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Dynamic control of nonequilibrium metal-insulator transitions
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We demonstrate a first order metal-insulator phase transition in the repulsive, fully frustrated, single-band
Hubbard model as a function of the coupling to a fermion bath. Time dependent manipulation of the bath
coupling allows switching between metallic and insulating states both across the phase transition and within
the coexistence region. We propose a simple nanoelectronic device for experimentally realizing dynamic control
of the bath coupling. Analysis of the device characteristics shows that it can act as a two-terminal memristor.
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I. INTRODUCTION

Strongly correlated materials (SCMs) such as transition
metal oxides exhibit remarkable intrinsic switching proper-
ties down to the nanoscale, making them an exciting future
alternative to semiconductor technology [1]. Hysteretic re-
sistive switching effects driven by electric fields, currents,
Joule heating, or photoexcitation have received much ex-
perimental [2–19] and theoretical [20–26] attention in this
context. Applications include both transistors [27–32] and
memristors [33–38]. Additionally, memristive systems based
on SCMs promise to enable neuromorphic devices that mimic
the behavior of biological neurons [39–43]. It is thought
that such devices could offer lower power consumption and
comparable—or even faster—switching timescales than tradi-
tional semiconductor electronics [44–46]. At the core of such
devices is the physics of Mott metal-insulator transitions.

Here, we describe and solve a simple model showing that
a Mott metal-insulator transition can be driven by proximity
to a metallic region. Furthermore, we propose a potential
nanoscale device for realizing this effect and show that switch-
ing between the two states of the device can in principle be
achieved on ∼100 ps timescales. The device may be operated
as either a transistor, where the system is switched fully across
the phase transition, or as a memristor, taking advantage of
memory effects in the coexistence region.

II. MODEL

We study the repulsive, fully frustrated, single-band Hub-
bard model on the infinite coordination number Bethe lattice,
each site of which is coupled to a noninteracting fermion bath
[47–49]. The Hamiltonian describing the Hubbard lattice is
given by

Hlattice = −v
∑

〈i j〉,σ
c†

iσ c jσ + U
∑

i

ni↑ni↓, (1)
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where c†
iσ (ciσ ) creates (annihilates) lattice fermions with spin

σ on site i, v is the lattice hopping matrix element, and U is the
onsite Coulomb repulsion. We use the hopping v as our unit
of energy, h̄/v as our unit of time, and set h̄ ≡ 1. For example,
a bare bandwidth of 4 eV would set our unit of time to be 0.66
fs. In the infinite coordination number limit considered here,
this model may be solved exactly via the dynamical mean field
theory (DMFT) [50,51] and is known to exhibit a first order
Mott metal-insulator transition as a function of the interaction
strength U [52].

The Hamiltonian describing the baths is given by

Hbath =
∑

i

H (i)
bath, (2a)

H (i)
bath =

∑

kσ

εkb†
ikσ

bikσ ,

+
∑

kσ

Vk (t )c†
iσ bikσ + V ∗

k (t )b†
ikσ

ciσ . (2b)

Here, b†
ikσ

(bikσ ) creates (annihilates) bath fermions cou-
pled to site i with spin σ and quasimomentum k, and
Vk (t ) is the tunneling matrix element describing hopping be-
tween the lattice and the baths. The time dependence of the
bath hopping is parameterized by a dimensionless coupling
strength λ(t ) so that Vk (t ) = λ(t )Vk . The baths are held in
equilibrium, with their chemical potential set equal to zero.
The effect of the baths is characterized by a coupling den-
sity �bath(ω) = π

∑
k |Vk|2δ(ω − εk ) that parameterizes the

bath dispersion εk and tunneling matrix elements Vk . We
choose a flat coupling density with soft edges �bath(ω) =
�/[(1 + eν(ω−D) )(1 + e−ν(ω+D) )], with parameters � = 1v,
ν = 10v−1 and D = 4v. Time dependent manipulation of the
bath coupling has previously been introduced as a method to
induce cooling of the system [53,54].

