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We present a mapping of various correlated multi-impurity Anderson models to a cluster model coupled to
a number of effective conduction bands capturing its essential low-energy physics. The major ingredient is the
complex single-particle self-energy matrix of the uncorrelated problem that encodes the influence to the host
conduction band onto the dynamics of a set of correlated orbitals in a given geometry. While the real part
of the self-energy matrix generates an effective hopping between the cluster orbitals, the imaginary part, or
hybridization matrix, determines the coupling to the effective conduction electron bands in the mapped model.
The rank of the hybridization matrix determines the number of independent screening channels of the problem,
and allows the replacement of the phenomenological exhaustion criterion by a rigorous mathematical statement.
This rank provides a distinction between multi-impurity models of the first kind and of the second kind. For
the latter, there are insufficient screening channels available, so that a singlet ground state must be driven by
the intercluster spin correlations. This classification provides a fundamental answer to the question of why
ferromagnetic exchange interactions between local moments are irrelevant for the spin-compensated ground state
in dilute multi-impurity models, whereas the formation of large spins competes with the Kondo scale in dense
impurity arrays, without evoking a spin density wave. The low-temperature physics of three examples taken from
the literature are deduced from the analytic structure of the mapped model, demonstrating the potential power
of this approach. Numerical renormalization group calculations are presented for up to five-site clusters. We
investigate the appearance of frustration-induced non-Fermi-liquid fixed points in the trimer, and demonstrate
the existence of several critical points of Kosterlitz-Thouless type at which ferromagnetic correlations suppress
the screening of an additional effective spin-1/2 degree of freedom.
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I. INTRODUCTION

The different competing phases in strongly correlated elec-
tron systems caused a lot of attention in the last 50 years.
Heavy fermions (HFs) [1,2] are a prominent example of
a heavy Fermi liquid (FL) formation and superconducting
phases [3]. Magnetically ordered phases [4] can either de-
velop out of a heavy FL with very low magnetic moments,
or out of a local moment phase with almost unscreened
magnetic moments [1]. Another prominent example is the
high-temperature superconductors, where a superconducting
dome at finite doping is located next to an antiferromagnet-
ically ordered Mott-Hubbard insulator [5]. External control
parameters, such as doping or pressure, have been used to
tune between phases of strongly correlated electron systems
at low temperatures: strange metals with non-Fermi-liquid
(NFL) properties have often been detected [2] in the vicinity
of such a quantum critical point (QCP) [4,6,7]. A sufficient
understanding of such strange metals, and their origin in
strongly correlated electronic systems, is still lacking, and the
underlying universality of strange-metal behavior that devel-
ops at a quantum critical phase transition is still subject of
intense theoretical research.

The physics of the heavy fermions is governed by a com-
petition between a heavy Fermi liquid formation due to the
Kondo effect [8] and a magnetic ordering of localized spins

due to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tion, both mediated by the light quasiparticles of the metallic
host [4]. Since these phases are orthogonal, the Doniach pic-
ture [9] suggests that there exists a quantum phase transition
between those two phases.

This scenario has triggered intensive work on the two-
impurity Kondo problem as a simplified model aiming for a
microscopic understanding of a potential quantum phase tran-
sition (QPT) between a magnetically ordered and a heavy FL
phase. For the two-impurity Kondo problem [10], however, it
turned out that ferromagnetic exchange interactions between
the local moments are irrelevant for the spin-compensated
ground state, and the antiferromagnetic QCP was shown to be
unstable [11,12]: the two singlet fixed points are adiabatically
connected by a continuous change of the conduction electron
scattering phase.

The Doniach picture was already questioned at the ad-
vent of early approaches to the periodic Anderson model or
the Kondo lattice model. Grewe [13] pointed out that this
purely local picture neglects the role of the band-mediated
interaction between the local moments. They influence the
Fermi liquid phase, as well as the formation of magnetically
ordered phases out of a heavy Fermi liquid phase, driven by
the residual quasiparticle interactions. The theory of mag-
netism in such materials must include localized and itinerant
magnetic order. Furthermore, Nozieres’ exhaustion scenario
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[14,15] challenged the notion that the heavy Fermi liquid
formation can be associated with individual Kondo effects
at each lattice site in a periodic system, where the Kondo
effect is mediated by the local density of states of the host
conduction electrons. In spite of the criticism, the Doniach
scenario remains a paradigm [4] even today in illustrations of
the potential origin of complex phase diagrams [16] in HFs.

While most of the HFs exhibit an antiferromagnetically
(AF) ordered phase, there is a growing number of ferro-
magnetic (FM) HF compounds [17–30]. Recent experiments
on such ferromagnetic HFs revealed strange-metal behavior
when the Curie temperature is smoothly suppressed to zero
via hydrostatic pressure [28,29] or chemical pressure [30].
Whereas quantum phase transitions in itinerant ferromagnets
are always of first order in the framework of Hertz-Millis-
Moriya theory [6,7], experiments [28–30] demonstrate the
existence of local criticality with Kondo destruction also in
ferromagnetic HFs. This finding proves that the destruction of
antiferromagnetism is not essential for the varied behaviors of
strange metals. New theories for such ferromagnetic QCPs,
aside from the first-order spin density wave scenario, are,
therefore, highly required and may provide new access in
the context of strange metals. Impurity clusters of finite size,
where the formation of a spin density wave is suppressed,
hence, are a good starting point in order to obtain a micro-
scopic understanding of why ferromagnetic correlations in
larger correlated clusters can compete with the Kondo screen-
ing, even if such a competition has not been reported in two-
and three-impurity models [31–34].

The quest for a many-impurity problem that is solvable,
and reveals interesting competing phases connected by a
true QCP, triggered the investigation of the frustrated three-
impurity spin problems [33–38]. The connection to bulk
materials, however, remains unclear, although it might be
very helpful to illustrate the possibility of emerging complex
phases. A key observation of these papers is the central role of
magnetic frustration that is able to trigger more exotic phases
in correlated materials.

In this paper, we present an approach that is able to
shed some light from a different perspective onto this old
and fundamental question. We start from the conventional
multi-impurity Anderson model (MIAM) where Nf correlated
Hubbard atomic sites are hybridizing with Wannier orbitals
of a single conduction electron band. This includes the well
studied single-impurity Anderson and Kondo models [39],
and the periodic Anderson model (PAM), where Nf is equal
to the number of lattice sites of the host material NL, as two
opposite limits, as well as finite-size impurity clusters that
become relevant for scanning tunneling microscopy (STM) or
as toy models for magnetic frustration. We present a mapping
for the original model to an effective low-energy MIAM that
is justified in the wide-band limit. The mapping accounts
for the conduction-band-mediated RKKY interaction and the
delocalization of the correlated orbitals by effective hopping
matrix elements between all orbitals, as well as the Kondo
effect by the construction of effective band channels.

The number of effective screening conduction band chan-
nels in the mapped model depends on the lattice geometry and
the location of the impurities. The number of k points on the
Fermi surface of the host material provides the upper limit of

the screening channels, challenging the Doniach scenario of
a Kondo screening of individual local spins by a single con-
duction band in the PAM. As a consequence of the mapping,
the magnetic ordering, the heavy FL formation, as well as
the screening of the local moments are related to collective
phenomena, involving a small number of Kondo screening
channels and the conduction-band-mediated effective interac-
tion between the impurity orbitals.

In Refs. [29,40] the paramagnetic-ferromagnetic transition
in the Kondo lattice was studied within an independent bath
approximation for each spin, such that the suppression of the
Kondo temperature can be ascribed to the Kondo resonance
narrowing in FM-coupled single-impurity Kondo models [41]
in combination with an infinite number of coupled local mo-
ments. However, due to the independent-bath approximation,
the exhaustion effect of the conduction electrons is neglected
in such models.

Within the classification we present below, we propose
a different mechanism leading to FM criticality in multi-
impurity models, directly based on the reduced number of
conduction band screening channels. From the two- and three-
impurity problem [31–34] it is known that FM correlations do
not compete with the single-ion Kondo effect and lead to a
reduction of the Kondo temperature at most. However, if the
number of impurities is large, such that there are not enough
conduction screening channels available, the singlet ground
state cannot be interpreted in terms of the single-ion Kondo
effect any longer, and additional collective mechanisms need
to be taken into account. We demonstrate that it is this collec-
tive singlet formation that competes with the formation of FM
correlations between the local moments.

Since the delocalization and the collective screening of
the individual local moments are both realized by opera-
tors responsible for the antiferromagnetic part of the RKKY
interaction, ferromagnetic couplings lead to a competition be-
tween (localized) magnetic order and the (delocalized) heavy
FLs. Consequently, the competition is rather between (delo-
calizing) AF and (localizing) FM RKKY interactions, than
between (delocalizing) Kondo and (localizing) RKKY cou-
pling, as usually assumed [29,40].

We demonstrate the formation of a ground state with finite
magnetic moment and ferromagnetic spin-spin correlations
between the local moments in multi-impurity models belong-
ing to the class that adiabatically evolves to the PAM for a
large number of correlated orbitals. Due to the finite number
of correlated orbitals a spin density wave scenario can be
excluded in this case. This ferromagnetic type of ground state
is beyond the scope of the generic two-impurity model where
a spin singlet is always formed at sufficient low temperatures.
The transition between a spin-singlet and a spinful ground
state is accompanied by a QCP, at which ferromagnetic cor-
relations lead to a suppression of the screening of an effective
spin-1/2 moment, i.e., a linear combination of the local mo-
ments in real space. The QCP is stable against any kind of
symmetry breaking and the transition can be driven by several
parameters of the model.

