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Theory of phason drag effect on thermoelectricity
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Lee, Rice, and Anderson, in their monumental paper [Solid State Commun. 14, 703 (1974)], proved the
existence of a collective mode describing the coupled motion of electron density and phonons in a one-
dimensional incommensurate charge density wave in the Peierls state. This mode, which represents the coherent
sliding motion of electrons and lattice distortions and affects low-energy transport properties, is described by
the phase of the complex order parameter of the Peierls condensate, leading to Fröhlich superconductivity in
pure systems. Once spatial disorder is present, however, the phason is pinned, and the system is transformed
into an insulating ground state: a dramatic change. Since phasons can be considered an ultimate phonon drag
effect, it is of interest to see its effects on thermoelectricity, which is studied in the present paper based on
linear response theory of Kubo and Luttinger. The result indicates that a large absolute value of the Seebeck
coefficient proportional to the square root of the resistivity is expected at low temperatures kBT/� � 1
(� is the Peierls gap) with a sign opposite to the electronic contributions in the absence of the Peierls
gap.
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I. INTRODUCTION

Various aspects of the thermoelectric effect have been ex-
tensively studied both theoretically and experimentally [1,2].
Especially, recent social needs reflecting the fact that quite a
large fraction of primary energy is wasted as heat strongly
urge the quest for materials with high thermoelectric capabil-
ity. Motivated by this understanding, we have been developing
studies toward the systematic understanding of thermoelec-
tricity beyond Boltzmann transport theory based on the linear
response theory of Kubo [3] and Luttinger [4]. Those in-
clude the spin-Seebeck effect free from contamination of
electric current [5], identification of the range of validity of
the Sommerfeld-Bethe relation [6], the phonon drag effect in
the presence of the impurity band [7], and n-type and bipolar
carbon nanotubes, indicating the importance of band-edge en-
gineering and the possible probing of morphology of samples
in experiments [8,9]. In this paper phason drag effects are
studied as an example of the phonon drag, which has long
been known in doped semiconductors to play important roles
[10–13] and was proposed very recently to be the case also in
FeSb2 [7].

A phason is the collective mode of electron-phonon
coupled systems in the incommensurate Peierls phase re-
sulting in a charge density wave (CDW), where spatially
modulated electron density and lattice distortion are locked
with the same periodicity. Lee, Rice, and Anderson (LRA)
[14] discovered this phason in view of the experimental
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finding of extraordinary conductivity in tetrathiofulvalinium
tetracyanoquinodimethan (TTF-TCNQ), leading to the con-
troversial discussions of possible Fröhlich superconductivity
[15]. When the CDW moves, electrons and lattice distortion
move together (sliding mode), and the dynamics is described
by the phase of the complex order parameter of the Peierls
phase, then called a phason. Hence, a phason is considered
to be the ultimate form of phonon drag. In contrast to the
case of superconductivity, a phason, which is due to diagonal
long-range order, is sensitive to spatial inhomogeneity result-
ing in impurity pinning. Once a phason is pinned, there is no
sliding, and the state is insulating at absolute zero. However,
at finite temperature, a pinned phason will move locally by
the creation of soliton pairs induced by the thermal excita-
tion, leading to the activation-type temperature dependence of
conductivity L11 [16]. In this paper we study thermoelectric
conductivity L12 and the Seebeck coefficient S = L12/T L11,
with T being temperature, due to phason drag in such a low-
temperature region for the one-dimensional electron-phonon
Peierls phase using the thermal Green’s function.

Regarding phason contributions to L12, Yoshimoto and
Kurihara [17] studied the electronic contribution in clean sys-
tems without disorder. In this paper, we explore the phason
drag contributions in the presence of impurity pinning.

In Sec. II, we introduce the one-dimensional electron-
phonon system and the phason. The formulation by LRA
[14] is modified in accordance with the present framework.
In Sec. III, the electrical conductivity due to the phason is
discussed, and in Sec. IV, results of the phason drag contri-
bution to L12 and the resulting Seebeck coefficient are given.
Section V is devoted to a summary.
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II. ONE-DIMENSIONAL ELECTRON-PHONON
SYSTEM AND PHASON

We consider a one-dimensional electron-phonon system
using the Fröhlich model H0 to describe the Peierls transi-
tion in the presence of random distribution of impurities H ′,
H = H0 + H ′, where H0 and H ′ are given as follows:

H0 =
∑
p,σ

εpc†
p,σ cp,σ +

∑
q

h̄ωqb†
qbq

+ 1√
L

∑
p,q,σ

gqc†
p+q,σ cp,σ (bq + b†

−q),

H ′ =
∑

i

∫
v(x − Ri )ρ(x)dx

= 1

L

∑
i

∑
p,q,σ

e−iqRivqc†
p+q,σ cp,σ . (1)

Here, c†
p,σ and b†

q are creation operators for a one-dimensional
Bloch electron and a phonon with energies εp and h̄ωq, re-
spectively, L is the length of the system, gq represents the
electron-phonon coupling constant, Ri represents the position
of impurities, v(x) and ρ(x) are the impurity potential and
electron density, respectively, and vq is the Fourier transform
of v(x). First, we focus on H0, and the effects of H ′ will be
treated later.

In the mean-field theory of the uniform Peierls phase, the
lattice distortion is described by the order parameter

� = 1√
L

gQ(〈bQ〉 + 〈b†
−Q〉) ≡ eiφ�0 (2)

(�0 > 0), with Q = 2kF, and the mean-field Hamiltonian for
electrons becomes

HMF =
∑
k,σ

(
c†

Q
2 +k,σ

, c†
− Q

2 +k,σ

)(
ξk �

�∗ −ξk

)(
c Q

2 +k,σ

c− Q
2 +k,σ

)
,

(3)
where |k| < Q/2 and we have linearized the energy dispersion
as εp − μ ∼ ξk in the vicinity of kF = Q/2 with ξk = h̄vFk
and k = p − kF. Similarly, in the vicinity of −kF = −Q/2,
we have linearized εp − μ ∼ −ξk with k = p + kF. It should
be noted that we consider the cases where vF is positive and
negative. The self-consistency equation for � is

� = 4g2
Q

h̄ωQL

∑
k

�

2Ek
{ f (−Ek ) − f (Ek )}, (4)

where

Ek =
√

ξ 2
k + |�|2 (5)

and f (ε) = 1/(eβε + 1) is the Fermi distribution function
with β = 1/kBT .

As performed by LRA, � can be chosen to be real (i.e.,
φ = 0) in the uniform mean-field solution by redefining the
operator as c̃†

Q
2 +k,σ

= c†
Q
2 +k,σ

eiφ , while c†
− Q

2 +k,σ
is not changed.

However, we keep φ in the following since φ is no longer
uniform in the presence of impurity pinning and the dynamics
of the phason is represented by the spatial and temporary

dependence of φ as described in the phase Hamiltonian [18].
In fact, the charge density is given as

ρ(x, t ) = ne + ρ0 cos[Qx + φ(x, t )], (6)

where ne is the average electron density, ρ0 = h̄ωQ|�|/2g2
Q,

and ∂φ(x, t )/∂t and ∂φ(x, t )/∂x give the electric current
density and the local modulation of electric charge density,
respectively [19,20].