III. METHODS

An exact solution of the model on the infinite coordination
number Bethe lattice is given by the nonequilibrium DMFT
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mapping [55]. DMFT maps the lattice model to an Anderson
impurity model with a self-consistently determined hybridiza-
tion function 
σ (t, t ′) given by


σ (t, t ′) = v2Gσ (t, t ′) + λ(t )
bath(t, t ′)λ(t ′), (3)

where Gσ (t, t ′) is the impurity Green’s function, 
bath(t, t ′) is
the hybridization between the lattice and bath, and λ(t ) is the
time-dependent coupling strength. The equations are solved
by starting with an initial guess for 
σ (t, t ′), evaluating the
impurity Green’s function, and iterating until a self-consistent
solution is found. In the coexistence region, the insulating and
metallic solutions are found by choosing an initial guess with
or without a gap, respectively, otherwise the initial guess has
no effect on the solution once the self-consistency has con-
verged. These equations are formulated on the three-branch
Keldysh-Matsubara contour. Because our contour includes a
Matsubara branch, the initial state of the system is always a
solution of the equilibrium DMFT equations.

For the solution of the impurity model we use the one
crossing approximation (OCA) [56–58]. In equilibrium the
OCA is known to capture the qualitative physics of the Mott
transition with reasonable accuracy [59]. We further validate
our OCA results against numerically exact inchworm QMC
[60–62] data in the parameter regime where this is feasible
[63].

The main physical quantity of interest is the time-
dependent spectral function A(ω, t ) which may be defined
in a number of different ways out of equilibrium. Here, we
use the auxiliary lead formalism [64–66] to express the time-
dependent spectral function as

A(ω, t ) = lim
η→0

− 2h

eπη

[
I f
A (ω, t ) − Ie

A(ω, t )
]
, (4)

where I f
A (ω, t ) and Ie

A(ω, t ) are currents through two auxiliary
leads with coupling density �A(ω′) = ηδ(ω′ − ω), and with
chemical potentials set such that the leads are full and empty,
respectively. These auxiliary currents are calculated using
the Meir-Wingreen formula [67] applied to the local Green’s
function Gσ (t, t ′) computed by the impurity solver. This defi-
nition matches the conventional equilibrium spectral function
A(ω) = (−1/π )�Gr (ω) in steady state, provides frequency
rich spectral information at all times, and has an operational
realization.

Using this formalism we compute A(ω = 0, t ) which in
steady state gives the density of states at the Fermi energy
and allows us to determine whether the system is in a metallic
or insulating state. Outside of the steady state regime the
auxiliary current spectral function inevitably mixes together
the dynamics of the system with the dynamics of the auxiliary
leads themselves. This mixing is unavoidable and is an expres-
sion of the fact that one cannot give an instantaneous value to
a frequency dependent quantity that strictly speaking requires
integration over all times. Nevertheless, the auxiliary current
spectrum is useful in understanding the nonequilibrium dy-
namics of the system since as it approaches a quasisteady state
it becomes conventionally interpretable.

IV. RESULTS

Figure 1 shows the equilibrium spectral function of the
system as a function of the time-independent bath coupling
λ. The interaction strength U is set to 4.9v and the inverse
temperature β is set to 50v−1. The inverse temperature of
the fermion baths is held constant at this β throughout the
simulation and their chemical potential is set equal to zero.
These parameters are chosen so as to generate a sizable coex-
istence region and are used throughout the rest of this paper.
The maximum simulation time tmax is set to 50.0v−1, which
is long enough to resolve sharp features in the spectrum.
Figure 1(a) shows that A(ω = 0) increases by several orders
of magnitude as λ is varied from 0.0 to 0.25, for both metallic
(dashed orange) and insulating (blue) initializations of the
DMFT loop. The system goes through a first order phase
transition from an insulating state at small λ to a metallic
state at large λ. The area between the vertical dashed black
lines denotes the coexistence region, where both metallic and
insulating solutions are stable, as seen from the gap between
the curves representing the two initializations. Figure 1(b)
shows the full spectral function for several different values
of the bath coupling λ. When the coupling λ becomes large
enough, metallicity is induced and a sharp quasiparticle peak
forms at ω = 0. Finally, Fig. 1(c) shows the full spectral
function for the metallic and insulating solutions within the
coexistence region. The two phases remain distinguishable by
the presence of a sharp quasiparticle peak in the metal. This
phase transition may be interpreted as arising from the bath
coupling λ inducing a smaller effective U value and moving
the system across the traditional interaction driven transition.