Magnetic frustration arises when the nearest and next-
nearest hopping matrix elements in the mapped model become
equally strong leading to competing antiferromagnetic inter-
actions. We study the impurity trimer in a C3-symmetric setup,
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and review the frustration-induced NFL fixed points [33,34]
within our effective low-energy model. While at intermediate
strengths of AF RKKY interaction KRKKY > Kc,1

RKKY the NFL
fixed point is stabilized, we establish the existence of an upper
bound Kc,2

RKKY, at which the NFL fixed point gets unstable, and
the system becomes a FL at low temperature. Since the RKKY
interaction needs to dominate over the Kondo temperature TK

in order to allow for magnetic frustration, the NFL fixed point
completely disappears in the phase diagram, if the Kondo
temperature exceeds this upper bound TK > Kc,2

RKKY.
One of the strengths of our effective low-energy mapping

is that it incorporates the FM and AF RKKY interaction as
well as the generated potential scattering terms: It naturally
incorporates the correct symmetries of the original multi-
impurity models coupled to only one single conduction band
[11,12,32]. We do not need to add artificial Heisenberg ex-
change couplings, which might lead to unphysical fixed points
as known from the two-impurity model [11,12,32], to realize
and explore the competing phases.

The paper is organized as follows. After introducing the
precise definition of our model in Sec. II A, we provide a
preliminary overview of the results in Sec. II B. While the
mapped low-energy MIAM is derived in Sec. II C, we in-
troduce the rank of the interaction matrix as quantitative
classification in multi-impurity problems of the first and sec-
ond kind in Sec. II D and discuss several impurity-cluster
configurations in different spatial dimensions. The strength
of our mapping is demonstrated in Sec. II F where we revisit
three different problems investigated in the literature using
sophisticated methods and predict the central result of each
problem: (i) the ferromagnetic ground state of the dilute PAM
[42,43] at half filling, (ii) the ferromagnetic ground state in
the one-electron limit of the Kondo-lattice model [44], as well
as (iii) the scaling of the critical Uc of the Mott transition
in the PAM with nearest-neighbor hybridization found in an
elaborate dynamical mean field calculation [45]. The limits
of the mapping are addressed in Sec. II G. Our numerical
renormalization group (NRG) results on three-, four-, and
five-impurity clusters are presented in Sec. III. In Sec. III A we
study the impurity trimer in a C3-symmetric setup, and review
the frustration-induced NFL fixed points [33,34]. For short
1d impurity chains in Sec. III B, we report on a sequence of
Kosterlitz-Thouless-type phase transitions as a function of the
host band filling and the strength of Coulomb interaction. In
Sec. III B 1 we study dense impurity arrays, such that the fixed
point evolves from a singlet at half filling to a maximally po-
larized multiplet at the band edge, and we discuss and explore
the role of magnetic frustration at intermediate band fillings in
Sec. III B 2. For dilute multi-impurity models in Sec. III B 3
the situation is vice versa; i.e., starting from a maximally po-
larized multiplet at half filling we can drive the system across
several QCPs to a spin-singlet ground state. We conclude the
paper with a short summary and an outlook in Sec. IV.

II. THEORY

A. Model

Although strongly correlated electron systems have a
large number of incarnations in particular when applied to

realistic material science, we focus on the most elementary
version in this paper that targets impurity clusters on sur-
faces as well as the elementary modeling of HFs. These
models can be easily generalized to more complex situ-
ations if needed, for instance to multiple correlated 3d
orbitals as required in transition metal ions, but show al-
ready rich physics that is worth presenting from a different
perspective.

Quantum impurity systems are typically embedded in a
metallic host which is represented by a noninteracting tight-
binding model

Hhost = −
∑
i, jσ

ti jc
†
i,σ c j,σ =

∑
�kσ

ε�kσ
c†

�kσ
c�kσ

(1)

that is diagonalized in k space in a periodic lattice. i, j label
all lattice points �Ri ∈ SL where SL defines the set of all lattice
points. The dimension of SL is NL. ε�kσ

denotes the band
dispersion obtained from Fourier transformation of the matrix
ti j , and can also include a Zeeman term due to an external
magnetic field not considered in this paper. ε�kσ

becomes a
continuous function of �k for NL → ∞. The diagonal element
tii accounts for the local orbital energy and is used to shift the
band center of the conduction band. In this paper, we restrict
ourselves to nearest-neighbor tight-binding models for keep-
ing the parameter space simple, but our approach is applicable
to arbitrary dispersions ε�kσ

.
The Nf impurities are located at the positions �Rl ∈ S f and

are modeled by an atomic Hubbard Hamiltonian

Hcorr =
∑
l,σ

ε
f
lσ f †

l,σ fl,σ + 1

2

∑
l,σ

Ul f †
l,σ fl,σ f †

l,σ̄ fl,σ̄ , (2)

where f (†)
l destroys (creates) an electron in the single-impurity

orbital at site l . The on-site energies are labeled by ε
f
l ,

σ̄ = −σ , and Ul denotes the on-site Coulomb repulsion. In
general, correlated 3d or 4 f shells contain many more de-
grees of freedom. Here, we focus on the essentials to keep
the number of free parameters to a minimum. We have sit-
uations in mind where crystal electric fields separate the
ground state doublet energetically from higher excitations
and spin-orbit coupling between the conduction electrons
and the local degrees of freedom can be neglected. How-
ever, the mapping and the classification introduced below
are applicable to an arbitrary number of orbital degrees of
freedom as well. The mapping introduced below is appli-
cable to arbitrary locations, but throughout the paper we
focus on a finite-dimensional subset S f ⊂ SL of the underlying
lattice.

Since we are only considering the thermodynamic equilib-
rium, we can either explicitly use a chemical potential μ to
adjust the different fillings, or we absorb μ by collectively
shifting all single-particle energies, tii and ε

f
l , by the same

amount and leave μ = 0. We adapt the latter convention and
investigate the effect of different conduction band fillings by
shifting the band center εc = tii.

The most general coupling between the two orthogo-
nal subsystems is given by the spin-diagonal hybridization
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term

Hhyb =
∑
l,mσ

Vm,l c
†
mσ flσ + H.c.

=
∑
�k,lσ

V�k,l c
†
�kσ

flσ + H.c., (3)

where V�k,l is obtained by a Fourier transformation,

V�k,l = 1√
NL

∑
m

Vm,l e
−i�k �Rm . (4)

In this paper, we only consider a local hybridization,
i.e., Vm,l = δmlVl , V�k,l = Vl exp(−i�k �Rl )/

√
NL, and a nearest-

neighbor hybridization Vm,l = V for �Rm and �Rl being nearest-
neighbor sites and Vm,l = 0 otherwise, corresponding to V�k,l =
−(V/t )(ε�k − εc) exp(−i�k �Rl ) [45]. The strength of the cou-
pling is typically discussed in terms of �0,l,σ = πV 2

l ρσ (0),
which describes the effective hybridization of a single impu-
rity with a conduction band density of states (DOS) ρσ (ε).
Although ρσ (ε) can be spin-dependent, we consider only
spin-independent host DOSs throughout this paper.

The total Hamiltonian of the system is given by

H = Hhost + Hcorr + Hhyb. (5)

This formulation includes two well established and well un-
derstood limits. If S f = SL, and Nf = NL → ∞, we recover
the PAM. If S f only contains a single site, the model is known
as the single-impurity Anderson model that was accurately
solved using the NRG [46,47] and the Bethe ansatz [48,49]
almost 40 years ago. If the number of sites 1 < Nf � NL

is small and finite, we refer to a multi-impurity Anderson
model (MIAM) whose simplest realization is the two-impurity
Anderson model (TIAM) [31,32]. Multiband versions of the
model have been addressed using an interleave approach to
the construction of Wilson chains [50] with its virtues and
limitations.

B. Preliminaries

At the heart of this paper lies the extension of the
low-energy mapping developed for the two-impurity model
[32] to the multi-impurity situation (Nf > 2) and the con-
sequences that can be concluded from this mapping. The
single-impurity problem [51] as well as the two-impurity
problem [11,12,31,52] have been extensively investigated
over the last four decades and are well understood.

The interest for the two-impurity problem originates in the
Doniach scenario [9] for heavy fermions (HFs) [1] which re-
lates the origin of the magnetic ordering found in some of the
HFs to the competition between the single-ion Kondo effect
[8] screening the local moments and the RKKY interaction
[53–62] favoring magnetic ordering of those moments. Al-
though lacking a rigorous mathematical proof, such appealing
visualizations of the complex physics in HFs [4,16,63] are
popular even today [63], since they provide a simple picture
that can intuitively be grasped. This picture was already chal-
lenged by Nozieres’ exhaustion scenario [14,15], as well as
by the observation that HF magnetism can form even out of a
heavy FL phase but with strongly reduced magnetic moments

FIG. 1. Schematic partitioning of the models in four different
categories: I denotes the limit of a single-impurity problem, section
II the MIAMs of the first kind, section III the MIAMs of the second
kind, and section IV the MIAM with infinite number of correlated
lattice sides recovering the periodic Anderson model.

