , (1)

where the band mass is m and Ĵ = (Ĵx, Ĵy, Ĵz ) are the j =
3/2 total angular momentum operators. This model has ro-
tation, inversion, and time-reversal symmetries [1]. The four
eigenstates of Ĥ0(k) can be labeled with the eigenvalues
λ = ±1/2,±3/2 of the helicity operator λ̂ = k · Ĵ/k, and the
corresponding spectrum ξ±(k) = ±h̄2k2/(2m) − EF is drawn
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FIG. 1. Spectrum of a Luttinger semimetal for (a) m > 0 and
(b) m < 0. The Fermi surface is in the lower band, and depending
on the sign of the band mass m, it crosses different eigenstates,
(a) | ± 1/2〉k and (b) | ± 3/2〉k, of the helicity operator λ̂ = k · Ĵ/k.
This influences the intraband and interband scattering in the presence
of a magnetic impurity. We refer to the lower and upper bands as
the conduction and valence bands, respectively, in the text, since we
consider hole doping.

in Fig. 1. The precise expression of the corresponding eigen-
vector is cumbersome and in the following we use the thermal
Green’s function

Ĝ(k, iωn) = − iωn + Ĥ0(k)

(ξ+(k) + iωn)(ξ−(k) + iωn)
, (2)

where h̄ωn = (2n + 1)πkBT is the Matsubara frequency at
temperature T .

In the following we set h̄ = kB = 1 and write energies in
units of the Fermi energy, |EF |, and wave vectors in units
of the Fermi wave vector, kF . We consider that the Fermi
energy is in the lower band, EF = −k2

F /(2|m|) < 0, but we
should keep in mind that, depending on the sign of m, the
Fermi surface can cross eigenstates with either helicity ±1/2
if m > 0 or helicity ±3/2 if m < 0 (see Fig. 1). These two
situations will alter the RKKY coupling.

III. RESPONSE TO CHARGE AND SPIN IMPURITIES

In the presence of a charge impurity with potential
V0δ

(3)(r) and a magnetic impurity with potential V1S(r) ·
Ĵδ(3)(r), a Luttinger semimetal is perturbed by the Hamilto-
nian [1]

Ĥ1(r) = (V01̂ + V1 S · Ĵ)δ(3)(r), (3)

where S = {Sx, Sy, Sz}. We neglect the anisotropic contribu-
tions, such as S · Ĵ3 [1], which is a reasonable approximation
for most Luttinger semimetals with the exception of Pr2Ir2O7

[1,4,5].
In linear perturbation theory, the carrier density J0(r) =

〈n̂(r)〉 = 〈ψ̂†
r ψ̂r〉 and the j = 3/2 pseudospin operators

Ji(r) = 〈Ĵi(r)〉 = 〈ψ̂†
r Ĵiψ̂r〉 are

Jμ(r) =
3∑

ν=0

χμν (r)Sν, (4)

where μ ∈ {0, 1, 2, 3} and S0 = 1. The generalized suscepti-
bility at a temperature T is a sum over Matsubara frequencies,

χμν (r, T ) = −T
∑
ωn

Tr[Ĝ(r, iωn)ĴμĜ(−r, iωn)Ĵν]. (5)

Here, for the sake of clarity we introduce Ĵ0 ≡ 1̂. Note that
in the present work we only consider the static regime, i.e.,
Eq. (5) does not depend on the frequency, which is appropriate
in the study of impurities. The dynamic charge polarizabil-
ity at T = 0 was derived in [37,38]. In a previous work
[37] we also show that the Hamiltonian, (1), has no charge-
spin coupling, that is, χi0 = χ0i = 0 for i ∈ {1, 2, 3}. In Weyl
semimetals, this coupling between charge and spin degrees
of freedom allows for spin polarization of charge fluctuations
[39]. The generalized susceptibility in the unperturbed, homo-
geneous gas depends only on (r − r′) and (t − t ′). In Eq. (5)
and what follows we express χ00 in units of V0EF N2

0 and χi j in
units of V1EF N2

0 , where N0 = 1/(4π2) is the density of states
per spin of an electron gas.

The real-space representation of the Green’s function in
Eq. (5) is derived in Appendix A. We use rotation symmetry to
absorb the angular dependence in a unitary transformation Ûθφ

on the spinor subspace, i.e., Ĝ(r, iωn) = Ûθ,φĜ(rez, iωn)Û †
θ,φ

and

Ĝ(rez, iωn)/N0 =
[

(iωn − sgn(m))I0(r, iωn)

+ 5

4

(
2

r
∂rI0(r, iωn) + ∂2

r I0(r, iωn)

)]
1̂

− ∂rI0(r, iωn)
(
Ĵ2

x + Ĵ2
y

) − ∂2
r I0(r, iωn)Ĵ2

z ,

(6)

where the radial dependence of the Green’s function is de-
scribed by I0(r, iωn) = − 1

r (A2(r, iωn) + B2(r, iωn)) and its
derivatives.