To study the phason mode and amplitude mode in the
case of a constant φ, we introduce phonon propagators in the
matrix form

Dmn(q, τ ) = −〈Tτ {[bmQ+q(τ ) + b†
−mQ−q(τ )]

× [b†
nQ+q(0) + b−nQ−q(0)]}〉, (7)

where m, n = ±, and electron Green’s functions

Gmn(k, τ ) = −〈Tτ [cmQ/2+k,σ
(τ )c†

nQ/2+k,σ
(0)]〉. (8)

For the mean-field Hamiltonian of Eq. (3), the Fourier trans-
form of Gmn(k, τ ) is given by

G(k, iεn) = 1

(iεn)2 − E2
k

(
iεn + ξk �

�∗ iεn − ξk

)
, (9)

where εn = (2n + 1)πkBT is the Matsubara frequency (n is
an integer).

As shown by LRA, the Dyson equation forDmn leads to

D++(q, iων ) ± e−2iφD+−(q, iων )

= D(0)(iων )

1 − [�++(q, iων ) ± e−2iφ�+−(q, iων )]D(0)(iων )
,

(10)

where ων = 2πνkBT is the Matsubara frequency (ν is an
integer) and

�++(q, iων )

= 2g2
Q

kBT

L

∑
k,n

G++(k + q, iεn + iων )G−−(k, iεn),

�+−(q, iων )

= 2g2
Q

kBT

L

∑
k,n

G+−(k + q, iεn + iων )G+−(k, iεn), (11)

where gQ+q ∼ gQ has been assumed. [For completeness, the
derivation of Eq. (10) is shown in Appendix A.] It is to be
noted that the zeroth-order phonon propagator

D(0)
mn(q, iων ) = δmn

2h̄ωmQ+q

(iων )2 − h̄2ω2
mQ+q

(12)

has been approximated as

D(0)
mn(q, iων ) ∼ δmnD(0)(iων ) = δmn

2h̄ωQ

(iων )2 − h̄2ω2
Q

. (13)

The denominator for D++ − e−2iφD+− in Eq. (10) leads
to a q-linear mode, ω = v|q| (v > 0), which is a phason,
while that of D++ + e−2iφD+− leads to the amplitude mode.
Therefore, phason and amplitude propagators are defined as

P(q, iων ) = D++(q, iων ) − e−2iφD+−(q, iων ),

A(q, iων ) = D++(q, iων ) + e−2iφD+−(q, iων ), (14)
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respectively. For a small-q and small-(iων ) region, they be-
come

P(q, iων ) = 2h̄ωQ/(1 + X )

(iων )2 − (h̄vq)2
,

A(q, iων ) = 2h̄ωQ/(1 + X/3)

(iων )2 − h̄2ω2
am(q)

, (15)

where X = ωQg2
Q/2π |vF|�2

0, and the phason velocity v is
given by

v = [X/(1 + X )]1/2|vF|. (16)

The dispersion of the amplitude mode ωam(q) is

ωam(q) =
√

4X

1 + X
3

�2
0 + X

3 + X
(h̄vFq)2. (17)

The details of the calculations are shown in Appendix A.

III. ELECTRICAL CONDUCTIVITY DUE TO PHASONS

The Kubo formula for dynamical electrical conductivity for
uniform electric field σ (ω) is given by

L11 = 1

iω
[�11(iωλ → h̄ω + iδ) − �11(0)], (18)

with

�11(iωλ) = 1

L

∫ β

0
dτ 〈Tτ [Je(τ )Je(0)]〉eiωλτ . (19)

Here, Je is the electronic current,

Je = −e
∑
k,σ

(
c†

Q
2 +k,σ

, c†
− Q

2 +k,σ

)
vFσz

(
c Q

2 +k,σ

c− Q
2 +k,σ

)
, (20)

where −e is the electron charge (e > 0) and σz is the z com-
ponent of Pauli matrices. As shown by LRA, the conductivity
due to phasons is governed by processes in Fig. 1 [14]. For ex-
ample, Fig. 1(a) gives the following contribution to �11(iωλ):

−g2
Q

4e2v2
F(kBT )2

L2

∑
k,k′,εn,ε′

n

Tr[σzG(k, iεn + iωλ)σ+G(k, iεn)]D++(0, iωλ)Tr[σ−G(k′, iε′
n + iωλ)σzG(k′, iε′

n)]

= −g2
Q

4e2v2
F(kBT )2

L2

∑
k,εn

{G++(k, iεn + iωλ)G−+(k, iεn) − G−+(k, iεn + iωλ)G−−(k, iεn)}

×D++(0, iωλ)
∑
k′,ε′

n

{G++(k′, iε′
n + iωλ)G+−(k′, iε′

n) − G+−(k′, iε′
n + iωλ)G−−(k′, iε′

n)}

= −g2
Q

4e2v2
F(kBT )2

L2

∑
k,εn

�∗(iωλ + 2ξk ){
(iεn + iωλ)2 − E2

k

}{
(iεn)2 − E2

k

}D++(0, iωλ)
∑
k′,ε′

n

�(iωλ + 2ξk′ ){
(iε′

n + iωλ)2 − E2
k′
}{

(iε′
n)2 − E2

k′
} , (21)

where σ± = (σx ± iσy)/2 and σx, σy, σz are 2 × 2 Pauli matrices. In the last expression, the terms proportional to ξk and ξk′ in
the numerator vanish since they are odd functions of k and k′, respectively. Figures 1(b)–1(d) can be calculated similarly, and
their total becomes

�11(iωλ) = −4e2v2
Fg2

Q�2
0(iωλ)2

[
kBT

L

∑
k,εn

1{
(iεn + iωλ)2 − E2

k

}{
(iεn)2 − E2

k

}
]2

×{
D++(0, iωλ) − e−2iφD+−(0, iωλ) − e2iφD−+(0, iωλ) +D−−(0, iωλ)

}
. (22)

Noting that D−− = D++ and D−+ = e−4iφD+− (see Ap-
pendix A), we see that the last set of parentheses
in Eq. (22) is equal to twice the phason propagator
P(0, iωλ).

In the lowest order of iωλ and T → 0, the k summation
and the Matsubara frequency summation in Eq. (22) can be
carried out as

kBT

L

∑
k,εn

1{
(iεn)2 − E2

k

}2 = − 1

L

∑
k

∫
dz

2π i
f (z)

1(
z2 − E2

k

)2

= 1

L

∑
k

1

4E3
k

= 1

4π h̄|vF|�2
0

.

(23)

Therefore, the conductivity is given by

σ (ω) = iω

2

( e

π

)2 g2
Q

�2
0

P(0, h̄ω + iδ). (24)

Equation (24) together with Eq. (15) leads to σ (ω) =
nee2/iωm∗, with m∗ = [(1 + X )/X ]m and ne = 2kF /π , which
is the result by LRA for the sliding phason mode contribu-
tion to the conductivity in clean systems, representing the
perfect conductivity of the Fröhlich superconductivity. In
the presence of impurities, which is always the case, phasons
are pinned, resulting in vanishing static conductivity at abso-
lute zero (see Appendix F).

So far we have reviewed in detail the derivation of phason
contributions to L11 in order to make transparent and solid
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FIG. 1. Feynman diagrams for conductivity due to phasons. The solid lines and the wavy lines represent electron and phonon Green’s
functions, respectively, The + and − signs attached to the solid lines represent the subscripts of electron Green’s functions Gmn with m, n = ±,
and the +Q and −Q attached to the wavy lines represent the subscripts of phonon Green’s functionsDmn.

the new contributions of phason drag to L12 on equal footing,
which are explained in the following.