[1,13]. This indicates that the Doniach scenario is too sim-
plistic and does not reflect the full physics in such complex
correlated electron systems.

Figure 1 summarizes the four categories of the MIAM
which we can mathematically rigorously distinguish within
our mapping presented below. The two well established limits
of the MIAM model, the single-impurity Anderson model
(Nf = 1) and the periodic Anderson model (Nf = NL), are
located at the opposite end of the figure, where the horizontal
axis denotes the number of impurities Nf .

We define the MIAM of the first kind by our ability to map
the low-energy physics problem onto an effective coupled
multi-impurity cluster that couples the Nf localized orbitals to
Nb = Nf effective conduction bands: The number of effective
conduction bands, Nb, exactly matches the number of impuri-
ties which allows for spin-singlet formation by a compensated
multichannel Kondo effect [64].

The first example of such a MIAM of the first kind is
the well understood two-impurity model [10–12,31,52,65],
Nf = 2. Jones and Varma showed [31] that the model can be
mapped onto a two-impurity, two-band model in the even/odd
parity basis. The induced orbital hopping [32] is responsible
for the antiferromagnetic (AF) exchange, the asymmetry of
the couplings to the two bands results in the ferromagnetic
(FM) part of the RKKY interaction [31], while the two bands
allow screening the impurity moments via a two-stage Kondo
effect. The QCP that emerges, if the energy dependence of
the hybridization functions in the even/odd basis is neglected
[10], is just a consequence of unphysical approximations
[11,12] which automatically restores a special kind of particle-
hole symmetry that is absent in the original model. Since
the antiferromagnetic RKKY interaction, which is required to
drive the phase transition, in the full model is dynamically
generated from the same contributions that break this special
symmetry, the QCP is replaced by a continuous crossover
once the full energy dependence is correctly incorporated.
Any approximative solution of multi-impurity problems, as a
toy model with regard to quantum criticality in HFs therefore,
needs to ensure the absence of a QCP in the two-impurity
limit. Other examples of the MIAM of the first kind are trimer
models [33–35] involving three effective conduction bands.

Depending on the details of the lattice topology and the ge-
ometric arrangement of the impurities, we find a critical value
Nc

f (SL, S f ) above which the MIAM maps onto a low-energy
multi-impurity cluster that couples to a reduced number of
effective conduction bands Nb < Nf . We call these types of

205132-4



STRONGLY CORRELATED MULTI-IMPURITY MODELS: … PHYSICAL REVIEW B 102, 205132 (2020)

problems the MIAM of the second kind, indicated by the cate-
gory III in Fig. 1. This reduced number of coupled conduction
bands has profound consequences for the magnetic properties
of the system: a large local moment, that is formed at low tem-
peratures, cannot be completely screened by the multichannel
Kondo effect. We argue below that the periodic Anderson
model (PAM) is a particular example for such an MIAM prob-
lem of the second kind: The screening of the local moments
must involve the antiferromagnetic RKKY-induced intersite
exchange coupling, which competes with the ferromagnetic
ones. As we demonstrate below, this competition results in
several QCPs in multi-impurity models of the second kind.

Nozieres [14,15] and others [66] already suggested that
only the fraction TKρ(0) of the conduction electrons can
contribute to the Kondo screening in the PAM, TK being the
single-impurity Kondo temperature and ρ(0) being the con-
duction electron density of states at the chemical potential.
Therefore, there are not enough conduction electrons available
for ensuring the Kondo screening of all local f moments by
independent Kondo screening mechanisms.

The singlet ground state formation in a heavy Fermi liquid
must be based on a different mechanism than simply extend-
ing the single-impurity Kondo effect to periodic structures.
Although the PAM is mapped onto an effective single-site
problem [67–71] embedded into a lattice self-consistency
condition in the context of the dynamical mean field the-
ory (DMFT) [72], indicating a simple connection between
the single-ion Kondo effect and the Kondo lattice problem,
Pruschke and collaborators [71] interpreted the occurring
chemical-potential-dependent reduction of the effective con-
duction electron density of states in the effective single-site
problem in terms of Nozieres’ exhaustion scenario. Moreover,
Hollender and Bulla demonstrated in Ref. [73] a striking dif-
ference between TK and the low-energy scale Tc of the PAM:
Using a constant DOS in their DMFT calculations they found
a strong dependence of Tc on the filling of the conduction
band, whereas TK remains nearly constant in this case.

Based on our low-energy mapping presented below, we
provide a different perspective on the heavy FL formation
in the PAM and Kondo lattice model (KLM). It replaces the
phenomenological exhaustion scenario with a rigorous math-
ematical criterion and connects the local Kondo screening and
magnetic ordering within the DMFT approach to the mecha-
nism [74] known from the Hubbard model.

C. Low-energy effective multi-impurity model

Since an exact solution of complex multi-impurity corre-
lated electron systems is not known in most of the interesting
cases, when the number of impurities exceeds Nf > 2, the
challenge is to find an appropriate approximation to neverthe-
less extract the relevant low-temperature physics. We propose
a mapping onto an effective low-energy model which can be
used to analyze the emergence of free local moments in a
variety of different situations, and allows us to understand
their screening as well as the potential magnetic ordering.
Throughout the rest of the paper, we assume the absence of
a complicated magnetically ordered phase in the host as well
as on the correlated sites. We focus on problems in which the
z component of the spin is a good quantum number.

The effect of the host conduction band onto the dynamics
of the correlated lattice sites is determined by the spin-
diagonal hybridization function matrix [75],

�lm,σ (z) = 1

Nc

∑
�k

V ∗
�k,l

V�k,mei�k( �Rl − �Rm )

z − ε�kσ

, (6)

derived from Eq. (3).
The exact real-space multi-impurity Green’s function ma-

trix of the dimension 2Nf × 2Nf in spin-orbital space is
reduced to two Nf × Nf block matrices for spin-diagonal
problems and is given by the matrix

Gσ (z) = [z − Eσ − �σ (z)]−1, (7)

in the absence of the Coulomb interaction, Ul = 0. The matrix
Eσ is diagonal and contains the single-particle energies of the
localized orbitals, εlσ [76], and the matrix elements of the self-
energy matrix �(z) are given in Eq. (6). For Ul > 0, the self-
energy matrix �(z) is augmented by a correlation contribution
�U

σ (z), �(z) → �(z) + �U
σ (z), which was the starting point

of the screening channel analysis in Ref. [77].
The energy dependence of �lm,σ (z) can be neglected in

the wide-band limit, Vl/D → 0. Its effect on the local impu-
rity dynamics is mainly determined by the complex matrix
elements �lm,σ (−i0+) for a ρσ (ω) that is almost constant on
the relevant low-energy window. We also have to be careful
with the distance dependency of the off-diagonal matrix ele-
ments �lm,σ (z). The definition (6) reveals that the larger the
distance, the more pronounced the frequency oscillation of
�lm,σ (z) is close to Fermi energy. The error of the approx-
imation is estimated by the first derivative of the imaginary
part of �lm,σ (z), d�lm,σ (ω)/dω [32]. While the oscillations
are very pronounced for an isotropic dispersion of the con-
duction electrons in 1d, resulting in significant corrections
in 1d, the derivative becomes R-independent in 3d; see Eq.
(61) in Ref. [32]. The proposed approximation is valid in
the regime d�lm,σ (ω)/dω → 0 which can always be ensured
for Vl/D → 0. In Sec. II G we discuss the applicability and
limitations of the mapping in detail.

We divide the complex matrix element �lm,σ (−i0+)
into its real and imaginary part: �lm,σ (−i0+) =
Re�lm,σ (−i0+) + i�lm,σ . We absorb the effective interorbital
hopping matrix elements Re�lm,σ (−i0+) into the energy
matrix Eσ → Eσ + Re�σ (−i0+). If we are only interested
in the dynamics of the multi-impurity cluster degrees of
freedom, the problem can be mapped onto an effective
problem where the charge fluctuation matrix �lm,σ is
generated by a fictions set of conduction bands. For that
purpose, we diagonalize the Hermitian matrix �lm,σ ,

�σ = Uh
σ�d

σUσ , (8)

where the Nf eigenvalues �d
nσ = πV̄ 2

nσ ρ0
σ (0) are interpreted

as coupling of the new orbital n to the nth new effective
conduction band with the same DOS ρ0

σ (ε) as the original con-
duction band DOS at half filling, εc = 0, and the hybridization
strength is given by V̄nσ . Note that a spin-dependent hybridiza-
tion function, for instance generated by an external magnetic
field, leads to different effective orbitals for the two spin orien-
tations. Although we focus on spin-independent hybridization
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functions in this paper, we have numerically implemented the
full spinful approach in our NRG code.