We introduce the functions Ap(r, iωn) and Bp(r, iωn),
which are related to the contribution from the valence and
from the conduction band for a given sign of m as shown
schematically in Fig. 1:

Ap(r, iωn) = π (−i sgn(ωn))p

2(−sgn(m) + iωn)p/2
esgn(ωn )ir

√−sgn(m)+iωn , (7)

Bp(r, iωn) = π (−i sgn(ωn))p

2(sgn(m) − iωn)p/2
e−sgn(ωn )ir

√
sgn(m)−iωn . (8)

Thus, the generalized susceptibility, (5), is a sum
over all excitations within or between the two bands,
which are decomposed over the functions AAk+p(r, T ) =
T

∑
ωn>0 AkAp, BBk+p(r, T ) = T

∑
ωn>0 BkBp, and

ABk+p(r, T ) = ikT
∑

ωn>0 AkBp: the expressions with
the sum at negative frequencies are simply the complex
conjugates of these. We numerically perform the summation
on Matsubara’s frequencies at T �= 0. At T = 0 the sum
becomes an integral and we compute these expressions
explicitly in Appendix B. As expected we find that at
zero temperature the intravalence band terms vanish, i.e.,
there are no contributions from intravalence band scattering
since the band is empty. In what follows we separately discuss
the charge response, related to the Friedel oscillations, and the
magnetic response, related to the RKKY coupling. From the
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FIG. 2. Friedel oscillations in response to an impurity that increases the potential at r = 0 in a Luttinger semimetal with holelike doping
at (a) T = 0 with both intraband and interband contributions and (b) T �= 0, showing the damping as the temperature increases. The intraband
contribution dominates at both short and long range and the interband coupling is only apparent at short range.

latter we compute the temperature dependence of the Pauli
susceptibility.

In the following we express the susceptibilities in terms
of the combinations AAp(r, T ), BBp(r, T ), and ABp(r, T ) for
a general value of the mass m. In Appendix B we explicitly
compute the expression of these combinations at T = 0 in
the case of a positive mass and deduce the corresponding
expressions for a negative one.

A. Friedel oscillations

The charge response of a spin-degenerate normal electron
gas at T = 0 in units of V0EF N2

0 is [21]

χ3DEG
00 (r, T = 0) = 2π (sin(2r) − 2r cos(2r))

r4
. (9)

In a Luttinger semimetal, the generalized susceptibility also
includes interband transitions due to the strong spin-orbit
coupling. We compute the trace in Eq. (5) using the Green’s
function, (6), and we find

χ00(r, T ) = − 4

r6
(9(BB4 + AA4) + 18r(BB3 − AA3)

+ 15r2(BB2 + AA2) + 6r3(BB1 − AA1)

+ 2r4(BB0 + AA0) − 18AB4 − 18(1 − i)rAB3

+ 18r2iAB2 + 6r3(1 + i)AB1) + c.c., (10)

where the functions on the right-hand side are evaluated for
(r, T ) and c.c. stands for complex conjugate. We note here
that the charge response is symmetric with respect to the sign
of the mass.

At zero temperature T = 0, the charge susceptibility be-
haves as in Fig. 2(a). In this figure we decompose the charge
susceptiblity in terms of intraband contributions, given by
AAk or BBk terms, and interband contributions, given by ABk

terms. The intraband contribution shows an oscillating be-
havior, which is expected from the sharpness of the Fermi
surface, which forbids excitations with wave vector q > 2kF ,
in the static regime. Oscillations in the interband contribution
decay exponentially with distance since the only interband

contributions are virtual excitations in the static regime. At
long range, r 	 1, the response is dominated by the intraband
contribution and is about half that in a normal electron gas
given in Eq. (9). The consequences of spin-orbit coupling are
more apparent at short range, r 
 1, where the response is
approximately

χ00(r 
 1, T = 0) ≈ −3π (π − 2)

r4
. (11)

This is in strong contrast with a normal electron gas where
χ3DEG

00 (r 
 1, T = 0, ) ≈ 16π/3r. This is the result of a
strong intraband coupling at short range, as we can see from
the intraband and interband contributions of this asymptotic
behavior. We find that the intraband contibution is χ

(intra)
00 ≈

−3π2

r4 + 8π
5r and the interband one is χ

(inter)
00 ≈ 6π

r4 − 8π
5r and

we note that the intraband contribution dominates at small
r. Also, the 1/r behavior associated with the 3DEG appears
in both contributions, but they totally cancel each other. The
power law in Eq. (11) can be related to the linear component
of charge polarizability in momentum space [37]. This is
of similar origin to the 1/r5 divergence observed in Dirac
semimetals and the difference in power laws is a consequence
of the difference in band dispersions.

At T �= 0 we observe a change in the decaying behavior,
from power-law to exponential decay, as shown in Fig. 2(b).
There, we also observe the expected damping of Friedel oscil-
lations with a change in their periodicity.