IV. THERMOELECTRIC CONDUCTIVITY
DUE TO PHASON DRAG

In this section, we study the phason drag contri-
bution to the thermoelectric conductivity Lph

12 , which is
given by

Lph
12 = lim

ω→0

1

iω

[
�

ph
12(iωλ → h̄ω + iδ) − �

ph
12(0)

]
, (25)

with

�
ph
12(iωλ) = 1

L

∫ β

0
dτ

〈
Tτ

[
Jph

h (τ )Je(0)
]〉

eiωλτ , (26)

where Jph
h is the heat current carried by phonons [6],

Jph
h =

∑
q

h̄ωqcqb†
qbq, (27)

with cq = dωq/dq being the phonon group velocity.

A. Phason drag process

As in the case of FeSb2 [7], processes associated with pha-
son drag are shown diagrammatically in Appendix C. Here,
it should be noted that phonon propagators appearing in the
phason drag processes are “directed” as fermions [6,7,21–25];
that is, instead ofDmn(q, τ ), we have to use Omn(q, τ ) defined
as

Omn(q, τ ) = −〈Tτ {bmQ+q(τ )[b†
nQ+q(0) + b−nQ−q(0)]}〉.

(28)
Details of the calculations are shown in Appendixes B and C.
Finally, we obtain

�
ph
12(iωλ) = eh̄vFωQcQg2

Q

(kBT )2

L2

∑
k,q,n,ν

iων + h̄ωQ

2h̄ωQ

iων + iωλ + h̄ωQ

2h̄ωQ

1

(iεn)2 − E2
k

1

(iεn + iωλ)2 − E2
k

×{P(q, iων )A(q, iων + iωλ) + A(q, iων )P(q, iων + iωλ)}
× [{ f (q, iων + iωλ) − f (−q,−iων )}{iεn(iεn + iωλ) + ξ 2

k − �2
0

}
−{g(q, iων + iωλ) − g(−q,−iων )}ξk (2iεn + iωλ)

] + O((iωλ)2), (29)

with

f (q, iων ) = iεn + iων

(iεn + iων )2 − E2
k+q

,

g(q, iων ) = ξk+q

(iεn + iων )2 − E2
k+q

. (30)

From Eq. (10) we see that Dmn(−q,−iων ) = Dmn(q, iων ), i.e., P(−q,−iων ) = P(q, iων ) and A(−q,−iων ) = A(q, iων ).
Thus, changing variables, q → −q and iων → −iων − iωλ in f (−q,−iων ) and g(−q,−iων ) in Eq. (29), we obtain

�
ph
12(iωλ) = eh̄vFωQcQg2

Q

(kBT )2

L2

∑
k,q,n,ν

2iων + iωλ

2h̄ωQ

1

(iεn)2 − E2
k

1

(iεn + iωλ)2 − E2
k

×{P(q, iων )A(q, iων + iωλ) + A(q, iων )P(q, iων + iωλ)}
× [

f (q, iων + iωλ)
{
iεn(iεn + iωλ) + ξ 2

k − �2
0

} − g(q, iων + iωλ)ξk (2iεn + iωλ)
] + O((iωλ)2). (31)
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B. Analytic continuation and low-temperature properties of �
ph
12

For the static thermoelectric conductivity, we need to calculate the linear order of iωλ of Eq. (31), whose leading contributions
are due to the region of −ωλ < ων < 0. [The other regions give contributions proportional to P(q, x + iδ)A(q, x + iδ) or P(q, x −
iδ)A(q, x − iδ), which will be in the higher order with respect to damping of the phason and amplitude mode.] After analytic
continuation of iωλ → h̄ω + iδ, we obtain

�
ph
12(h̄ω + iδ) = eh̄vFωcQg2

Q

1

L

∑
q

∫ ∞

−∞

dx

2π i
n′(x)x{P(q, x − iδ)A(q, x + iδ) + A(q, x − iδ)P(q, x + iδ)}C(x, q) + O(ω2),

(32)

where

C(x, q) = kBT

L

∑
k,n

1[
(iεn)2 − E2

k

]2

1

(iεn + x)2 − E2
k+q

{
(iεn + x)

{
(iεn)2 + ξ 2

k − �2
0

} − 2iεnξkξk+q
}
. (33)

By noting that C(x, q) is due to fermionic contributions with energy and momenta higher than those of phonons, we expand
C(x, q) in terms of both x and q. In the lowest order with respect to q,

C(x, q) ∼ C(x, 0) = kBT

L

∑
k,n

1[
(iεn)2 − E2

k

]2

1

(iεn + x)2 − E2
k

{
(iεn + x)

{
(iεn)2 + ξ 2

k − �2
0

} − 2iεnξ
2
k

}
. (34)

Since n′(x)x is an odd function of x, the lowest order contributing to Eq. (32) is C(x, 0) ∼ xD(T ), with

D(T ) = −kBT

L

∑
k,n

(iεn)2 − ξ 2
k + �2

0[
(iεn)2 − E2

k

]3 . (35)

Equation (35) is derived also rather straightforwardly by putting q = 0 and iωλ = 0 in the electron Green’s functions in Fig. 4
(see Appendix D). Finally, the static thermoelectric conductivity at low temperature Lph

12 (T ) is given as follows:

Lph
12 (T ) = −eh̄vFcQg2

Q

D(T )

L

∑
q

∫ ∞

−∞

dx

2π
n′(x)x2{P(q, x − iδ)A(q, x + iδ) + A(q, x − iδ)P(q, x + iδ)}. (36)

At T = 0, D(0) = kF/8πE3
kF

, which is shown in Appendix E.
We see that L12 is governed by both phase and amplitude
modes, while L11 is governed by only the phase mode. Al-
though impurity scattering affects both modes, phasons are
more sensitive, which has been studied before in the context
of impurity pinning, which will be briefly summarized in the
following.

C. General features of phason propagators

In order to explore the implication of Eq. (36), we analyze
the propagators of collective modes of phason and amplitude,
P(q, h̄ω + iδ) and A(q, h̄ω + iδ), given by Eq. (15) with TTF-
TCNQ in mind in the impurity-pinned state, i.e., in the charge
density glass (CDG) state instead of the CDW state. We note
that phonon propagators in glasses are proposed to be of the
following type, e.g., in Ref. [26]:

P(q, h̄ω + iδ) = 2h̄ωQ/(1 + X )

(h̄ω + iδ)2 − h̄2ω2
ph(q) + ih̄ω�ph

,

A(q, h̄ω + iδ) = 2h̄ωQ/(1 + X/3)

(h̄ω + iδ)2 − h̄2ω2
am(q) + ih̄ω�am

,

(37)

where ωph(q) = v|q| and ωam(q) are the dispersions of the
phason and the amplitude mode, respectively. �ph and �am

reflect the effects of randomness. This expectation is justified
for the amplitude mode, which is optical and has a finite

gap at q = 0. However, this expectation is totally invalid for
the phason, which is acoustic. In the following we will see
that P(q, h̄ω + iδ) is greatly modified because of the impurity
pinning.