This is justified since we are only interested in the dif-
ferent fixed-point structure of the model and not in the
accurate calculation of the low-temperature crossover scale.
Its precise number is also determined by the high-energy
degrees of freedom [39,51,78]. Then the Green’s function is
approximated by

Gσ (z) ≈ Uσ [z − E ′
σ − i�d ]−1

σ Uh
σ , (9)

where the energy matrix E ′,

E ′
σ = Uσ [Eσ + Re�σ (−i0+)]Uh

σ , (10)

contains diagonal and hopping terms between all correlated
impurity orbitals in the new eigenbase diagonalizing �σ . The
approximation is limited to a range of frequencies z for which
�lm,σ (z) ≈ �lm,σ (si0+) with s = sgn(Imz).

Consequently, the same low-frequency single-particle
Green’s function matrix is generated by the effective single-
particle Hamiltonian

H ′
sp = Hcl + Hdeloc (11)

in the new eigenbase of �σ in the limit Vl/D → 0. The cluster
part of the mapped Hamiltonian H ′

sp,

Hcl =
∑
m,l

E ′
lmσ f †

lσ fmσ , (12)

defines the single-particle Hamiltonian of the correlated or-
bitals in the new basis that have acquired additional orbital
hopping terms mediated by the conduction band of the host.
The second part,

Hdeloc =
Nf∑

n=1

∑
�kσ

(ε�kσ
− εc)c†

�k,n,σ
c�k,n,σ

+
Nf∑

n=1

∑
�kσ

(
V̄nσ√

Nc
c†

�k,n,σ
fnσ + H.c.

)
, (13)

includes the new Nf effective conduction band degrees and
the flavor diagonal coupling to the cluster orbitals for each
conduction band flavor n. Note, however, that the total number
of particles in each flavor n is in general not conserved, since
this operator does not commute with the single-particle cluster
Hamiltonian Hcl.

Whereas the hybridizations V̄nσ of the mapped model are
exclusively determined by the Fermi surface, all high-energy
conduction band states contribute to the dynamics of the clus-
ter Hcl via the energy matrix elements E ′

lmσ . The real part of
the complex hybridization function, and the effective hopping
elements t eff

lmσ , respectively, can be deduced via a Hilbert trans-
formation

t eff
lmσ = Re�lm,σ (−i0+) = 1

π

∫ ∞

−∞
dε

�lm,σ (ε)

ε
(14)

that incorporates some information on the whole energy de-
pendence of the coupling functions. These hopping elements
generate the antiferromagnetic part of the RKKY interaction

and simultaneously lead to destruction of the QCP in the two-
impurity limit [11,12,32] since it is a relevant perturbation of
the fixed point [11].

The correlated MIAM is recovered after the local Coulomb
matrix elements in Hcorr, Eq. (2), has also been rotated into
the new orbital basis as well, and added to the single-particle
Hamiltonian H ′

sp. This leads to a complicated, coupled multi-
impurity problem that still contains the full spatial correlations
in contrast to a local approximation in real space that is em-
ployed by the DMFT.

This mapping generates Nf fictitious conduction bands
labeled with the index n and the corresponding, orthogonal
single-particle orbitals, augmented by new orbital energies
and an interorbital hopping, both included in the matrix el-
ements E ′

lmσ . As a side product of this mapping, we have
separated the AF part of the RKKY interaction that is gener-
ated by the intersite matrix elements of E ′

lmσ from the Kondo
screening channels. Since the hybridization strengths �nσ are
in general all different, multistage screening of local moments
is found in such situations. Furthermore, the differences gen-
erate the FM part of the RKKY interaction [31,32]. In addition
we found that for large Nf , only a few �nσ are different from
zero; therefore, the number of Kondo screening channels is
typically much smaller than Nf .

This mapping was previously investigated [32] in the two-
impurity Anderson model (Nf = 2) where the two conduction
bands represent states with even and with odd parity. In
this case, one can either use the full energy dependency
of the even-parity and the odd-parity band [11,12,79,80] in
a numerical renormalization group (NRG) [39] calculation,
or investigate the mapped Hamiltonian (11) with a particle-
hole-symmetric band density of states. Both Hamiltonians,
the original MIAM as well as the mapped Hamiltonian,
produced the same RG fixed points for a featureless and spin-
independent initial ρ(ω), and the same spin-spin correlation
functions in the wide-band limit, establishing the quality of
the mapping for Nf = 2. It was shown that the particle-hole
asymmetry in the even and odd conduction band dynamically
generates an effective hopping between the two local orbitals,
which is responsible for the AF part of the RKKY interaction
via an exchange mechanism once Ul > 0. The FM part of the
RKKY interaction is generated by the imbalance between the
two eigenvalues of �σ .

D. Classification of the multi-impurity problem by the rank(�σ )

Having an effective low-energy multi-impurity model at
hand, we can now rigorously define different classes of MI-
AMs, as well as distinguish between a multi-impurity model
of the first kind versus one of the second kind. Mathemati-
cally, the hybridization matrix �σ has exactly Nf eigenvalues
if its rank is equal to the number of impurity orbitals, i.e.,
rank(�σ ) = Nf . Since the original model only contains a sin-
gle conduction electron band, the phase correlations between
different lattice sites encoded in Eq. (6) are responsible for the
fact that the rank of the matrix is often less than the number
of impurity orbitals: rank(�σ ) < Nf . Therefore, we use the
rank(�) to classify the MIAM into two categories: a multi-
impurity problem of the first kind requires that rank(�σ ) =
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Nf , while rank(�σ ) < Nf defines a multi-impurity problem
of the second kind.

Throughout the rest of the paper, we only consider a para-
magnetic host with spin-degenerated bands in the absence of
an external magnetic field. Although we maintain the spin
index in �σ for consistency, both � matrices are identical
and therefore have the same rank. It is up to a future study
to investigate problems where the matrices for the different
spin orientations might have different ranks.

The multi-impurity problem of the first kind is an example
of a compensated multichannel Kondo problem [64]: there are
always enough conduction band channels available for a com-
plete screening of all local moments via a multistage Kondo
effect [64]. When reducing the temperature of the system,
the details of the eigenvalues �d

nσ of �σ define a cascade of
low-energy scales at which the local moments are quenched
by 1/2 until the singlet ground state is reached. Although the
transfer matrix E ′

lmσ is responsible for generating an effective
low-energy Heisenberg model, representing the AF part of
the RKKY interaction, the prequenching of the moments via
the effective Heisenberg couplings is not needed to obtain a
singlet ground state. Consequently, ferromagnetic exchange
couplings between the local moments are irrelevant with re-
spect to the singlet ground state for models of the first kind.
However, interesting physics can arise in problems that con-
tain magnetically frustrated systems requiring at least three
impurities [33–35,37,38]. Our mapping provides an ideal tool
to investigate which physical condition the original model
must fulfill in order to reach the critical parameter regimes re-
ported for the trimer Kondo models [33–38] or their Anderson
model incarnations [81,82].

The two-impurity Anderson (TIAM) or Kondo model is
a typical representative of a multi-impurity problem of the
first kind where always a singlet ground state is generated—
with the exception of peculiar geometric conditions [32,83,84]
where rank(�σ ) = 1 is found. Although the interest in the
TIAM was driven by the Doniach scenario, the originally
reported quantum phase transition [31] between a two-stage
Kondo singlet and an RKKY-induced singlet turned out to
be an artifact of the approximation. This model shows a
crossover between both phases accompanied by a continuous
variation of the scattering phase [11,12] which is also included
in our mapped model [32]. The QPT is destroyed by the real
part of �σ (−iδ) inducing a hopping term in the cluster that is
a relevant perturbation in the vicinity of the QPT [11,12,32].

The TIAM is an ideal system to explicitly understand the
origin of the rank reduction in our effective model, since
the original mapping by Jones and Varma always leads to a
coupling to two conduction bands. Following the arguments
of Ref. [84], or inspecting the imaginary part of �lm,σ (z),
Eq. (6), in the even or odd parity basis for certain dispersions
ε�k and relative distances �Rl − �Rm between the impurities,
yields a vanishing of the energy-dependent coupling function
�σ (ω) at the chemical potential of a power-law form |ω|α ,
where α > 1. For such an exponent of pseudogap coupling
functions the local moment fixed point has been proven to be
stable [85–87] in the RG flow. Therefore, the approximation
made in the effective low-energy model (11), by neglecting
the full energy dependency of the bands, is fully justified since
the low-energy fixed point remains unaltered. The rank of

the coupling function matrix �σ is a simple measure to iden-
tify the number of independent effective conduction electron
channels that can be potentially used for the screening of local
moments by the Kondo effect.

A interesting consequence arises for large Nf , for instance
in the PAM where Nf = NL. Let us consider a very large but
finite system with periodic boundary conditions. In this case,
we know that the problem can be diagonalized in �k space: The
new multi-impurity orbitals are labeled also by the quantum
number �k, and acquire a very complicated nonlocal Coulomb
matrix. The single-particle matrix �σ (z), however, must be
diagonal in �k, and the matrix elements take the very simple
form

��kσ
(z) = |V�k|2

z − ε�kσ

, (15)

which is the well known self-energy of the f -lattice Green’s
function. As a consequence, only the �k values for which ε�kσ

=
0 holds yield a finite ��kσ

in the mapped model. Therefore,
rank(�σ ) � Nf for the PAM, and the number of available
screening channels is related to the size of the Fermi surface
and not the number of correlated orbitals. We can conclude
that in one dimension rank(�σ ) � 2 since the Fermi surface
is discrete and only contains two points.