B. RKKY coupling

In the absence of spin-orbit coupling, the magnetization
profile of a normal electron gas in response to a magnetic
impurity is isotropic (i.e., χi j = χ3DEG

s δi j) just like the charge
response in Eq. (9) [21,40]. On the contrary, in a Luttinger
semimetal, the spin response χ̂S is anisotropic. The angular
dependence of χ̂S is absorbed in the rotation matrix R̂θφ ,
where θ and φ are the angular coordinates of the separation
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FIG. 3. Amplitude of the transverse, χT , and longitudinal, χL , RKKY coupling between two magnetic impurities for a single quadratic
band (χL = χT , with m < 0) and a Luttinger semimetal (with holelike doping). (a, b) At T = 0, with m > 0 (a) and m < 0 (b). Insets: 10×
zoom-ins. (c, d) At finite temperature with m > 0 (c) and m < 0 (d). Contrary to a normal electron gas, a Luttinger semimetal has opposite
transverse and longitudinal couplings at short distances. This behavior is preserved at higher temperatures, where we also observe a change in
the periodicity of the oscillations.

r to the impurity,

χ̂S (r, T ) = R̂θ,φ

⎛
⎜⎝

χT (r, T ) 0 0

0 χT (r, T ) 0

0 0 χL(r, T )

⎞
⎟⎠R̂T

θ,φ.

(12)

The diagonal components χT (r, T ) and χL(r, T ) are, respec-
tively, the transverse and longitudinal spin responses,

χT (r, T ) = 1

r6
(9(BB4 + AA4) + 18r(BB3 − AA3)

+ 3r2(BB2 + 9AA2) − 6r3(BB1 + 3AA1)

− 8r4BB0 − 18AB4 − 18(1 − i)rAB3

+ 6(4 + 3i)r2AB2 + 6(3 − i)r3AB1

+ 12r4AB0) + c.c., (13)

χL(r, T ) = − 1

r6
(45(BB4 + AA4) + 90r(BB3 − AA3)

+ r2(51BB2 + 99AA2) + 6r3(BB1 − 9AA1)

+ 2r4(BB0 + 9AA0) − 90AB4 − 90(1 − i)rAB3

+ 6(8 + 15i)r2AB2 + 6(9 + i)r3AB1) + c.c.,
(14)

where the functions on the right-hand side are evaluated for
(r, T ) and c.c. stands for complex conjugate. The functions

AAp, BBp, and ABp are the same as the ones involved in com-
puting the charge response in Eq. (10) and their expressions at
T = 0 are reported in Appendix B.

We find that the spin response depends on the sign of the
mass m in Eq. (1). We recall that this parameter does not
affect the band dispersion but only the chirality of the states
at the Fermi surface, which we illustrate in Figs. 1(a) and
1(b). We thus distinguish the situations where m is positive
and negative with a superscript ± on the spin response. In
Figs. 3(a) and 3(b) we plot the transverse and longitudinal spin
susceptibilities at zero temperature.

The intraband scattering dominates the long-range behav-
ior, r 	 1, and the spin response follows the same power law
as in a normal electron gas. However, the spin response stays
anisotropic even at long range with, for each sign of m,

χ+
T (r 	 1, T = 0) ≈ χ3DEG

00 (r)/2,

χ+
L (r 	 1, T = 0) ≈ χ3DEG

00 (r)/8; (15)

χ−
T (r 	 1, T = 0) ≈ − 9π

2r4
sin(2r),

χ−
L (r 	 1, T = 0) ≈ 9χ3DEG

00 (r)/8. (16)

We note that in the long-range behavior, the longitudinal re-
sponse has an amplitude λ2/2, with λ the helicity crossing the
Fermi surface (see Fig. 1), compared to the normal electron
gas. This does not happen for the transverse response, where
we even observe that χ−

T decreases in 1/r4 instead of the 1/r3

for a normal electron gas.
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Close to the magnetic impurity, the short-range spin-spin
response is anisotropic, with opposite transverse and longitu-
dinal contributions:

χ±
T (r 
 1, T = 0) ≈ 3π (2 + π )

4r4
∓ 2π

3r
,

χ±
L (r 
 1, T = 0) ≈ −15π (π − 2)

4r4
± 4π

3r
.

(17)

This, again, is related to the strong spin-orbit coupling and
provides the possibility of observing both ferromagnetic
and antiferromagnetic coupling between magnetic impurities,
from the RKKY coupling.

We observe that for a positive mass, m > 0, the contri-
butions to the transverse spin response χ+

T from intraband
and interband coupling are, respectively, 15π2

4r4 − 6π
r3 + 8π

5r and
3π (1−2π )

2r4 + 6π
r3 − 34π

15r , and the corresponding behaviors of

the longitudinal component χ+
L are − 39π2

4r4 + 12π
r3 + 2π

r and
3π (5+4π )

2r4 − 12π
r3 − 2π

3r . The intraband contribution then always
dominates close to the magnetic impurity. On the contrary, for
a negative mass, m < 0, the intraband and interband contribu-
tions to χ−

T are, respectively, −9π2

4r4 + 6π
r3 + 8π

5r and 3π (1+2π )
2r4 −

6π
r3 − 14π

15r and for χ−
L they are, respectively, 9π2

4r4 − 12π
r3 + 2π

r

and 3π (5 − 4π )
2r4 + 12π

r3 − 10π
3r . Then, close to the impurity, the

two spin responses are instead dominated by the interband
contribution. This indicates that the magnetic coupling at
small separation is dominated by excitations involving the
bands with the lowest helicities, λ = ±1/2.