We first note that these modes derived by the mean-field
theory should be valid in the three-dimensionally ordered
Peierls phase. The critical temperature to the ordered Peierls
phase is TP ∼ 54 K, which is believed to be much lower than
the mean-field transition temperature TP0 ∼ 500 K [27] be-
cause of strong fluctuations intrinsic to one-dimensionality.
The wave number q is measured relative to 2kF since these are
phonon modes in the Peierls phase with the long-range order
parameter of the coherent lattice distortion with period 2kF =
Q. As clarified by LRA, phasons carry charge current, while
amplitude modes are neutral. This implies that phasons are
considered to be charged phonons. Hence, the present phasons
have particular features compared with ordinary phonons:
very low energy and sensitivity to spatial randomness because
of the charged object.

The subtle problem of the coupling of phasons to spatial
randomness leading to impurity pinning had been studied
before based on the effective Hamiltonian, the phase Hamil-
tonian [18,19], which indicates that P(q, h̄ω + iδ) (37) at
absolute zero is modified as follows:

P(q, h̄ω + iδ) = 2h̄ωQ/(1 + X )

(h̄ω + iδ)2 − h̄2v2q2 − g0 + ih̄ωg1
, (38)
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where g0 (∼γ 2) and g1 (∼γ ) are parameters associated with
the impurity pinning potential γ (γ > 0; for details, see
Appendix F).

From Eq. (38) with finite g0, it is seen that σ (ω) ∼ iω
as ω → 0, which is the characteristic of dielectrics (insula-
tors) with the dielectric constant ε(ω) = 1 + 4π iσ (ω)/ω ∼
1/(g0 − ih̄ωg1). This reflects the fact that Peierls lattice dis-
tortions are no longer uniform in the pinned CDW state and
that the spatial charge density is disordered, i.e., glassy. In
such a glassy state, the CDG state [28], the possible charge
transport is either uniform oscillations of phasons within each
domain or local variation of phase associated with domain
walls described as solitons, both of which need finite exci-
tation energy. These are features of impurity pinning at T = 0
for finite frequency ω �= 0.

At finite temperature, T �= 0, these low-energy excitations
are thermally excited, resulting in small, but finite, conductiv-
ity, which implies g0 = 0 with finite g1 in Eq. (38). There will
be an interesting crossover from the zero-temperature value
of g0 to vanishing g0 at finite temperature, and this is associ-

ated with the dielectric anomalies which have characteristic
dependences on both the frequency and temperature of the
dielectric constant in some family of molecular solids [29].
But this issue is beyond the scope of the present paper. In the
following, we assume g0 = 0 for T > 0. In this case, the static
conductivity σ0 is given by

σ0 =
( e

π

)2 g2
Q

(1 + X )�2
0

ωQ

g1
. (39)

In the present context of TTF-TCNQ experiments indicate
more or less the activation type of the temperature dependence
of the conductivity [16], implying g1(T ) ∼ γ exp(E0/kBT ),
which we will assume in the following.

D. The temperature dependences of Lph
12 (T )

In order to see the implication of (36), we first note the
dispersion of the amplitude mode ωam(q) is relatively weak
compared to that of phasons: we assume ωam(q) is a q-
independent constant, ωa. Then, q integration in Eq. (36) is
possible analytically, leading to

F (x, T ) = 1

L

∑
q

{
P(q, x − iδ)A(q, x + iδ) + A(q, x − iδ)P(q, x + iδ)

}

= 2Re
∫ ∞

−∞

dq

2π

(
2h̄ωQ/(1 + X )

x2 − h̄2v2q2 − ig1x

)(
2h̄ωQ/(1 + X/3)

x2 − h̄2ω2
am + ix�am

)

= −Re

[
4ih̄ω2

Q/v(1 + X )(1 + X/3)(
x2 − h̄2ω2

a + ix�am
)
(x2 − ig1x)1/2

]
, (40)

where the argument of (x2 − ig1x)1/2 is chosen to be Im(x2 − ig1x)1/2 > 0. Therefore, Lph
12 (T ) in Eq. (36) becomes

Lph
12 (T ) = −eh̄2vFcQg2

QD(T )
∫ ∞

−∞

dx

2π
n′(x)x2F (x, T ). (41)

It should be noted that the factor |n′(x)| is large only for |x| � kBT at low temperatures.
As discussed in the previous section, when the system is conductive, we expect g1 ∼ γ exp(E0/kBT ). In the low temperatures

where g1 
 kBT holds, F (x, T ) is approximated as

F (x, T ) = 4ω2
Q√

2h̄vω2
a(1 + X )(1 + X/3)

1√
g1(T )|x| , (42)

and then

Lph
12 (T ) = eh̄vFcQg2

Qω2
Q√

2πvω2
a(1 + X )(1 + X/3)

(kBT )3/2

√
g1(T )

D(T )
∫ ∞

0
dz

z3/2

sinh2 z

= 2.936
eh̄vFcQg2

Qω2
Q√

2πvω2
a(1 + X )(1 + X/3)

(kBT )3/2

√
g1(T )

D(T ), (43)

which leads to

S = Lph
12

T σ
∝ vFcQT 1/2eE0/2kBT . (44)

Here, D(T ) has been approximated as a constant, D(0).
It should be noted that |S| is exponentially diverging toward

absolute zero in the present one-dimensional (1D) Peierls
model, where the energy dispersion of the electronic band is
strictly 1D. The sign of S is determined by cQ = dωq/dq|q=Q

(Q = 2kF) since vF > 0 is independent of the filling of the
band in the present 1D electron model: S > 0 for 0 < Q <

G/2 (“electrons”) and S < 0 for G/2 < Q < G (“holes”),
with G being the reciprocal lattice vectors. In the case of the
charge transfer salts that interest us, TTF-TCNQ, however,
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the system is semimetallic with the same number of elec-
trons and holes in the TCNQ band and the TTF band, and
then vF > 0 for electrons, and vF < 0 for holes, as in doped
semiconductors.

The present results may point to an interesting possibil-
ity of thermoelectricity in disordered (glassy) systems with
strong electron-phonon coupling between low-temperature
insulating and weakly conducting intermediate-temperature
regions which may include some cases of variable range
hopping.

V. SUMMARY

In the present paper, the effects of phason drag on the
Seebeck coefficient were theoretically studied for the one-
dimensional incommensurate Peierls phase with TTF-TCNQ
in mind based on the Kubo-Luttinger formalism with the
help of thermal Green’s function. The phason is the collective
mode of electron-lattice coupled CDW systems and represents
the sliding motions of electronic charge density and lattice dis-
tortion as clarified by LRA. Hence, phasons can be considered
the ultimate form of phonon drag, which has long been known
to play important roles in semiconductors and was found to
also do so in FeSb2 recently.

In order to treat phason dynamics theoretically, it is crucial
to note the existence of two energy scales, i.e., the high-energy
region representing electronic degrees of freedom to support
the Peierls phase and the low-energy region describing the
collective modes (amplitude and phase modes) in the Peierls
ordered state. As demonstrated by LRA, phasons are charged,
while amplitude modes are neutral. Phasons, which represent
sliding motions of coupled electronic charge density and lat-
tice distortions, have acoustic wave vector dependence and
lead to perfect electric conduction (Fröhlich superconductiv-
ity) in clean systems. However, phasons are sensitive to spatial
inhomogeneity, in contrast to the phase of superconductivity,
and are easily pinned by impurities, resulting in an insulat-
ing state at absolute zero with inhomogeneous spatial charge
density, i.e., a charge density glass state. In order to describe
this dramatic process of pinning from perfect conduction to
the insulating CDG state the phase Hamiltonian, which is an
effective Hamiltonian focusing on phasons, is known to be
powerful to see the frequency dependences of conductivity at
T = 0. In the present studies on the Seebeck coefficient we
need to extend this study to finite temperatures.