Our concept of classifying the MIAM including the peri-
odic model in terms of rank(�σ ) allows a much more precise
definition of the phenomenological exhaustion principle: for
a Kondo screening in the MIAM there are only rank(�σ )
screening channels available. Obviously, this definition is only
governed by the single-particle properties, introduced by the
arrangement of the impurities, the underlying lattice, and the
host dispersion ε�kσ

. This mathematically precise definition,
however, is able to replace the phenomenological notion of
a fraction ρσ (0)TK of electrons contributing to the Kondo
screening, which requires the definition of TK although TK

became a questionable quantity in MIAM.
This finding is a strong indicator that the singlet ground

state in the PAM is caused by a different mechanism: it
is driven by the hopping matrix elements E ′

lm delocalizing
the local impurity electrons within the f -impurity subsys-
tem and not by Nf -independent conduction electron channels,
as already conjectured by Grewe [13] more then 30 years
ago. For this second kind of MIAMs, the formation of large
spins due to ferromagnetic exchange couplings competes
with the self-screening of the correlated electrons, and leads
to several QCPs in the phase diagram of such models. In-
teresting physics also arises from the competition between
self-screening of the correlated impurity cluster and magnetic
frustration due to long-range hopping matrix elements E ′

lmσ

in finite dimensions. By inspecting Eq. (6), one can conclude
that E ′

lmσ decays rather rapidly in higher spatial dimensions
destroying the physics of magnetic frustration in the limit
d → ∞, in accordance with the arguments of Metzner and
Vollhardt [88], Brandt and Mielsch [89], as well as Müller-
Hartmann [90].

The question of the number of screening channels in a
multi-impurity model was also raised in Ref. [77]. The au-
thors focused on the full energy dependence of �(ω) which
only allows a definite statement in the limit of | �Rl − �Rm| → 0
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for all impurity combinations l, m or for a particular high-
symmetry point, where one or several �(ω) = 0 over the full
frequency range. A general construction of multiband NRG
chains can be found for instance in the Supplemental Material
of Ref. [91]. The strength of our approach, however, lies in
the revelation of the low-energy physics of the model even
in complicated setups when the details of the high-energy
physics only influence the crossover scales but not the dif-
ferent emerging low-energy fixed points. This is achieved by
focusing on the low-energy description in the vicinity of the
chemical potential in the spirit of Wilson’s original ideals [51],
and this approximation becomes exact in the wide-band limit.

1. The rank(�σ ) for finite impurity cluster in various dimensions

In the PAM the number of k points on the Fermi surface of
the host material provides the upper limit for the number the
available screening channels, independently of the structure
and the dimension of the underlying lattice. Since the number
of decoupled f orbitals in the PAM must continuously de-
velop out of the MIAM with a finite number Nf of correlated
impurities, we study the reduction of rank(�σ ) for finite-
impurity clusters with different geometries and in different
dimensions. For this purpose we consider a simple cubic lat-
tice with nearest-neighbor hopping t such that the dispersion
ε�k in d dimensions reads ε�kσ

= −2t
∑d

i cos(kia) + εc. In the
following we concentrate on dense impurity arrays where all
the impurities are placed next to each other. Dilute impurity
configurations can always be deduced from a dense array, by
shifting the on-site energy ε

f
i of the depleted sites to infinity.

Therefore, the rank(�σ ) of the dense array serves as an upper
limit for any depleted configuration that can be deduced from
the dense case.

In one dimension, the Fermi surface consists of two single
points which determine the rank of the charge-fluctuation
matrix for the PAM: rank(�σ ) = 2. Consequently for any
finite number Nf of correlated impurities we can conclude
rank(�σ ) � 2 and Nc

f = 3. Every MIAM in 1d with Nf � Nc
f

belongs to the MIAM of the second kind and thus exhibits
QCPs due to FM correlations between the local moments in
its parameter space.

In higher dimensions the Fermi surface itself becomes a
continuum in the thermodynamic limit and an argumentation
analog to the 1d case is not possible. Hence we focus on some
explicit configurations in 2d which are schematically depicted
in Fig. 2.

If the impurities are placed in line along the x direction
as schematically depicted in Fig. 2(a), we can diagonalize
the charge-fluctuation matrix in the limit Nf → ∞ via a 1d
Fourier transformation

�kx ∝
∑

ky

|V�k|2δ(ε�k ). (16)

For a half-filled conduction band, εc = 0, one can always
find a ky such that �k = (kx, ky)T belongs to the Fermi sur-
face and, consequently, �kx = 0, which implies a MIAM of
the first kind: rank(�σ ) = Nf . Deviations from half filling,
εc = 0, lead to a small number of kx points for which no ky

can be found such that �k = (kx, ky)T belongs to the Fermi
surface. In this case the MIAM with Nf → ∞ belongs to

FIG. 2. MIAM with 2d simple cubic lattice, containing uncor-
related lattice orbitals (green) and correlated impurities (blue). The
individual panels depict different geometries of the impurity config-
uration leading to a different number of decoupled orbitals Nfree =
Nf − rank(�σ ). (a) Nfree = 0, (b) Nfree = 1, (c) Nfree = 1, and (d)
Nfree = 2.

the second kind; however, the number of decoupled orbitals
Nfree = Nf − rank(�σ ) remains small and for Nf � 50 a nu-
merical evaluation yields rank(�σ ) = Nf for various fillings.

For a finite number of Nf = 5 impurities, which are ar-
ranged as depicted in Fig. 2(b), we can analytically calculate
rank(�σ ) using the irreducible representation of the C4 point
group. In this basis one obtains three 1d subspaces with
�nσ = 0, for a general filling εc, and one 2d subspace. The
2d subspace contains the correlated orbital in the center of
the impurity array fc and the even combination fe = 1

2

∑
i fi,o,

where fi,o denotes the annihilation operator of the outer impu-
rities. The charge-fluctuation matrix of this 2d subspace for
arbitrary fillings εc reads

�even,σ =
(

�outer
e �o/c

e
�o/c

e �center
e

)
= �0

(
(εc/2t )2 εc/2t
εc/2t 1

)
, (17)

and exhibits an incomplete rank for every εc due to
det(�even,σ ) = 0. We can conclude rank(�σ ) = 4 = Nf − 1
for the configuration in Fig. 2(b), which, consequently, be-
longs to the second kind of MIAMs.

For arbitrary arrangements of Nf impurities on a 2d simple
cubic lattice, the charge-fluctuation matrix �σ can be numer-
ically evaluated using Eq. (6). For the configuration in panel
(c) of Fig. 2, for instance, we obtain rank(�σ ) = 8 = Nf − 1,
whereas the evaluation of rank(�σ ), for an arrangement as
depicted in Fig. 2(d), yields rank(�σ ) = 6 = Nf − 2. The
analytical and numerical evaluation of the rank of the charge-
fluctuation matrix �σ for a simple cubic lattice in 2d, as well
as in 3d, indicates that the number of available screening chan-
nels is proportional to the number of the outermost impurities
of a certain arrangement. This finding is compatible with the
fact that rank(�σ ) for the PAM is limited to the number of
�k points on the Fermi surface of the host material, which in
general is proportional to Nd−1.

For STM experiments, the impurity cluster on a 2d surface
of a 3d crystal is of particular interest. In order to qualitatively
study such situations we used the exact 2d surface Green’s
function G0

2d,σ (�k||, ω), with �k|| = (kx, ky)T , of a semi-infinite
3d simple cubic lattice, which can be found in [92,93], to con-
struct the complex hybridization matrix �σ (z). If the number
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Nf of impurities is small, we found a MIAM of the first kind
in general. Configurations which belong to the second kind of
MIAMs in the pure 2d case, however, exhibit a clear hierarchy
of hybridizations �nσ in the mapped model. Hence, due to the
finite temperature in experiments, the fully spin-compensated
ground state may not be reached since the smallest Kondo
temperature is exponentially suppressed. For a large number
of impurities arranged in a dense cluster one will continuously
reach the limit of a fully covered 2d surface. In that case
we can diagonalize the charge-fluctuation matrix �σ via a 2d
Fourier transformation which, according to [92,93], yields

��k||σ ∝
⎧⎨
⎩

√
1 −

(
ε2d

�k||
/2t

)2
if

∣∣∣ε2d
�k||

/2t
∣∣∣ � 1,

0, else,
(18)

and, consequently, reveals a MIAM of the second kind.

E. Constructing effective cluster models in the
local moment regime

Having an effective multi-impurity model at hand, we can
use the results of Sec. II C to propose a two-step process in
order to gain some physical insight in the low-energy proper-
ties of the original model. In a first step, we set the couplings
V̄n to the effective conduction bands to zero, and focus on the
decoupled cluster dynamics. After understanding the ground
state and the elementary excitations within the cluster, we
couple the cluster to the neglected conduction bands. Such
a procedure implies a certain hierarchy of energy scales: the
Coulomb repulsion, being the largest energy scale, causes a
local moment formation, dividing the cluster Hilbert space in
irreducible subspaces of the total spin. The hopping matrix
defines the intermediate energy scale selecting the ground
state multiplet of the cluster. In the last step, the effective local
moment fixed point of the decoupled cluster becomes unstable
due to the coupling to the neglected conduction bands.