Similarly to our observation for Friedel oscillations, this
peculiar behavior in proximity to the magnetic impurity per-
sists at higher temperatures as shown in Figs. 3(a) and 3(b).
As the temperature increases, we observe a decrease in the
periodicity of the RKKY oscillations and a decay in their
amplitude. The long-range behavior of the spin oscillations
shows an exponential decay at finite temperature. In order to
complete this discussion, we now obtain the effective RKKY
Hamiltonian between two impurities and also compute the
Pauli susceptibility in a Luttinger semimetal.

C. Effective RKKY Hamiltonian

The interaction between two magnetic impurities S1 and
S2 localized at, respectively, r1 and r2, is described by the
coupling Hamiltonian Ĥ12,

Ĥ12 = V1 ST
1 χ̂S (r, T )S2, (18)

where r = r2 − r1, and χ̂S (r, T ) is given in Eq. (12). This can
be rewritten in a more explicit way,

Ĥ12/V1 = χT S1 · S2 + (χL − χT )(S1 · er )(S2 · er ), (19)

where er is the unit vector that separates the two impurities
and χL,T are evaluated for r = |r2 − r1|, the distance be-
tween the magnetic impurities. The first and second terms in
Eq. (19) are, respectively, the Heisenberg and Ising contribu-
tions. There is no Dzyaloshinskii-Moriya interaction, which
would be a consequence of asymmetric spin-orbit coupling
[41,42] and which is absent in Eq. (1).

This effective spin-spin coupling Hamiltonian differs from
that in a normal electron gas, where it is Heisenberg-like, i.e.,
only the first contribution in Eq. (19) is present. Here, in the

FIG. 4. Magnetic susceptibilities as a function of the tempera-
ture. The Pauli susceptibility of a normal electron gas (orange line)
is paramagnetic, while it is diamagnetic in a Luttinger semimetal
(solid blue line). Also shown is the Landau susceptibility in Luttinger
semimetals [36], which we draw for a cutoff energy E0/EF = 10
(dashed line).

case of Luttinger semimetals, we obtain an additional cou-
pling between the spin components parallel to their separation
and in the next section we evaluate the amplitude of this term
for various Luttinger semimetals. We also note that in Ref.
[43], the coupling between the spin chiralities of a Luttinger
semimetal is described by a Heisenberg Hamiltonian.

D. Spin susceptibility

In the presence of a uniform magnetic field, B, the Zeeman
coupling will be [1]

Ĥ2 = −gμBĴ · B, (20)

where we introduce the g factor and the Bohr magneton
μB = e/(2mec). The spin magnetization M ≡ −∇B〈Ĥ2〉 =
gμB〈Ĵ〉 = χ̂PB defines the Pauli susceptibility χ̂P [17],

χ̂P(T ) ≡ lim
k→0

χ̂S (k, T )

4π2
= 1

4π2
lim
k→0

∫
d3r χ̂S (r, T )e−ik·r

= 1

3π

∫ ∞

0
dr r2(2χT (r, T ) + χL(r, T ))1̂, (21)

which we write in units of (gμB)2N0. Here, we perform the
angular integral in position space and take the limit k → 0.

We compute this integral numerically after subtracting the
1/r4 asymptotic contribution in Eq. (17) from χT and χL.
These terms do not contribute to the Pauli susceptibility [44]
and by substracting them we avoid numerical instabilities. We
obtain the behavior reported in Fig. 4 and compare it to the
Pauli susceptibility of a normal spin-degenerate electron gas.
The response is diamagnetic instead of being paramagnetic,
which is analogous to the unusual paramagnetic Landau sus-
ceptibility in Luttinger semimetals [36] that we reproduce in
Fig. 4 for a cutoff energy E0/EF = 10. This diamagnetic Pauli
susceptibility is a consequence of interband transitions and we
find that the contribution of intraband and interband excita-
tions to the susceptibility χP = χ

(intra)
P + χ

(inter)
P is, at T = 0,

χ
(intra)
P = 5χ3DEG

P /4 and χ
(inter)
P = −3χ3DEG

P /2, where χ3DEG
P

205202-5
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is the spin susceptibility of the normal electron gas. We also
note that the Pauli susceptibility is independent of the sign of
the mass. This behavior is also drastically different from that
in Weyl semimetals, where the Pauli susceptibility cancels
because a magnetic field only splits the cones in momentum
space [45] and where the Landau susceptibility is diamagnetic
[36,45].

IV. DISCUSSION

The carrier density of Luttinger semimetals, such as YPtBi
[46–49] and Pr2Ir2O7 [50], is of the order of n ≈ (0.1–1) ×
1019 cm−3, that is, kF ≈ 0.3–0.7 nm−1, which is comparable
to the lattice constant, a ≈ 0.5–1 nm [51]. Thus akF ≈ 0.1–1,
which is well within the region with unusual charge and spin
responses due to spin-orbit coupling. With impurities sepa-
rated by the lattice constant size, one can expect to see the
stronger charge coupling near a charge impurity and opposite
signs for the transverse and longitudinal spin-spin interac-
tions. Note that YPtBi lacks a center of inversion and allows
for additional asymmetric spin-orbit interactions in Eq. (1),
which split the band structure. In the present discussion we
neglect this effect, which is not always present [49] and leads
to a Fermi surface splitting �k of at most 8% of kF in
this material [46]. More specifically, in the case of Pr2Ir2O7

the magnetic coupling occurs between the 4 f orbitals of the
Pr3+ ions described by J = 4 magnetic non-Kramers doublets
with Jz = ±4 [52] and separated by a distance akF ≈ 1.7–2
[3,50,53]. Then the ratio between the two contributions in the
effective Hamiltonian, (19), given by χL−χT

χT
is in the region

[−2.5,−3] if one takes m < 0. In this interval of akF , one
coupling is ferromagnetic while the other is antiferromag-
netic, depending on the sign of V1 as shown in Fig. 3(b).