With the equilibrium phase diagram established, we now
consider two switching protocols, implemented by time de-
pendent bath couplings λ(t ), which flip the system between
the metallic and insulating phases. In the first switching proto-
col, the system begins in equilibrium on one side of the phase
transition. At time t0, the bath coupling λ is rapidly quenched
to a value on the opposite side. This switching protocol is
described by

λ(t ) = (1 − f (t ))λ0 + f (t )λ1,

f (t ) = 1

1 + e−ξ (t−t0 )
,

(5)

where ξ sets the switching rate, t0 sets the time when the
switch is applied, and λ0 (λ1) sets the initial (final) bath
coupling. Figure 2 shows the effect of this protocol on the sys-
tem for four pairs of (λ0, λ1): (λM, λM ) (equilibrium metal),
(λI , λI ) (equilibrium insulator), (λM, λI ) (“switched” insu-
lator), and (λI , λM ) (“switched” metal). We take ξ = 10v,
t0v = 5, tmaxv = 100, λI = 0.08, and λM = 0.18. In Fig. 2(a)
we plot the time evolution of A(ω = 0). Note that even in
the equilibrium cases (M, I) A(ω = 0) shows some time de-
pendence due to the auxiliary lead formalism which we use
to compute the spectral function. In the metal to insulator
(M → I ) transition, the switch rapidly destroys the metal
[A(ω = 0) is suppressed]. In the insulator to metal (I → M )
transition, the system gradually builds up spectral weight at
ω = 0 after the switch to form a metal. It is interesting to note
that the formation of the metal proceeds much slower than
the destruction of the insulator. A slowdown in the formation
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FIG. 1. (a) Spectral weight at ω = 0 as a function of λ for metallic (dashed orange) and insulating (solid blue) initialization of the DMFT
loop. The dashed black lines show the boundaries of the coexistence region (λc1 = 0.115, λc2 = 0.145). (b) Spectral function for several
different λ. (c) Spectral functions of metallic and insulating solutions in the coexistence region.

of a quasiparticle peak after a quench from the atomic limit
near the Mott transition has previously been observed [68].
However, with the λ quench considered here the previously
observed electronic bottleneck appears to be mostly over-
come and the slowdown does not prevent the formation of
a quasiparticle peak with a comparable weight to the equi-
librium metal within the simulation timescale. Figures 2(c)
and 2(d) show the full spectral function at tmax for all four
realizations of the protocol. The full spectra of the “switched”
solutions closely resemble the corresponding equilibrium
solutions, demonstrating that the protocol can switch the sys-
tem between metallic and insulating states. Additionally, the
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FIG. 2. (a) Evolution of A(ω = 0, t ) for equilibrium metallic
and insulating solutions (dashed green/red) and for switched solu-
tions (solid orange/blue). (b) Switching protocol for λ(t ). Dashed
black lines show the coexistence region. (c) A(ω, tv = 100) for
equilibrium metal (dashed green) and “switched” metal (solid
blue). (d) A(ω, tv = 100) for equilibrium insulator (dashed red) and
“switched” insulator (solid orange).

width of the quasiparticle peak for the equilibrium metal and
“switched” metal are comparable suggesting the absence of
significant heating effects.

We now consider a second switching protocol in which the
system begins in equilibrium in the center of the coexistence
region, in either the metallic or insulating phase. At time t0
the bath coupling is rapidly quenched to momentarily place
the system outside of the coexistence region on either side of
the transition; then, at time t1, the bath coupling reverts to its
initial (coexistence) value. The second switching protocol is
described by

λ(t ) = (1 − f (t ))λ0 + f (t )λ1,

f (t ) = 1

(1 + eξ (t−t1 ) )(1 + e−ξ (t−t0 ) )
,

(6)