For this energy hierarchy one can employ a two-step
Schrieffer-Wolff-type [94] transformation. In the first step,
such a transformation is applied to the decoupled cluster. This
leads to a finite-size t-J model for large Nf as used in the
context of the high-temperature superconductors [5]. Depend-
ing on the particle-hole asymmetry, a pure spin model might
emerge, favoring locally antiferromagnetically aligned spins
that might order for Nf → ∞, or a more complicated model
with two- and three-site interactions. In a second Schrieffer-
Wolff-type [94] transformation, an effective Kondo coupling
is obtained between the ground state multiplets and the now
included coupling to the previously neglected conduction
bands.

In the SIAM [39,46,47], the system flows to the same
strong-coupling fixed point in the case of a dominating cou-
pling to conduction electrons but without a clear signature of
the local moment fixed point. Therefore, the energy hierarchy
outlined above is not essential in a full NRG and only helps
shaping our physical intuition in some limited cases. Hence,
our low-energy MIAM also contains the correct physics for
the cases in which the hybridization strengths �̄nσ dominate
over the magnetic exchange terms that would be generated by
the first Schrieffer-Wolff-type transformation. In this case the

FIG. 3. The diluted periodic Anderson model in 1d: the local
impurities are only connected to the B sublattice.

local moments are starting to be partially screened before the
interaction between the magnetic moments becomes relevant.

F. Applying the mapping to some cases discussed in
the literature

1. The dilute Kondo lattice model in 1d

An interesting version of a diluted Kondo lattice model in
1d was investigated by Potthoff and collaborators [42,43] at
half filling. The correlated electron sites are only coupled to
the B sublattice of the bipartite lattice as depicted in Fig. 3.
The authors report that the ground state is ferromagnetic, and
the total spin S = (Nf − 1)/2 contains one local moment less
than the total number of correlated sites.

This surprising finding can be very easily explained by em-
ploying our mapping onto a low-energy multi-impurity model.
The 1d chain [42,43] with a constant lattice spacing a forms
a bipartite lattice. A simple nearest-neighbor tight-binding
band structure, εk = −2t cos(ka), was considered by Potthoff
and collaborators [42,43,95,96]. Starting from a half-filled
(kF = ±π/2a) conduction band, the real and imaginary parts
of �lm,σ (−i0+) are given by

Im�lm,σ (−i0+) = πVlVmρ1d(0) cos
(π

2

Rlm

a

)
, (19a)

Re�lm,σ (−i0+) = VlVm

∫ D

−D
dε

ρ1d(ε) cos
[
cos−1

(
ε
D

)Rlm
a

]
ε

,

(19b)

where Rlm = Rl − Rm = a(l − m) denotes the relative dis-
tance between the two impurities at Rl and Rm. If the
impurities are placed on the same (different) sublattice, i.e.,
Rlm = 2na (Rlm = [2n + 1]a) with n ∈ Z, the real (imaginary)
part of �lm(−i0+) vanishes. For Vl = V we obtain

�lm,σ (−i0+) =
{±i�0, same sublattice,

Re�lm,σ (−i0+), different sublattice,

(20)

where �0 = πV 2ρ1d(0). Then, the hybridization function ma-
trix of the correlated lattice sites at the sublattice B, as
depicted in Fig. 3, is given by a purely imaginary spin-
independent matrix

�σ = i�0

⎛
⎜⎜⎝

+1 −1 +1 · · ·
−1 +1 −1 · · ·
+1 −1 +1 · · ·
...

...
...

. . .

⎞
⎟⎟⎠ (21)

at zero frequency. The matrix is finite-dimensional for a fi-
nite lattice of size Nc = 2Nf with rank(−i�σ ) = 1, such that
only a single eigenvalue �̄0 = Nf �0 is different from zero.
Only one of the Nf new orbitals couples to an effective
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conduction electron band, and in real space a 1/Nf fraction
of the local moments on each lattice site is screened by the
flow to the strong-coupling fixed point. The other Nf − 1
orthogonal orbitals are disconnected from a conduction band
since Re[�σ ] = 0. Since the asymmetry of the coupling
constants is responsible for the FM part of the RKKY in-
teraction [31,32], those remaining Nf − 1 effective moments
are aligned ferromagnetically at low temperatures, as reported
using a density-matrix renormalization group (DMRG) cal-
culation [42,43,95,96]. Therefore, our mapping provides a
simple and intuitive understanding of such a complex corre-
lated system as the dilute PAM in 1d.

The question arises whether this finding for the 1d diluted
PAM is symmetry related or a consequence of the phase
relation in Eq. (6), connecting two lattice sites via a single
conduction band. Let us imagine the case in which the cou-
pling to the impurity site at the origin is much larger than
to all others: V0 � Vl , l = 0. Then we can solve the problem
in two steps: solve a single-impurity problem by setting Vl =
0, l = 0, and once the low-energy fixed point of that problem
is reached, switch on the other couplings Vl . The diagonal
component of the conduction electron Green’s function in real
space,

Gii,σ (z) = G0
ii,σ (z) + V 2

0 G0
i0,σ (z)GU

imp,σ (z)G0
0i,σ (z), (22)

is obtained from the exact equation of motion and determines
the local density of states prior to switching on Vl . G0

i j (z)
denotes the free propagator from Ri to Rj ,

G0
i j,σ (z) = 1

N

∑
k

eik(Ri−Rj )

z − εk

=
∫ D

−D

ρ0
1d(ω) cos

{Ri−Rj

a cos−1
[

ω
D

]}
z − ε

, (23)

and V 2
0 GU

imp,σ (z) the t matrix of the impurity located at the
origin, calculated for a finite U . For a particle-hole-symmetric
band, the real part of G0

i j,σ (z) essentially vanishes for (Ri −
Rj ) = 2na, and n ∈ Z, at low frequencies. If we substitute
a Lorentzian approximation for GU=0

imp (z) (Kondo effect), we
obtain the approximate solution

ρRi,σ (ω) ≈ ρ̃Ri,σ (ω) = ρ0
1d(ω) −

[
ρ0

1d(ω) cos
{

Ri cos−1
[ω

D

]}]2 π2V 4
0 ρ0

1d(0)

ω2 + [
πV 2

0 ρ0
1d(0)

]2 (24)

for the local conduction electron spectral function at site Ri. A
careful analysis of this DOS reveals a pseudogap formation
of the spectrum at all other correlated impurity sites: the
larger the distance, the faster the DOS oscillations in energy
space, the smaller the energy interval of the pseudogap. Since
the pseudogap always vanishes quadratically, �i,σ (ω) ∝ |ω|2
in this energy window, a local magnetic moment of another
impurity coupled to the conduction electrons at site Ri remains
unscreened in the limit T → 0.

As a consequence, the artificial distortion of the coupling
constants Vl , in favor of a single dominating hybridiza-
tion, provides a real-space interpretation of our finding that
rank(�σ ) = 1 in the 1d dilute PAM. The delocalized or-
bital coupling to the single effective band for Vl = V0 is

adiabatically deformed to the localized orbital at the origin for
Vl � V0(l = 0), which does not alter the rank of the matrix. In
our approach, the real-space nature of this orbital is encoded
in the eigenvector of �σ corresponding to the single finite
eigenvalue.

In an approach that includes the full energy dependency
of the conduction bands in an effective Nf -band model,
we obtain Nf − 1 channels that decouple quadratically at
the chemical potential, and, therefore, cannot screen a local
moment [85–87]: The rank is independent of coupling asym-
metries and governed by the dispersion εk and the topology
of the impurity locations. Consequently, the fixed point of the
full model is correctly captured by the effective low-energy
Hamiltonian, even for large V/D apart from the wide-band
limit, contrary to local quantities. As demonstrated by DMRG
calculations [42,43], the size of the magnetic moment of
the ground state is independent from the strength of V/D.
However, whereas it possesses mainly f character in the
wide-band limit V/D → 0, it continuously shifts into the host,
and becomes a pure conduction band quantity in the limit
V/D → ∞. This flow of the magnetic moment, from f to
c character, obviously is absent in the effective low-energy
description for the wide-band limit.

2. Limit of the one-electron Kondo lattice model

Extending the consideration to the full PAM in 1d at
half filling, the problem can be interpreted as coupling the
two dilute PAM problems of each sublattice via the hopping
matrix elements defined in Eq. (19b). On each sublattice,
one spin is screened while the remaining Nf /2 − 1 spins
are ferromagnetically aligned. The mapping (20) generates
an effective hopping between the orbitals on the different
sublattices. This yields a band formation within the correlated
sites as well as an AF coupling between the ferromagnetically
aligned spins on the sublattices favoring an antiferromagnetic
ordering.