However, this ratio fluctuates greatly and can reach large
values if one takes m > 0 since χT is close to 0 according to
our calculations [see Fig. 3(a). In this case χT can be positive
or negative in this interval and χL − χT > 0. A similar analy-
sis for the family of bismuth half-Heusler MXBi (M = Y, Lu;
X = Pd, Pt), where the ions are separated by akF ≈ 0.1–0.5
[51,54,55], gives ratios independent of the sign of the mass
and of about −2, again with one coupling being ferromagnetic
and the other antiferromagnetic. In a recent work we have
pointed out the importance of these Friedel oscillations in the
superconductivity from the Coulomb repulsion in Luttinger
semimetals [56,57]. The anisotropic magnetic coupling may
also be responsible for exotic magnetic phases [58,59]. How-
ever, these short-range effects may be strongly renormalized
by interactions. Here, we neglect screening and vertex cor-
rections, which are the strongest at short range and may push
these effects to even shorter ranges, as in the normal electron
gas [60].

The consequences of spin-orbit coupling for Friedel
and RKKY oscillations in Luttinger semimetals have some
similarities to those in isotropic Dirac semimetals. Dirac
semimetals also have a strong spin-orbit coupling but with
a linear band dispersion that leads to a 1/r3 decay of the
oscillations [25–27,29]. These semimetals also show a spin-
spin coupling with Heiseinberg and Ising contributions as in
(19) and similar structures [22,23,33] and that can be made
more anisotropic if the Weyl cones are split [25–27]. This

anisotropy also survives at long range, (16), and at higher
temperatures [Figs. 3(c) and 3(d)]. The Weyl cones are char-
acterized by a helicity operator, related to the cones’ chirality,
but the RKKY coupling is independent of this degree of free-
dom. This is in stark contrast to the behavior observed in our
calculations for Luttinger semimetals, where the helicity at the
Fermi surface matters for the profile of magnetic coupling.

It is also interesting to take the limit μ = 0 at T = 0, in
which case the carrier density vanishes and the model does
not possess any energy scale. In Dirac and Weyl semimetals,
this result in a nonoscillatory r−5 decaying RKKY behavior
[25–27]. In the case of Luttinger semimetals, the Friedel
and RKKY responses show a nonoscillatory r−4 decaying
behavior, and we also note that the response is exactly the r−4

terms from the expressions in Eq. (11) for Friedel oscillations
and Eq. (17) for the RKKY responses. This difference in
power law between Dirac and Luttinger semimetals could
prove useful for experimentally probing the strong orbit
coupling since the response is more long-ranged in Luttinger
semimetals. In the previous subsection (Sec. III D) we also
find a diamagnetic Pauli susceptibility, whereas in Weyl
semimetals the Pauli susceptibility cancels [45]. Since the
two band structures can be related by applying strain or a
magnetic field [5,61–63], it is interesting to see that our results
should still hold for energies higher than the energy scale of
the Weyl cones. GdPtBi is an example of such a material, with
an induced Weyl point from the rare-earth exchange field, but
with a quadratic band dispersion far from the Fermi surface
[64,65].

V. CONCLUSION

In this work we compute the response of a Luttinger
semimetal to a charged and to a magnetic impurity. At large
separations, the charge and magnetic oscillations are simi-
lar to those of a normal electron gas, up to an anisotropy
for the magnetic response. The main difference between the
two systems is at short distances, where spin-orbital effects
are the most important and result in an r−4 divergence. In
particular, we observe opposite transverse and longitudinal
magnetic couplings, even if the model is isotropic. We obtain
the RKKY interaction Hamiltonian between two impurities,
compute the Pauli susceptibility, and find that it is diamagnetic
instead of being paramagnetic, which is in line with previous
calculations that find a paramagnetic orbital susceptibility in
Luttinger semimetals [36].

This response of Luttinger semimetals to impurities may
lead to exotic phase transitions [66,67]. The Friedel oscilla-
tions contribute to the Kohn-Luttinger mechanism of super-
conductivity [68], which we have recently studied for Lut-
tinger semimetals [56]. The peculiar RKKY coupling could be
at the origin of exotic magnetic phases. In this work we focus
on the bulk response of Luttinger semimetals, which may
show a different behavior at their surface and is more relevant
in scanning tunneling microscopy. Indeed, it was recently
discussed that these materials may have surface states [69]
with various band dispersions that could be responsible for a
different surface response than described in the present paper.