We first demonstrated the perfect correspondences between
former diagrammatical calculations of conductivity L11 and
thermoelectric conductivity L12 and those based on the phase

Hamiltonian in the absence of pining. Then the effects of
pinning on phasons governing L11 at finite temperatures were
analyzed based on previous analysis at absolute zero (but
finite frequencies). This partly corresponds to general studies
on phonon propagators in disordered systems, i.e., phonons
in glassy states. However, there is an important difference
between phonons in a glassy state and the present CDG state:
phonons are neutral in the former, while they are charged here.
In the CDG state the dependences on frequency and temper-
ature of phasons are more subtle than in neutral phonons.
With such detailed studies on phason propagators in the
CDG state, its drag effects on L12 and then S = L12/T L11

have been identified. It turns out that |S| can be very large:
When conductivity obeys the Arrhenius type of temperature
dependence, L11 ∝ e−E0/kBT , then Lph

12 ∝ vFcQT 3/2e−E0/2kBT ,
and S ∝ vFcQT 1/2eE0/2kBT as T → 0. The sign of S is always
opposite that of electronic contributions, which appear to be
consistent with experiments [30], although the description of
crossover regions between high temperature with electronic
contributions and the present low temperatures deep in the
Peierls ordered state is beyond the scope of the present paper.

The main result of this paper is the identification of the
phason drag contribution to the thermoelectric conductivity
L12, Eq. (36), in terms of phason and amplitude propagators,
P(q, x) and A(q, x), to be combined with the conductivity L11,
Eq. (24), for the Peierls phase treated within the mean-field
theory. Even if the Peierls phase is treated in more detail
beyond the mean-field theory, the main framework of the
present scheme will be valid for the contribution of phase
and amplitude modes as long as the Peierls phase is long
range ordered and stable with possible modifications of the
prefactors of Eqs. (24) and (36).
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APPENDIX A: DYSON EQUATIONS FOR PHONON
PROPAGATORS

The Dyson equations forDmn by LRA are shown in Fig. 2:

D++(q, iων ) = D(0)
++(q, iων ) +D++(q, iων )�++(q, iων )D(0)

++(q, iων ) +D+−(q, iων )�−+(q, iων )D(0)
++(q, iων ),

D+−(q, iων ) = D++(q, iων )�+−(q, iων )D(0)
−−(q, iων ) +D+−(q, iων )�−−(q, iων )D(0)

−−(q, iων ),

D−+(q, iων ) = D−−(q, iων )�−+(q, iων )D(0)
++(q, iων ) +D−+(q, iων )�++(q, iων )D(0)

++(q, iων ),

D−−(q, iων ) = D(0)
−−(q, iων ) +D−−(q, iων )�−−(q, iων )D(0)

−−(q, iων ) +D−+(q, iων )�+−(q, iων )D(0)
−−(q, iων ), (A1)

where �mn are defined in Eq. (11). It should be noted that the relations �++ = �−− and �−+ = e−4iφ�+− hold from
their definitions. (Note that in the presence of εk the relation �++ = �−− does not hold.) Furthermore, when we use the
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FIG. 2. Feynman diagrams of Dyson equations for the phonon propagator Dmn. The wavy line (the wavy double line) represents D(0)
mn

(Dmn). The + and − signs attached to the wavy lines and the solid lines represent the subscripts of the corresponding propagator. The Dyson
equations forD−− andD−+ are written in the same way.

approximation [Eq. (13)]

D(0)
mn(q, iων ) ∼ δmnD(0)(iων ) = δmn

2h̄ωQ

(iων )2 − h̄2ω2
Q

, (A2)

Eq. (A1) becomes

D++(q, iων ) = {
1 +D++(q, iων )�++(q, iων ) +D+−(q, iων )e−4iφ�+−(q, iων )

}
D(0)(iων ),

D+−(q, iων ) = {
D++(q, iων )�+−(q, iων ) +D+−(q, iων )�++(q, iων )

}
D(0)(iων ),

D−+(q, iων ) = {
D−−(q, iων )e−4iφ�+−(q, iων ) +D−+(q, iων )�++(q, iων )

}
D(0)(iων ),

D−−(q, iων ) = {1 +D−−(q, iων )�++(q, iων ) +D−+(q, iων )�+−(q, iων )}D(0)(iων ). (A3)

From these Dyson equations, we can see that

D++(q, iων ) ± e−2iφD+−(q, iων ) = [
1 + {

D++(q, iων ) ± e−2iφD+−(q, iων )
}{

�++(q, iων ) ± e−2iφ�+−(q, iων )
}]
D(0)(iων ),

(A4)

which leads to Eq. (10). In a similar way, we obtainD−− = D++ andD−+ = e−4iφD+−.
The phason propagator P(q, iων ) in Eq. (14) is evaluated in the small-q and small-(iων ) region as follows. Substituting the

definition ofD(0)(q, iων ), P(q, iων ) is rewritten as

P(q, iων ) = 2h̄ωQ

(iων )2 − (h̄ωQ)2 − 2h̄ωQ[�++(q, iων ) − e−2iφ�+−(q, iων )]
. (A5)

Using the definition in Eq. (11) and the Green’s function in Eq. (9), we obtain

�++(q, iων ) − e−2iφ�+−(q, iων ) = 2g2
Q

kBT

L

∑
k,n

(iεn + iων + ξk+q)(iεn − ξk ) − �2
0[

(iεn + iων )2 − E2
k+q

][
(iεn)2 − E2

k

] . (A6)

When q = 0 and iων = 0, the right-hand side of Eq. (A6) becomes

2g2
Q

kBT

L

∑
k,n

1

(iεn)2 − E2
k

= −2g2
Q

1

L

∑
k

∮
dz

2π i

f (z)

z2 − E2
k

= 2g2
Q

1

L

∑
k

f (Ek ) − f (−Ek )

2Ek

= − h̄ωQ

2
, (A7)

where the self-consistency equation in Eq. (4) has been used. The phason velocity is obtained by calculating the higher-order
terms with respect to q and iων . It is straightforward to obtain

�++(q, iων ) − e−2iφ�+−(q, iων ) = − h̄ωQ

2
+ X (h̄vFq)2

2h̄ωQ
− X (iων )2

2h̄ωQ
+ (higher-order terms), (A8)
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FIG. 3. Feynman diagrams of Dyson equations for the “directed” phonon propagator Omn. The dashed line (the double-dashed line) with
an arrow represents O(0)

mn (Omn). The + and − signs attached to the dashed lines and the solid lines represent the subscripts of the corresponding
propagator. The Dyson equations for O−− and O−+ are written in the same way.

with

X = ωQg2
Q

2π |vF|�2
0

. (A9)

Substituting (A8) into (A5), the phason propagator becomes

P(q, iων ) = 2h̄ωQ

(iων )2 − X (h̄vFq)2 + X (iων )2

= 2h̄ωQ/(1 + X )