Sigrist et al. [44] derived rigorous results for the ground
states for the one-electron Kondo lattice model almost 30
years ago. The authors have proven that the ground state
is of incomplete ferromagnetic order with Stot = (Nf − 1)/2
for antiferromagnetic Kondo couplings always present in the
PAM as well. We demonstrate that is can also be concluded
from our mapped model. For that purpose we recall that
we have to shift the chemical potential to the lower band
edge, i.e., μ → −2td or εc → 2td , while keeping the cor-
related site singly occupied, where d is the dimension of
the simple cubic lattice. For |�kF | → 0, we obtain �lm,σ = �0

and as a consequence again rank(�σ ) = 1. The same holds
for �kF → π (1, . . . , 1)T . Therefore, one effective moment is
screened, and our mapping predicts a FM ground state of
Stot = (Nf − 1)/2 as proven by Sigrist et al. [44]. Note that
the limit J → ∞ of the Kondo lattice model, where a ground
state formed by local singlets is expected, is a singular point
[44] and not accessible within the PAM. While the exact form
of the ground state and the ground state energy still require
detailed calculations, the rank of �σ provides already a basic
understanding of the elementary magnetic properties of the
model in the limit of a vanishing band filling.
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3. Mott transition in the periodic Anderson model with
nearest-neighbor hybridization

As a third example we consider the periodic Anderson
model with nearest-neighbor hybridization [45]. The real-
space matrix �σ (z) becomes diagonal in �k space,

��kσ
(z) = |V |2

t2

(ε�k − εc)2

z − ε�k
. (25)

Clearly, the imaginary part of ��kσ
(ω − iδ) vanishes for a half-

filled conduction band, εc = 0, for all �k, reducing rank(�σ ) =
0: no effective conduction band couples to the impurity or-
bitals, and one is left with a decoupled infinite-size cluster of
f orbitals.

The real part of ��kσ
(z), takes the form

t̃�k = −|V |2
t2

ε�k, (26)

leading to a renormalized band dispersion for U = 0,

ε
f
�k = ε f − |V |2

t2
ε�k, (27)

in �k space. Our approximation maps the PAM with nearest-
neighbor hybridization onto an effective single-band Hubbard
model. The band dispersion of this decoupled f -electron sub-
system is identical to those of the host conduction electron but
rescaled by the factor (V/t )2 and a different sign.

Without any further calculations, we can conclude that
this model must undergo a Mott-Hubbard metal-insulator
transition at two different critical values U f

c1,U f
c2 for T → 0

depending on whether one comes from the metallic or the
insulating site of the QPT [72,97]. The values for U f

c are
related to the established results for the Hubbard model by the
scaling factor V 2/t2. This prediction of our mapping perfectly
agrees with the elaborate DMFT calculation by Held and
Bulla [45]. They found (i) a Mott-Hubbard metal-insulator
transition in their full DMFT calculation and (ii) a scaling of
U f

c = (V/t )2U Hub
c for small V . The scaling factor is modified

for larger hybridization strength V , exactly as discussed in
Sec. II C: corrections must be included for the deviations from
the wide-band limit. This demonstrates the power and the
potential of our mapping for the qualitative understanding of
such correlated lattice models.

G. Discussion: Applicability and limitations of the mapping

In this section we address the possible shortcomings of
our mapping neglecting the full energy dependency of �(ω −
i0+). The static properties of the mapped model based on the
approximation �(ω ± i0+) ≈ �(±i0+) become exact if the
hybridization function matrix �(z) is featureless on the scale
of TK around the Fermi energy. This is always fulfilled in
the wide-band limit V/D → 0 since then TK/D → 0 even if
TK/�0 is held constant (V ∝ √

D).
In the case of a MIAM of the first kind the frequency

dependence of �(z) only leads to a modification of the Kondo
and RKKY scale but no additional fixed points will occur.
In contrast to that one has to be a bit more careful when
studying a MIAM of the second kind, where some of the
effective conduction band channels l decouple due to �l = 0.

If we take into account the whole energy dependence, the
imaginary part of the hybridization matrix will be nondiagonal
for ω = 0 in general. We cannot completely exclude some
subtle reentrance of the screening due to the remaining off-
diagonal matrix elements which only vanish for ω = 0 and
couple the high-energy degrees of freedom of the individual
Wilson chains. At least for the variety of quite different mod-
els discussed in Sec. II F and treated with various methods
that do not rely on any mapping and include the full energy
dependence, however, we know that the finite-frequency off-
diagonal matrix elements do not alter the fixed point structure
of the ground state, even beyond the wide-band limit.

Concentrating on the remaining energy dependence of the
diagonal elements, the vanishing eigenvalues at ω = 0 indi-
cate a pseudogap, �(ω) ∝ |ω|α , with exponent α and width δ

in the corresponding channel of the full model. For α < 1 or
large particle-hole (PH) asymmetry, screening of local mo-
ments may become possible at a critical coupling strength
Vc/D [85–87] and additional fixed points can emerge beyond
the wide-band limit that are not included in the mapped model.

Even if the local moment fixed point is stable, we neverthe-
less need to consider the case of a width δ � TK : Around T ≈
TK the screening of the f -local moment by conduction band
electrons sets in when lowering the temperature further, and
the system flows to an unstable intermediate strong-coupling
fixed point. Just on the scale of δ the remaining Wilson
chain sites gradually decouple and contribute to the free local
moment of the ground state, which, consequently, possesses
mainly c character [84]. This unstable strong-coupling fixed
point and the redistribution of the location of the free local
moment with increasing TK/δ is not included in the mapped
model, where the impurity is completely decoupled from the
conduction band as is the case for TK � δ. However, the
stable fixed point is independent from the ratio of TK/D, or
TK/δ respectively, in contrast to a local moment coupled to a
superconducting host with gap of width �sc [98–101]: Since
the host consists of a hard gap instead of a pseudogap, the
Wilson chain is finite such that the RG stops at the scale
of �sc and the intermediate fixed point becomes stable for
TK > �sc. The mapped model fails in such a situation and is
only applicable for TK < �sc.

The character and locational flow of the local moment,
from f to c character when increasing TK/D, or TK/δ respec-
tively, has been observed in the context of the dilute PAM,
discussed in Sec. II F 1, and is also relevant for the dilute
limit in 1d: For two impurities placed on the same sublattice
of a half-filled chain, the mapped model contains only one
single conduction band due to rank(�) = 1, and the dilute
limit seems to be absent. However, a detailed analysis of
the energy dependence of the decoupled channel [84] reveals
α = 2 but δ → 0 for |Ri − Rj | → ∞, such that TK/δ → ∞
for a constant V/D and both impurities get screened indepen-
dently at TK . The crossover to the stable local moment (LM)
fixed point occurs on the scale δ ∝ |Ri − Rj |−1 [84]. Hence,
in a potential experimental realization of such a 1d TIAM at
a fixed temperature T > 0, one would observe a crossover
to the dilute limit when the distance-dependent energy gap
width δ(|Ri − Rj |) ≈ T . In higher dimensions the crossover
to the dilute limit at finite temperature is well included in
the mapped model since the Fermi surface is a continuum.
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Starting from the dense limit with rank(�) < Nf one will find
rank(�) = Nf once all the impurities are separated by at least
some characteristic minimal distance.

III. NUMERICAL RENORMALIZATION GROUP RESULTS
FOR MULTI-IMPURITY PROBLEMS

A. Emerging trimer with three conduction electron bands

In the last decades the role of magnetic frustration for HFs
has been discussed in the context of strongly correlated multi-
impurity models [4,33–38]. Since it was realized that the
two-impurity problem lacks complexity and the reported QCP
appears to be an artifact of the approximation [11,12] made
in the original approach, nowadays the focus lies on models
with three local moments coupled to an arbitrary number of
conduction bands [33–36,36–38]. These papers in particular
focus on the emergence of a frustration-induced NFL fixed
point that might be related to QCPs found in bulk materials.
In this section we review these kinds of models from the
perspective of our effective low-energy mapping.

In the case of three identical correlated orbitals, the struc-
ture of the effective low-energy model reduces to four free
parameters: The diagonal elements of �σ (−i0+) are equal for
all impurities, whereas the off-diagonal elements �off

i j,σ (−i0+)
depend on the geometric arrangement of the impurities and the
structure, as well as the filling, of the underlying lattice of the
crystal. For �off

i j,σ = Im�off
i j,σ (−i0+) = 0 each of the correlated

orbitals couples to its own, independent conduction band, as
studied in [35]. In general, however, the impurities are coupled
to the same conduction band, which implies �off

i j,σ = 0, such
that a precursive diagonalization of �σ is necessary in order
to obtain an “independent-bath” description of the model.

For a generic setup of the three-impurity problem in a
paramagnetic metallic host, the Hamiltonian does not preserve
the symmetry of the C3 point group, and, consequently, at least
either �off

12 = �off
23 or Re�off

12 (−i0+) = t eff
12 = t eff

23 . Note that we
dropped the spin index σ for clarity since the parameters are
spin-independent. For such a situation a frustration-induced
NFL fixed point is unlikely to be found, since either the Kondo
scale or the RKKY scale induces an imbalance that prevents a
possible frustration.

In some special setups, however, the Hamiltonian may
preserve the symmetry of the C3 point group, as studied in
Refs. [33,34], where the Kondo impurities are placed in a
crystal with an isotropic dispersion relation in an arrangement
of an equilateral triangle with impurity separation �R. In this
case, the authors found three different fixed points.