While finishing the present work, we became aware of a
similar one that has been published [70]. In that work the
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authors explore the RKKY interaction in 2D Luttinger’s sys-
tems with anisotropic electron-hole dispersion, in contrast
to the present work, where we focus on 3D systems and
where we observe anisotropy in the RKKY response even with
electron-hole symmetry.
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APPENDIX A: FOURIER TRANSFORM OF THE THERMAL GREEN’S FUNCTION

In this Appendix, we compute the Fourier transform of the thermal Green’s function, (2), for general m,

Ĝ(r, iωn) ≡ N0

2π

∫
d3k Ĝ(k, iωn)eik·r = − N0

2π

∫
d3k

(
iωn − sgn(m) − 5

4 k2
)
1̂ + (k · Ĵ)2

(ξ+(k) + iωn)(ξ−(k) + iωn)
eik·r, (A1)

with ξ±(k) = ±k2 − sgn(m). We write (A1) in terms of the auxiliary integral I0(r, iωn) and its derivatives Ii j (r, iωn) = ∂2I0(r,iωn )
∂ri∂r j

:

Ĝ(r, iωn) = N0

[(
(iωn − sgn(m))I0(r, iωn) − 5

4

3∑
i=1

Iii(r, iωn)

)
1̂ +

3∑
i, j=1

Ii j (r, iωn)ĴiĴ j

]
. (A2)

The integral I0(r, iωn) corresponds to the k-independent part of the numerator in (A1) and evaluates to

I0(r, iωn) =
∫ ∞

0
dk k2

∫ 1

−1
du

eikru

(k2 − (sgn(m) − iωn))(k2 − (iωn − sgn(m)))
(A3)

= −i

r

∫ ∞

−∞
dk

keikr

(k2 − (sgn(m) − iωn))(k2 − (iωn − sgn(m)))
(A4)

= π

2r(−sgn(m) + iωn)

(
esgn(ωn )i

√−sgn(m)+iωnr − e−sgn(ωn )i
√

sgn(m)−iωnr

)
. (A5)

The integration of the terms of the form kik j in the numerator of the Green’s function can be written as the derivatives of this
auxiliary integral:

Ii j (r, iωn) = −∂2I0(r, iωn)

∂ri∂r j
=

∫ ∞

0
dk k2

∫ 1

−1
du

kik jeikru

(k2 − (sgn(m) + iωn))(k2 + (sgn(m) + iωn))
(A6)

= − rir j

r2

(
∂2I0(r, iωn)

∂r2
− 1

r

∂I0(r, iωn)

∂r

)
− δi j

r

∂I0(r, iωn)

∂r
. (A7)

We use rotation symmetry to simplify (A1) and introduce the unitary transformation Ûθφ generated by the pseudospin j = 3/2
operator Ĵ to write Ĝ(r, iωn) = ÛθφĜ(rez, iωn)Û †

θφ . The Green’s function Ĝ(rez, iωn) can then be similarly decomposed into

Ĝ(rez, iωn) = N0

[(
(iωn − sgn(m))I0(r, iωn) − 5

4

3∑
i=1

Iii(rez, iωn)

)
1̂ +

3∑
i, j=1

Ii j (rez, iωn)ĴiĴ j

]
, (A8)

where we write Ii j (rez, iωn) in a matrix form,

Ii j (rez, iωn) =

⎛
⎜⎜⎝

− 1
r

∂I0(r,iωn )
∂r 0 0

0 − 1
r

∂I0(r,iωn )
∂r 0

0 0 − ∂2I0(r,iωn )
∂r2

⎞
⎟⎟⎠. (A9)

We substitute these expressions in (A8) and obtain the real-space Green’s function reported in Eq. (6) in the text.

APPENDIX B: EXPLICIT CONTRIBUTIONS TO SUSCEPTIBILITIES AT T = 0, m > 0

The generalized susceptibility, (5), depends on multiple contributions from intra- and interband scattering. In this section
we explicitly denote the combinations of the m > 0 case with a plus superscript, and in the following subsection we obtain
the relationship between these expressions and those corresponding to the case m < 0, denoted by a minus superscript. In the
limit T → 0, with m > 0, the intra-valence-band contributions AA+

p (r, T = 0) in Eqs. (10), (13), and (14) vanish ∀ p and the
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Matsubara sums

BB+
k+p(r, T ) = T

∑
ωn>0

B+
k (r, iωn)B+

p (r, iωn),

AB+
k+p(r, T ) = ikT

∑
ωn>0

A+
k (r, iωn)B+

p (r, iωn)
(B1)

can be evaluated analytically with the Euler-MacLaurin summation formula T
∑

ωn
≈ 1

2π

∫ ∞
−∞ dω. These expressions are

BB+
0 (r, T = 0) = 1

2π

π2

4

∫ ∞

0
dω e−2ir

√
1−iω = π (−i + 2r)

16r2
e−2ir, (B2)

BB+
1 (r, T = 0) = 1

2π

π2

4

∫ ∞

0
dω

e−2ir
√

1−iω

i
√

1 − iω
= − iπ e−2ir

8r
, (B3)

BB+
2 (r, T = 0) = − 1

2π

π2

4

∫ ∞

0
dω

e−2ir
√

1−iω

1 − iω
= π (−π + i Ei(−2ir))