(iων )2 − X
1+X (h̄vFq)2

= 2h̄ωQ/(1 + X )

(iων )2 − (h̄vq)2
, (A10)

where v represents the phason velocity, defined as v = [X/(1 + X )]1/2|vF|. In a similar way, we obtain

�++(q, iων ) + e−2iφ�+−(q, iων ) = − h̄ωQ

2
+ 2X�2

0

h̄ωQ
+ X (h̄vFq)2

6h̄ωQ
− X (iων )2

6h̄ωQ
+ (higher-order terms). (A11)

Therefore, the amplitude propagator becomes

A(q, iων ) = 2h̄ωQ

(iων )2 − 4X�2
0 − X

3 (h̄vFq)2 + X
3 (iων )2

= 2h̄ωQ/(1 + X/3)

(iων )2 − h̄2ω2
am(q)

, (A12)

with

ωam(q) =
√

4X

1 + X
3

�2
0 + X

3 + X
(h̄vFq)2. (A13)

APPENDIX B: DYSON EQUATIONS FOR “DIRECTED” PHONON PROPAGATORS

The Dyson equations for Omn are shown in Fig. 3:

O++(q, iων ) = O(0)
++(q, iων ) + O++(q, iων )�++(q, iων )D(0)

++(q, iων ) + O+−(q, iων )�−+(q, iων )D(0)
++(q, iων ),

O+−(q, iων ) = O++(q, iων )�+−(q, iων )D(0)
−−(q, iων ) + O+−(q, iων )�−−(q, iων )D(0)

−−(q, iων ),

O−+(q, iων ) = O−−(q, iων )�−+(q, iων )D(0)
++(q, iων ) + O−+(q, iων )�++(q, iων )D(0)

++(q, iων ),

O−−(q, iων ) = O(0)
−−(q, iων ) + O−−(q, iων )�−−(q, iων )D(0)

−−(q, iων ) + O−+(q, iων )�+−(q, iων )D(0)
−−(q, iων ), (B1)
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where O(0)
mn(q, iων ) are defined as

O(0)
mn(q, iων ) = δmn

iων − h̄ωmQ+q
. (B2)

Solving the Dyson equation for Omn, we obtain the simple relations

Omn(q, iων ) = O
(0)(iων )

D(0)(iων )
Dmn(q, iων ) = iων + h̄ωQ

2h̄ωQ
Dmn(q, iων ), (B3)

where it should be noted that we used an approximation,

O(0)
mn(q, iων ) ∼ δmnO(0)(iων ) = δmn

1

iων − h̄ωQ
, (B4)

as forD(0)
mn(q, iων ). The same argument is applied to Õmn(q, iων ), which leads to Õmn(q, iων ) = Omn(q, iων ).

APPENDIX C: FEYNMAN DIAGRAMS FOR THE PHASON DRAG

The Feynman diagrams for the phason drag contributions �
ph
12(iωλ) of Eq. (26) are shown in Fig. 4. Figures 4(a)–4(d) give,

respectively,

−g2
Q

(kBT )2

L2

∑
k,q,n,ν

h̄ωQcQÕ++(q, iων )O++(q, iων + iωλ)evFTr[G(k, iεn)σ+G(k − q, iεn − iων )σ−G(k, iεn + iωλ)σz]

= −g2
Q

(kBT )2

L2

∑
k,q,n,ν

h̄ωQcQÕ++(q, iων )O++(q, iων + iωλ)evF{G++(k, iεn)G−−(k − q, iεn − iων )G++(k, iεn + iωλ)

−G−+(k, iεn)G−−(k − q, iεn − iων )G+−(k, iεn + iωλ)},

g2
Q

(kBT )2

L2

∑
k,q,n,ν

h̄ωQcQÕ+−(q, iων )O−+(q, iων + iωλ)evFTr[G(k, iεn)σ+G(k − q, iεn − iων )σ−G(k, iεn + iωλ)σz]

= g2
Q

(kBT )2

L2

∑
k,q,n,ν

h̄ωQcQÕ+−(q, iων )O−+(q, iων + iωλ)evF{G++(k, iεn)G−−(k − q, iεn − iων )G++(k, iεn + iωλ)

−G−+(k, iεn)G−−(k − q, iεn − iων )G+−(k, iεn + iωλ)},

−g2
Q

(kBT )2

L2

∑
k,q,n,ν

h̄ωQcQÕ++(q, iων )O++(q, iων + iωλ)evFTr[G(k, iεn)σ−G(k + q, iεn + iων + iωλ)σ+G(k, iεn + iωλ)σz]

= −g2
Q

(kBT )2

L2

∑
k,q,n,ν

h̄ωQcQÕ++(q, iων )O++(q, iων + iωλ)evF{G+−(k, iεn)G++(k + q, iεn + iων + iωλ)G−+(k, iεn + iωλ)

−G−−(k, iεn)G++(k + q, iεn + iων + iωλ)G−−(k, iεn + iωλ)},

g2
Q

(kBT )2

L2

∑
k,q,n,ν

h̄ωQcQÕ+−(q, iων )O−+(q, iων + iωλ)evFTr[G(k, iεn)σ−G(k + q, iεn + iων + iωλ)σ+G(k, iεn + iωλ)σz]

= g2
Q

(kBT )2

L2

∑
k,q,n,ν

h̄ωQcQÕ+−(q, iων )O−+(q, iων + iωλ)evF{G+−(k, iεn)G++(k + q, iεn + iων + iωλ)G−+(k, iεn + iωλ)

−G−−(k, iεn)G++(k + q, iεn + iων + iωλ)G−−(k, iεn + iωλ)}. (C1)

ω±Q+q, c±Q+q, and g±Q+q are approximated as ωQ,±cQ, and gQ, respectively. Here, it should be noted that the phonon
propagators are “directed” as fermions; that is, Omn(q, iων ) and Õmn(q, iων ) are Fourier transforms of

Omn(q, τ ) = −〈
Tτ

{
bmQ+q(τ )

[
b†

nQ+q(0) + b−nQ−q(0)
]}〉

,

Õmn(q, τ ) = −〈
Tτ

{[
bmQ+q(τ ) + b†

−mQ−q(τ )
]
b†

nQ+q(0)
}〉

, (C2)

respectively, with m, n = ±.
For Figs. 4(e)–4(p), the + and − signs for Gmn, Omn, and Õmn are different from those in diagrams Figs. 4(a)–4(d), while

the momenta and Matsubara frequencies are the same. Noting that the electronic part is common in the Figs. 4(e) and 4(f), for
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FIG. 4. Feynman diagrams for the phason drag. The solid lines and the dashed lines represent electron and phonon Green’s functions,
respectively, and the Q and −Q attached to the dashed lines represent the subscripts of the phonon Green’s functions Omn and Õmn, with
m, n = ±. (e)–(p) Only the Pauli matrices and the sign of Q are shown, while the momenta and Matsubara frequencies are the same as the
corresponding diagrams in (a)–(d).

example, we obtain

Figs. 4(e) + 4(f) : −g2
Q

(kBT )2

L2

∑
k,q,n,ν

h̄ωQcQ{Õ++(q, iων )O+−(q, iων + iωλ) − Õ+−(q, iων )O−−(q, iων + iωλ)}

×evF{G++(k, iεn)G−+(k − q, iεn − iων )G−+(k, iεn + iωλ)