where ξ sets the switching rate, t0 and t1 bound the switching
interval, and λ0 and λ1 set the initial/final and intermediate
values of the bath coupling, respectively. Figure 3 shows the
results of this switching protocol on the system for three
pairs of (λ0, λ1): (λc, λc), (λc, λc + 
λ), and (λc, λc − 
λ),
where λc = (λc1 + λc2 )/2 is in the center of the coexistence
region, and 
λ = 0.1 is large enough to move the system
outside of the coexistence region in either direction. The
other parameters are given by ξ = 10v, t0v = 5, t1v = 55,
and tmaxv = 100. For the equilibrium case we show both the
metallic and insulating solutions. Figure 3(a) shows the time
evolution of the spectral function at the Fermi energy. In the
(M → I ) transition, A(ω = 0) is quickly destroyed during the
switch and does not return when the bath coupling reverts
to the coexistence region. In the insulator to metal (I → M )
transition, A(ω = 0) builds up to almost its equilibrium value
during the switching period. Afterwards, the spectral weight
drops somewhat but then recovers and appears to stabilize.
Panels (c) and (d) of Fig. 3 show the long-time spectral func-
tion A(ω, tmax) for each of the four time evolutions. Again,
the full spectra of the “switched” solutions closely match the
corresponding equilibrium solutions, demonstrating that the
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FIG. 3. (a) Evolution of A(ω = 0, t ) for equilibrium metallic
and insulating solutions (dashed green/red) and for switched solu-
tions (solid orange/blue). (b) Switching protocol for λ(t ). Dashed
black lines show the coexistence region. (c) A(ω, tv = 100) for
equilibrium metal (dashed green) and “switched” metal (solid
blue). (d) A(ω, tv = 100) for equilibrium insulator (dashed red) and
“switched” insulator (solid orange).

second protocol can switch the system between metallic and
insulating states within the coexistence region.

We note that for both protocols the overall switching time,
i.e., the crossover time between the two phases, assuming a
bandwidth of several eV for the SCM, is on the order of ∼100
ps. It is important to realize that this prediction describes
only the timescale needed for the electronic transitions to
occur, and our minimal model does not consider any other
constraints that may appear in experiments. One should also
note that this timescale is dominated by the slower transitions
to the metallic state, whereas the transitions to the insulating
state are substantially faster.

Having demonstrated the ability to dynamically control
the phase of our model system through λ(t ), we shift our
attention to potential experimental realizations of this effect.
Figure 4 shows an illustration of a proposed device for achiev-
ing dynamic control of λ(t ). The core of our device consists
of a SCM separated from a metal by a nanoscale, com-
pressible, and weakly insulating region possibly composed of
several polymer nanolayers. Electronic transport across this
region should be dominated by quantum tunneling effects.
This core is electrically isolated by two insulating regions and
sandwiched between the plates of a capacitor (outer metal-
lic plates). Charging the capacitor generates a force which
squeezes the compressible insulator and reduces the separa-
tion L between the metal and SCM. Since the tunneling rate
λ ∼ e−L/ζ depends exponentially on the separation, we expect
that (at the nanoscale) large variations in λ can be achieved
on fast timescales without the need for very large voltages
or compression ratios. This device may be operated in two
modes. In the first mode, the gate voltage across the capacitor
is externally manipulated (blue signal generator in Fig. 4) to

Rgate

Metal
Insulator

Strongly Correlated Material

Compressible Insulator

Metal
Insulator

Metal

� L

Source Drain

FIG. 4. Illustration of a proposed device for realizing dynamic
control of λ(t ). The voltage between the outer metallic plates can
be controlled in two ways depending on the mode of operation
of the device. Without the red connections, the voltage between
the plates is modulated by an external signal (blue circle) and the
device is operated as a transistor. Adding the red connections couples
the voltage between the plates to the source-drain voltage and turns
the device into a two terminal memristor.

control the source-drain current via the SCM metal-insulator
transition, making the device a transistor. In the second mode,
the gate voltage across the capacitor is coupled to the source-
drain voltage (red connections in Fig. 4), making the device a
two terminal memristor.

Due to computational cost, we are only able to fully sim-
ulate one switching event. In order to further investigate and
characterize the dynamics of the proposed device we consider
a simple phenomenological Ginzburg-Landau model of the
Mott metal-insulator transition [69–72]. In this framework, we
assume that the state of the system around the phase transition
is governed by a potential

�(x, λ) = −(λ − λc)x − 1
2 x2 + 1

4 x4, (7)

where λc = (λc1 + λc2 )/2 is at the center of the coexistence
region. We take the order parameter x to be related to the
resistivity of the SCM by RSCM = R0e−αx. At λ = λc this
potential has two stable minima at x = ±1 corresponding to
metallic/insulating states with a resistivity ratio of exp (−2α).
The minimal equation of motion for x is given by ∂t x(t ) =
−(1/τ )∂x�(x, λ(t )) which describes exponential relaxation to
equilibrium with timescale τ .