4
, (B4)

BB+
3 (r, T = 0) = 1

2π

π2

4

∫ ∞

0
dω

ie−2ir
√

1−iω

(1 − iω)3/2
= −π (e−2ir − 2πr + 2ir Ei(−2ir))

4
, (B5)

BB+
4 (r, T = 0) = 1

2π

π2

4

∫ ∞

0
dω

e−2ir
√

1−iω

(1 − iω)2
= π (e−2ir (i + 2r) − 4r2(π − i Ei(−2ir)))

8
, (B6)

where Ei(r) is the exponential integral, and using that

AB+
p (r, T ) = T

∑
ωn>0

π2

4

(−i)p

(1 − iωn)p/2
e−2i

√
1−iωn[(1−i)r/2] = BB+

p ((1 − i)r/2, T ), (B7)

one can deduce from (B2)–(B6) the corresponding expressions of AB+
p (r, T = 0).

Relationships to m < 0, ∀ T

One can obtain the following relationships between the expressions corresponding to a positive mass and those or a negative
mass,

AA−
p (r, T ) = (−1)p(BB+

p (r, T ))∗, (B8)

BB−
p (r, T ) = (−1)p(AA+

p (r, T ))∗, (B9)

AB−
p (r, T ) = (−i)p(AB+

p (r, T ))∗, (B10)

where the minus and plus superscripts refer to the cases m < 0 and m > 0, respectively, and the asterisk denotes the complex
conjugate. Then, for m < 0, the intra-valence-band contributions are associated with BB−

p and do not contribute to Eqs. (10),
(13), and (14) at T = 0 since it is empty.

[1] J. M. Luttinger, Phys. Rev. 102, 1030 (1956).
[2] C. Shi, X. Xi, Z. Hou, X. Zhang, G. Xu, E. Liu, W. Wang,

W. Wang, J. Chen, and G. Wu, Phys. Status Solidi B 252, 357
(2014).

[3] T. Kondo, M. Nakayama, R. Chen, J. Ishikawa, E.-G. Moon, T.
Yamamoto, Y. Ota, W. Malaeb, H. Kanai, Y. Nakashima et al.,
Nat. Commun. 6, 10042 (2015).

[4] T. Oh, H. Ishizuka, and B.-J. Yang, Phys. Rev. B 98, 144409
(2018).

[5] D. Zhang, H. Wang, J. Ruan, G. Yao, and H. Zhang, Phys. Rev.
B 97, 195139 (2018).

[6] C. Brüne, C. X. Liu, E. G. Novik, E. M. Hankiewicz,
H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C.

Zhang, and L. W. Molenkamp, Phys. Rev. Lett. 106, 126803
(2011).

[7] P. Baireuther, J. A. Hutasoit, J. Tworzydło, and C. W. J.
Beenakker, New J. Phys. 18, 045009 (2016).

[8] S. Kaushik, D. E. Kharzeev, and E. J. Philip, Phys. Rev. B 99,
075150 (2019).

[9] A. L. Levy, A. B. Sushkov, F. Liu, B. Shen, N. Ni, H. D. Drew,
and G. S. Jenkins, Phys. Rev. B 101, 125102 (2020).

[10] R. Okugawa and S. Murakami, Phys. Rev. B 89, 235315 (2014).
[11] S.-Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I.

Belopolski, M. Neupane, G. Bian, N. Alidoust, T.-R. Chang,
H.-T. Jeng, C.-Y. Huang, W.-F. Tsai, H. Lin, P. P. Shibayev, F.-
C. Chou, R. J. Cava, and M. Z. Hasan, Science 347, 294 (2015).

205202-8

https://doi.org/10.1103/PhysRev.102.1030
https://doi.org/10.1002/pssb.201451436
https://doi.org/10.1038/ncomms10042
https://doi.org/10.1103/PhysRevB.98.144409
https://doi.org/10.1103/PhysRevB.97.195139
https://doi.org/10.1103/PhysRevLett.106.126803
https://doi.org/10.1088/1367-2630/18/4/045009
https://doi.org/10.1103/PhysRevB.99.075150
https://doi.org/10.1103/PhysRevB.101.125102
https://doi.org/10.1103/PhysRevB.89.235315
https://doi.org/10.1126/science.1256742


IMPURITIES IN THREE-DIMENSIONAL QUADRATIC … PHYSICAL REVIEW B 102, 205202 (2020)

[12] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C.
Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang,
H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou,
P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Science 349,
613 (2015).

[13] D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 (2013).
[14] S. Lee, J. Jang, S.-I. Kim, S.-G. Jung, J. Kim, S. Cho, S. W.

Kim, J. Y. Rhee, K.-S. Park, and T. Park, Sci. Rep. 8, 13937
(2018).

[15] S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev. B 69,
235206 (2004).

[16] J. Friedel, Nuovo Cimento (1955–1965) 7, 287 (1958).
[17] G. Giuliani and G. Vignale, Quantum Theory of the Elecron

Liquid (Cambridge University Press, Cambridge, UK, 2005).
[18] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
[19] T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).
[20] K. Yosida, Phys. Rev. 106, 893 (1957).
[21] R. White, Quantum Theory of Magnetism, Springer Series in

Solid-State Sciences (Springer-Verlag, Berlin, 1983).
[22] P. D. Kurilovich, V. D. Kurilovich, and I. S. Burmistrov, Phys.