−G−+(k, iεn)G−+(k − q, iεn − iων )G−−(k, iεn + iωλ)},
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Figs. 4(g) + 4(h) : −g2
Q

(kBT )2

L2

∑
k,q,n,ν

h̄ωQcQ{Õ++(q, iων )O+−(q, iων + iωλ) − Õ+−(q, iων )O−−(q, iων + iωλ)}

×evF{G++(k, iεn)G−+(k + q, iεn + iων + iωλ)G−+(k, iεn + iωλ)

−G−+(k, iεn)G−+(k + q, iεn + iων + iωλ)G−−(k, iεn + iωλ)}, (C3)

Figs. 4(i) + 4(j) : −g2
Q

(kBT )2

L2

∑
k,q,n,ν

h̄ωQcQ{Õ−+(q, iων )O++(q, iων + iωλ) − Õ−−(q, iων )O−+(q, iων + iωλ)}

×evF{G+−(k, iεn)G+−(k − q, iεn − iων )G++(k, iεn + iωλ)

−G−−(k, iεn)G+−(k − q, iεn − iων )G+−(k, iεn + iωλ)},

Figs. 4(k) + 4(l) : −g2
Q

(kBT )2

L2

∑
k,q,n,ν

h̄ωQcQ{Õ−+(q, iων )O++(q, iων + iωλ) − Õ−−(q, iων )O−+(q, iων + iωλ)}

×evF{G+−(k, iεn)G+−(k + q, iεn + iων + iωλ)G++(k, iεn + iωλ)

−G−−(k, iεn)G+−(k + q, iεn + iων + iωλ)G+−(k, iεn + iωλ)}, (C4)

Figs. 4(m) + 4(n) : −g2
Q

(kBT )2

L2

∑
k,q,n,ν

h̄ωQcQ{Õ−+(q, iων )O+−(q, iων + iωλ) − Õ−−(q, iων )O−−(q, iων + iωλ)}

×evF{G+−(k, iεn)G++(k − q, iεn − iων )G−+(k, iεn + iωλ)

−G−−(k, iεn)G++(k − q, iεn − iων )G−−(k, iεn + iωλ)},

Figs. 4(o) + 4(p) : −g2
Q

(kBT )2

L2

∑
k,q,n,ν

h̄ωQcQ{Õ−+(q, iων )O+−(q, iων + iωλ) − Õ−−(q, iων )O−−(q, iων + iωλ)}

×evF{G++(k, iεn)G−−(k + q, iεn + iων + iωλ)G++(k, iεn + iωλ)

−G−+(k, iεn)G−−(k + q, iεn + iων + iωλ)G+−(k, iεn + iωλ)}. (C5)

The “directed” phonon propagators, Omn and Õmn, are obtained from the Dyson equations shown in Appendix B. Substituting
the explicit form of Gmn in Eq. (9) and using the relationship between Omn, Õmn, and Dmn obtained in Eq. (B3), the total of
Eq. (C1) and Eqs. (C3)–(C5) becomes

�
ph
12(iωλ) = −eh̄vFωQcQg2

Q

(kBT )2

L2

∑
k,q,n,ν

iων + h̄ωQ

2h̄ωQ

iων + iωλ + h̄ωQ

2h̄ωQ

2

(iεn)2 − E2
k

1

(iεn + iωλ)2 − E2
k

×
[{
D++(q, iων )D++(q, iων + iωλ) − e−4iφD+−(q, iων )D+−(q, iων + iωλ)

}
× {

[ f (−q,−iων ) − f (q, iων + iωλ)]
[
iεn(iεn + iωλ) + ξ 2

k − �2
0

]
− [g(−q,−iων ) − g(q, iων + iωλ)]ξk (2iεn + iωλ)

}
+ {
D++(q, iων )D+−(q, iων + iωλ) −D+−(q, iων )D++(q, iων + iωλ)

}
×

{
− iωλ(�∗)2

(iεn − iων )2 − E2
k−q

− iωλ(�∗)2

(iεn + iων + iωλ)2 − E2
k+q

}]
, (C6)

where f (q, iων ) and g(q, iων ) are defined in Eq. (30). The last terms with iωλ(�∗)2 can be neglected in the following since it is
proportional to (iωλ)2. Finally, using the phason and amplitude propagators defined in Eq. (14), we obtain Eq. (29).

APPENDIX D: STRAIGHTFORWARD DERIVATION OF EQUATION (35)

Putting q = 0 and iωλ = 0 in the electron Green’s functions in Eq. (C1), the electronic part of �
ph
12(iωλ) corresponding to the

diagrams in Figs. 4(a) and 4(c) becomes

∑
k

Tr
[
G(k, iεn)σ+G(k, iεn − x)σ−G(k, iεn)σz + G(k, iεn)σ−G(k, iεn + x)σ+G(k, iεn)σz

]
, (D1)
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where iων is replaced by x. To evaluate the trace in Eq. (D1), we use

σ+

(
a b
c d

)
σ− =

(
d 0
0 0

)
= d

2
(σ0 + σz ),

σ−

(
a b
c d

)
σ+ =

(
0 0
0 a

)
= a

2
(σ0 − σz ), (D2)

where σ0 is the 2 × 2 unit matrix. When x = 0, the trace in Eq. (D1) becomes

1

2
Tr

[
G(k, iεn)

iεn − ξk

(iεn)2 − E2
k

(σ0 + σz )G(k, iεn)σz + G(k, iεn)
iεn + ξk

(iεn)2 − E2
k

(σ0 − σz )G(k, iεn)σz

]

= 1

(iεn)2 − E2
k

Tr[G(k, iεn)(iεnσ0 − ξkσz )G(k, iεn)σz]

= 2

[(iεn)2 − E2
k ]3

[
iεn × (2iεnξk ) − ξk × (

(iεn)2 + ξ 2
k − �2

0

)]
. (D3)

This vanishes since the last expression is odd with respect to k. The lowest order with respect to x becomes, in a similar way,

x Tr[G(k, iεn)σ+G2(k, iεn)σ−G(k, iεn)σz − G(k, iεn)σ−G2(k, iεn)σ+G(k, iεn)σz],

= x[
(iεn)2 − E2

k

]2 Tr
[
G(k, iεn)

{−2iεnξkσ0 + [
(iεn)2 + ξ 2

k + �2
0

]
σz

}
G(k, iεn)σz

]

= 2x[
(iεn)2 − E2

k

]4

{−2iεnξk × (2iεnξk ) + [
(iεn)2 + ξ 2

k + �2
0

] × [
(iεn)2 + ξ 2

k − �2
0

]}

= 2x[
(iεn)2 − E2

k

]4

{[
(iεn)2 − ξ 2

k

]2 − �4
0

}
, (D4)

which leads to Eq. (35). Other contributions in Fig. 4 are treated similarly.

APPENDIX E: CALCULATION OF D(T )

D(T ) = −kBT

L

∑
k,n

(iεn)2 − ξ 2
k + �2

0[
(iεn)2 − E2

k

]3

= 1

L

∑
k

∮
dz

2π i
f (z)

[
1(

z2 − E2
k

)2 + 2�2
0(

z2 − E2
k

)3

]

= − 1

L

∑
k

∑
±

[
± �2

0 f ′′(±Ek )

8E3
k

+ 2E2
k − 3�2

0

8E4
k

f ′(±Ek )

∓ 2E2
k − 3�2

0

8E5
k

f (±Ek )

]
, (E1)

where f (ε) = 1/(eβε + 1), i.e., the Fermi distribution func-
tion with μ = 0. At T = 0, we have

D(0) = − 1

L

∑
k

2E2
k − 3�2

0

8E5
k

. (E2)

Using the relation

d

dk

(
k

E3
k

)
= −2E2

k − 3�2
0

E5
k

, (E3)

Eq. (E2) becomes

D(0) = kF

8πE3
kF

, (E4)

where we set the range of k as |k| < kF, as assumed in Eq. (3).