We now apply this formalism to study the expected char-
acteristics of our proposed device when configured as a
memristor. In the memristor setup, the gate voltage across
the capacitor is set by the source-drain voltage V (t ). We
assume that the compression of the insulator is linear in the
applied force so that, to leading order, the tunneling rate is
given by λ(t ) = γV 2(t ) + δ. Note that since λ couples to the
voltage squared, the device must be operated around a finite
bias in order to have bidirectional control over λ. For the
device parameters we set λc = 1, γ = 1, and δ = 0 so that
at V = 1 the system is in the center of the coexistence region.
Additionally, we set Rgate = 10, R0 = 1, and α = 1 so that the
resistivity ratio between the insulating and conducting states
is exp(2) ≈ 7.4. Finally, we use τ = 1 as our time unit.

Figure 5(a) shows the current-voltage characteristics (IV)
of the device when driven by a sinusoidal voltage V (t ) = 1 +
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FIG. 5. Simulation of the system configured as a two terminal memristive device. (a) Current voltage characteristic of device under
sinusoidal driving. The inset shows the shape and minima of the potential �(x, λ) at λ = λc, λc ± 1. (b) Use of device as a resistive memory
element.

1
2 sin ( t

4 ), where we assume that the current through the device
is given by Ohm’s law. The IV forms a hysteresis loop due to
the memory effect of the order parameter x. In the upper part
of the loop, we have x ≈ 1, the SCM is in the metallic state,
and the current is high. In the lower part of the loop, we have
x ≈ −1, the SCM is in the insulating state, and the current is
low. Note that the hysteresis loop is not “pinched” (i.e., does
not pass through the origin) as expected for ideal memristors
[73] because we are operating around a finite voltage bias.

Figure 5(b) demonstrates usage of the device as a resis-
tive memory element. The device is operated around a finite
voltage bias V0 = 1 so that the SCM is in the center of the
coexistence region and both high and low resistivity states are
stable. The binary state of the device is encoded in the order
parameter x ≈ ±1. Here the device is driven by a sequence
of different pulses. The SET pulse is a long low amplitude
square pulse which moves the system from the x = −1 to the
x = 1 state. The READ pulse is a short high amplitude square
pulse which causes the current to spike above a threshold
(black dashed line) if the SCM is in the low resistivity (x = 1)
state. The RESET pulse is a long low amplitude square pulse
with opposite polarity to the SET pulse which moves the
system from the x = 1 to the x = −1 state. Combinations of
these pulses allow operation of the device as a two terminal,
resistive memory element.

V. CONCLUSIONS

We have demonstrated that the repulsive, fully frustrated,
single-band Hubbard model on the infinite coordination num-
ber Bethe lattice undergoes a first order metal-insulator
transition as a function of a coupling to a set of free fermion
baths. By time-dependent manipulation of this coupling we
are able to dynamically switch the system between its metallic
and insulating states both outside and inside the coexistence
region. We propose that this effect may be realized in a
nanoscale device based on manipulation of the proximity

between a metal and a SCM. Analysis of a simple model of
such a device shows that it could be operated as a resistive
memory element. These results suggest a variety of directions
for future work.

From a theoretical perspective, replacing the OCA impu-
rity solver with a numerically exact method [60–62,74–77]
would allow us to obtain a better quantitative understanding of
the timescales involved in the switching process. It would also
be of interest to investigate this type of bath-driven switching
in finite dimensional models with more realistic baths and
for other metal-insulator transitions, such as the transition be-
tween an antiferromagnetic insulator and paramagnetic metal
seen in VO2. Additionally, it would be interesting to investi-
gate the effect of including spatial inhomogeneities [78] and
transport in our microscopic model.

Experimentally, we expect that a variety of ways to harness
this novel switching mechanism in nanoelectronic devices
and nanoscale layered materials will emerge. Progress in this
direction will rely on finding a compressible insulator with ap-
propriate specifications and on fabrication techniques. While
our results suggest that the fundamental limit on switching
and readout time could theoretically be on the order of fem-
toseconds, it remains to be seen whether other limitations
and engineering considerations might dominate in practical
setups. Nevertheless, the promise of being able to fabricate
an efficient single-crystal memristor is certain to make the
experimental challenges worth facing.
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