Rev. B 94, 155408 (2016).
[23] V. D. Kurilovich, P. D. Kurilovich, and I. S. Burmistrov, Phys.

Rev. B 95, 115430 (2017).
[24] J.-H. Sun, D.-H. Xu, F.-C. Zhang, and Y. Zhou, Phys. Rev. B

92, 195124 (2015).
[25] H.-R. Chang, J. Zhou, S.-X. Wang, W.-Y. Shan, and D. Xiao,

Phys. Rev. B 92, 241103(R) (2015).
[26] M. V. Hosseini and M. Askari, Phys. Rev. B 92, 224435 (2015).
[27] V. Kaladzhyan, A. A. Zyuzin, and P. Simon, Phys. Rev. B 99,

165302 (2019).
[28] E. H. Hwang and S. Das Sarma, Phys. Rev. Lett. 101, 156802

(2008).
[29] M. Lv and S.-C. Zhang, Int. J. Mod. Phys. B 27, 1350177

(2013).
[30] J.-W. Rhim and Y. B. Kim, New J. Phys. 18, 043010 (2016).
[31] A. Kundu and S. Zhang, J. Magn. Magn. Mater. 393, 331

(2015).
[32] E. K. Lee, E. K. Lee, and S. Lee, J. Phys.: Condens. Matter 6,

1037 (1994).
[33] S. Verma, A. Kundu, and T. K. Ghosh, J. Appl. Phys. 125,

233903 (2019).
[34] L. Balicas, S. Nakatsuji, Y. Machida, and S. Onoda, Phys. Rev.

Lett. 106, 217204 (2011).
[35] S. Nakatsuji, Y. Machida, Y. Maeno, T. Tayama, T. Sakakibara,

J. van Duijn, L. Balicas, J. N. Millican, R. T. Macaluso, and J. Y.
Chan, Phys. Rev. Lett. 96, 087204 (2006).

[36] I. A. Leahy, Y.-P. Lin, P. E. Siegfried, A. C. Treglia, J. C. W.
Song, R. M. Nandkishore, and M. Lee, Proc. Natl. Acad. Sci.
USA 115, 10570 (2018)..

[37] S. Tchoumakov and W. Witczak-Krempa, Phys. Rev. B 100,
075104 (2019).

[38] A. Mauri and M. Polini, Phys. Rev. B 100, 165115 (2019).
[39] S. Ghosh and C. Timm, Phys. Rev. B 99, 075104 (2019).
[40] G. Mahan, Many Particle Physics. Physics of Solids and Liquids,

3rd ed. (Springer, New York, 2000).
[41] H. Imamura, P. Bruno, and Y. Utsumi, Phys. Rev. B 69,

121303(R) (2004).
[42] S.-X. Wang, H.-R. Chang, and J. Zhou, Phys. Rev. B 96, 115204

(2017).

[43] R. Flint and T. Senthil, Phys. Rev. B 87, 125147 (2013).
[44] The 3D Fourier transform of F (q) = q in real space is f (r) =

−2/r4.
[45] M. Koshino and I. F. Hizbullah, Phys. Rev. B 93, 045201

(2016).
[46] N. P. Butch, P. Syers, K. Kirshenbaum, A. P. Hope, and J.

Paglione, Phys. Rev. B 84, 220504(R) (2011).
[47] T. V. Bay, T. Naka, Y. K. Huang, and A. de Visser, Phys. Rev.

B 86, 064515 (2012).
[48] C. Shekhar, M. Nicklas, A. K. Nayak, S. Ouardi, W. Schnelle,

G. H. Fecher, C. Felser, and K. Kobayashi, J. Appl. Phys. 113,
17E142 (2013).

[49] O. Pavlosiuk, D. Kaczorowski, and P. Wiśniewski, Phys. Rev. B
94, 035130 (2016).

[50] B. Cheng, T. Ohtsuki, D. Chaudhuri, S. Nakatsuji, M. Lippmaa,
and N. Armitage, Nat. Commun. 8, 2097 (2017).

[51] Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers, X.
Wang, K. Wang, R. Wang, S. R. Saha, D. Pratt, J. W. Lynn, and
J. Paglione, Sci. Adv. 1, e1500242 (2015).

[52] S. Y. Machida, H. Nakatsuji, T. Tonomura, T. Tayama, C.
Sakakibara, J. van Duijn, and Y. M. Broholm, J. Phys. Chem.
Solids 66, 1435 (2005).

[53] H. Takatsu, K. Watanabe, K. Goto, and H. Kadowaki, Phys. Rev.
B 90, 235110 (2014).

[54] W. Wang, Y. Du, G. Xu, X. Zhang, E. Liu, Z. Liu, Y. Shi, J.
Chen, G. Wu, and X.-x. Zhang, Sci. Rep. 3, 2181 (2013).

[55] O. Pavlosiuk, D. Kaczorowski, and P. Wiśniewski, Sci. Rep. 5,
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