APPENDIX F: PHASE HAMILTONIAN AND
PHASON PROPAGATOR

The phason propagator (38) at T = 0 is derived from pre-
vious studies based on the phase Hamiltonian approach. The
model of a phason coupled to randomly distributed impurities
is given by [18,19]

H0 = π h̄v′
∫

dx

[
p2 + 1

4π2

( v

v′
)2

(∇φ)2

]
(F1)

and

H ′ = V0ρ0

∑
i

cos[QRi + φ(Ri )], (F2)

where v is the phason velocity given in Eq. (16) and v′ =
v2/|vF|. The first one is the field theory for the phase variable
φ(x), while the second represents the coupling to impurities
of CDW expressed in terms of φ(x), which is derived from
the impurity Hamiltonian H ′ in Eq. (1) and the charge density
ρ(x) in Eq. (6), assuming that v(r − Ri ) = V0δ(x − Ri ). The
electrical conductivity for a uniform electric field with finite
frequency ω, σ (ω), is given as follows by noting that the
current density operator is represented as −(e/π )∂φ(x, t )/∂t
[14,18]:

σ (ω) = − iω

2

( e

π

)2
LD(0, 0; iωn)

∣∣
iωn→h̄ω+iδ, (F3)
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FIG. 5. Feynman diagrams in the t-matrix approximation. Crosses represent the impurity potential, and the solid double lines show the
phason propagator.

where the phason Green’s function is defined by

D(q, q′; iωn) = 2
∫ β

0
dτeiωnτ 〈Tτ [φq(τ )φ−q′ (0)]〉 (F4)

and φq is the Fourier transform of φ(x), defined as

φq = 1

L

∫
dxe−iqxφ(x). (F5)

It should be noted that the formulation in [18,19], in particular
the convention of ω, is changed in accordance with the present
framework.

Here, we note that the phonon operator bQ+q(τ ) +
b†

−Q−q(τ ) can be expressed in terms of the phase and ampli-
tude variables as

bQ+q(τ ) + b†
−Q−q(τ ) ∼

√
L

gQ
[�0 + δ�q(τ )]ei[φ+δφq (τ )], (F6)

where δ�q(τ ) represents the modulation of the amplitude and
δφq(τ ) represents the deviation from the constant φ. Substi-
tuting this expression into the phonon propagator in Eq. (7)
and using the expansion eiδφq (τ ) ∼ 1 + iδφq(τ ), we obtain

D++(q, τ ) ∼ − L

g2
Q

〈Tτ [δ�q(τ )δ�−q(0)]〉

− L�2
0

g2
Q

〈Tτ [δφq(τ )δφ−q(0)]〉,

D+−(q, τ ) ∼ − L

g2
Q

e2iφ〈Tτ [δ�q(τ )δ�−q(0)]〉

+ L�2
0

g2
Q

e2iφ〈Tτ [δφq(τ )δφ−q(0)]〉. (F7)

Hence, we obtain, by noting φq = φ + δφq,

P(q, iωn) = D++(q, iωn) − e−2iφD+−(q, iωn)

= −2
L�2

0

g2
Q

∫ β

0
dτeiωnτ 〈Tτ [δφq(τ )δφ−q(0)]〉

= −L�2
0

g2
Q

D(q, iωn), (F8)

which proves the equivalence between Eqs. (24) and (F3).
In a clean system without disorder this phason propagator

governed by (F1) is given by D(q, q′; iωn) = δq,q′D0(q, iωn),
with

D0(q, iωn) = 1

L

4π h̄v′

ω2
n + h̄2v2q2

. (F9)

By noting v = (m/m∗)1/2|vF|, with m∗ being the effective
mass of the phason mode σ (ω), Eq. (F3), in this case for
spatially uniform electric field (q = 0), is

σ (ω) = inee2

m∗ω
, (F10)

which is the same as that of LRA. Equation (F10) is consid-
ered to be a manifestation of Fröhlich superconductivity in the
Peierls phase without disorder.

The effects of impurity scattering on the phason propagator
are given by the self-energy correction �, defined by

〈D(q, q′; iωn)〉av = δq+q′ [D0(q)−1 − �]−1 = δq+q′D(q, iωn).
(F11)

The t-matrix approximation to � is given by the processes in
Fig. 5. As clarified in Ref. [19], the effects of impurity pinning
can be classified typically into weak and strong, characterized
by the parameter ε = V0ρ0/nih̄|vF|. We focus on the case of
weak pinning, ε � 1, for generality. In this case, the first-
and second-order terms in Fig. 5 are sufficient. The first-order
contribution is given by

�1 = V0ρ0

2L

∑
i

cos[QRi + φ(Ri )]. (F12)

This contribution is vanishing if the phase is rigid, i.e., spa-
tially constant. However, there is a gain in energy due to
spatial distortions of φ, reflecting the distribution of impurities
leading to domains with characteristic size L0, which is given
by (similar to a random walk problem)

�1 = − 1
2V0ρ0(niL0)1/2/L0. (F13)

Here, the size L0 should be determined by optimizing the
energy gain (F13) against the energy loss due to the spatial
distortion of the phase represented by the second term of
(F1), leading to (niL0)−1 = (απε)2/3, where the parameter α

reflects the way of the phase distortion of the order of π . The
study in [19] has indicated that α = 33/25 is the best choice.
This is the essence of impurity pinning. The second-order
contribution is given by

�2 =
(V0ρ0

2L

)2 ∑
q �=0

D(q, h̄ω)
∑
i, j

eiq(Ri−Rj ) cos[QRi + φ(Ri )]

× cos[QRj + φ(Rj )]

= ni

2

(V0ρ0

2

)2

2π
v′

v
(−h̄2ω2 − 4π h̄v′�)−1/2. (F14)
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The self-consistent equation for � = �1 + �2 given by
(F13) and (F14) leads to

G = −2α1/3 + (−y2 − G)−1/2, (F15)

where G = 4π h̄v′�/γ 2 and y = h̄ω/γ , with γ = (πε)2/3ω0

and ω0 = nih̄v. For low frequency, y < 1, the solution of
the self-consistent equation for G with the proper choice of
parameter characterizing the effects of impurity scattering for
causality to be satisfied is found to be G ∼ −a0 + ia1y, with

a0 = 1/22/3 = 0.630 and a1 = (24/3/3)1/2 = 0.916, which
leads to

D(q, h̄ω + iδ) = 1

L

4π h̄v′

−(h̄ω + iδ)2 + h̄2v2q2 + g0 − ih̄ωg1
,

(F16)

where g0 = γ 2a0 and g1 = γ a1. Equations
(F16) and (F8), together with v′ = v2/|vF|, v =
[X/(1 + X )]1/2|vF|, and X = ωQg2

Q/2π |vF|�2
0, lead

to (38).
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