If the ferromagnetic RKKY interaction dominates, the lo-
cal moment that forms at intermediate temperature is screened
by the three independent effective conduction bands, leading
to a FL with spin-singlet ground state. This corresponds to the
trivial case of individual Kondo screening of the three local
moments for �R → ∞ and is referred to as the independent
Kondo fixed point (FP). In the case of a dominating antifer-
romagnetic RKKY interaction, the authors of Refs. [33,34]
still differentiate between two frustrated scenarios, which they
called the “frustrated Kondo regime” and “isospin Kondo
regime,” both characterized by NFL FPs (for further expla-
nation see Refs. [33] and [34]). Whereas the isospin Kondo

regime was found to be unstable against weak PH asymmetry,
the frustrated Kondo regime is robust against moderate PH
asymmetry.

In order to study the model with a C3 symmetry within our
effective low-energy mapping, we applied the NRG with a
discretization of λ = 4 and kept Ns = 3000 states after each
diagonalization in the NRG procedure. Note that even if Ns =
3000 states might be insufficient to calculate thermodynamic
quantities within a three-channel NRG calculation, the authors
of Ref. [33] only kept Ns = 1200 states in their NRG calcu-
lations, which was sufficient to reproduce a conformal field
theoretical description [34] of the model.

Due to the C3 symmetry, two independent parameters de-
termine the influence of the original host conduction band
onto the dynamics of the correlated orbitals in the effec-
tive low-energy model, �off = �off

12 = �off
23 and t eff = t eff

12 =
t eff
23 . In this section we focus on the parameter regime −0.5 <

�off/�0 < 1, such that rank (�σ ) = 3 is satisfied, and we are
always studying a MIAM of the first kind.

The case of dominating ferromagnetic RKKY interaction,
or �R → ∞ respectively, corresponds to small t eff → 0 and
results in the fully Kondo-screened FL fixed point, indepen-
dently of the choice of �off.

For dominating AF RKKY interactions, corresponding to
an appropriate value of t eff, we can still differentiate between
two situations: Applying C3 point group properties, two of the
three eigenvalues of �σ are identical. These are associated
with the two helical states which are complex conjugated to
each other. For �off/�0 < 0, these two eigenvalues define the
larger couplings in the effective low-energy model, whereas
for �off/�0 > 0, the single eigenvalue dominates. �off/�0 = 0
implies an independent conduction band for each impurity
in real space and, consequently, three identical eigenvalues
�n = �0.

In order to artificially restore PH symmetry, which is
necessary to reproduce both NFL fixed points found in
Refs. [33,34], we replace the effective tunneling elements
t eff by an effective Heisenberg exchange interaction J =
4(t eff )2/U between the correlated orbitals

∑
σ

∑
i j,i = j

t eff f †
iσ f jσ →

∑
i j,i = j

J �Si �S j . (28)

This incorporates the correct AF part of the RKKY interaction
but removes the PH-symmetry-breaking term by hand. For
this PH-symmetric setting, and J/TK � 1, we can identify
the isospin Kondo regime for �off/�0 � 0 and the frustrated
Kondo FP for �off/�0 > 0. Whereas the isospin Kondo FP
is unstable against small deviations from the PH-symmetric
point, ε f → ε f ± δε, the frustrated Kondo FP remains stable
in accordance with Refs. [33,34]. However, our NRG calcu-
lations reveal that even the frustrated Kondo FP is unstable
when a sufficient tunneling element t > tc between the corre-
lated orbitals is added.

This finding has profound consequences for the NFL fixed
point, since such a tunneling matrix element is always dy-
namically generated in the full model, if the impurities are
coupled to the same conduction band [32]. The strength of
RKKY interaction and potential scattering in the conduction
band channels cannot be treated as independent parameters,
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FIG. 4. Phase diagram for the low-energy model with C3 sym-
metry as function of the tunneling element t eff between the correlated
orbitals and �off/�0 = 0.2, U/�0 = 20, ε f /�0 = −10, D/�0 = 10.
Small values of t eff result in a FM or weak AF exchange interaction
and a FL. Intermediate t eff

c,1 < t eff < t eff
c,2 lead to an AF exchange and

the frustrated Kondo regime. For large t eff > t eff
c,2 the PH asymmetry

destroys the NFL fixed point on a crossover scale (purple line points)
which is exponentially small for (t eff − t eff

c,2) → 0+.

as done in Refs. [33,34]. In our effective low-energy model
the AF part of the RKKY interaction, as well as the potential
scattering, is generated by the same parameter t eff.

In order to study the phase diagram of our mapped
C3-symmetric MIAM, we recall that due to the symmetry
restrictions we have only two independent parameters �off and
t eff, stemming from the real and imaginary part of the self-
energy matrix �σ (z). We keep the ratios U/�0 and �off/�0 >

0 fixed in order to access the frustrated Kondo regime of the
model. We summarized the low-energy fixed points found in
the NRG calculation for U/�0 = 20 and �off/�0 = 0.2 as a
function of the remaining free parameter t eff in Fig. 4.

The impurity contribution to the entropy, Simp [39], is a
measure for the fixed-point properties and is related to the
ground state degeneracy g of simple low-energy fixed points,
Simp = kB ln(g). In the local moment regime, g is given by an
integer value g = 2S + 1, where S is the effective spin of the
local moment. At NFL FPs, however, g can also acquire an ir-
rational number parametrizing the unconventional low-energy
excitation spectrum at the FP [34].

Since a finite �off is responsible for a FM RKKY interac-
tion, we find the fully Kondo-screened FL FP for small t eff.
The spin-spin correlation function starts from ferromagneti-
cally aligned spins for t eff = 0 and is reduced with increasing
t eff. Shortly before the critical values t eff

c,1 the correlation func-
tion changes its sign to weakly AF-coupled local moments.
At a critical t eff

c,1/�0 ≈ 0.18, the AF part of the RKKY in-
teraction dominates, leading to the frustrated Kondo regime
with irrational degeneracy g of the ground state [102], g =
[1/2(5 + √

5)]0.5 ≈ 1.9, as reported in [34].
While further increasing t eff, we observe a second critical

value t eff
c,2/�0 ≈ 0.41 at which the NFL fixed point becomes

unstable: For t eff > t eff
c,2, the system flows to the unstable frus-

trated Kondo fixed point at intermediate temperatures, but
crosses over to a stable FL below the low-energy scale T0 (pur-
ple line points in Fig. 4), which is defined at the point where
the entropy reaches the midpoint between both fixed points,
Simp(T0) = 1/2(SFL

imp + SNFL
imp ). This new crossover scale is

TABLE I. Critical strengths t eff
c,1 and t eff

c,2 of the low-energy model
with C3 symmetry and PH-symmetric impurities, for three different
values of �off/�0 and two different Coulomb interactions U/�0. For
U/�0 = 10 the NFL fixed point is absent for all regarded �off/�0.

�off/�0 = 0.2 �off/�0 = 0.4 �off/�0 = 0.6

U/�0 = 20 t eff
c,1/�0 ≈ 0.18 t eff

c,1/�0 ≈ 0.29 t eff
c,1/�0 ≈ 0.61

t eff
c,2/�0 ≈ 0.41 t eff

c,2/�0 ≈ 0.96 t eff
c,2/�0 ≈ 1.94

U/�0 = 10

exponentially suppressed when approaching the QCP for
(t eff − t eff

c,2) → 0+.
In order to find a finite interval of t eff in which the

NFL fixed point is stable, the total RKKY coupling KRKKY,
comprising the FM and AF contributions KRKKY = KFM

RKKY +
KAF

RKKY, needs to fulfill two conditions: (i) the AF part of
the RKKY interaction has to dominate over the FM one,
KAF

RKKY > KFM
RKKY, and (ii) KRKKY needs to be larger than the

single-ion Kondo temperature but must not exceed an upper
critical value

TK < KRKKY < Kc
RKKY , (29)

since an increasing KAF
RKKY is associated with increasing po-

tential scattering destroying the NFL fixed point. As a result
of the upper bound in Eq. (29), the NFL fixed point is absent
once TK > Kc

RKKY.
We repeated the NRG calculations for two other ratios of

�off/�0 as well and find the same sequence of low-energy
fixed points. We summarize the two critical t eff

c,1/2 for three
different values of �off/�0 and two different Coulomb inter-
actions U/�0, for PH-symmetric impurities, i.e., ε f = −U/2,
in Table I. The larger the value of �off/�0, the larger is
the interval (t eff

c,2 − t eff
c,1) of the NFL regime as is apparent

for U/�0 = 20. Since a large �off increases the FM RKKY
interaction, a larger t eff > t eff

c,1 is necessary in order to reach
the stable frustrated Kondo regime.

In the case of U/�0 = 10, the single-ion Kondo tempera-
ture is too large to fulfill Eq. (29), and the NFL fixed point is
absent for all three values of �off/�0 listed in Table I. Conse-
quently, a small Kondo temperature in combination with large
�off and t eff stabilizes the NFL fixed point over a large region
in the parameter space.

However, �off and t eff cannot be chosen independently in
real materials, since they result from the imaginary and real
part of the same complex hybridization matrix �σ (−i0+). In
Fig. 5, we plot �off (light blue) and t eff (black) in (a) 2d and
in (b) 3d, as a function of the dimensionless distance RkF ,
using an isotropic linear dispersion ε�k for the host conduction
band. Due to the typical phase shift between �off and t eff, large
values of t eff in general correspond to small values of �off,
destabilizing the NFL fixed point.

In conclusion, our low-energy mapping demonstrates that
it indeed is possible to realize the NFL fixed point of the
frustrated Kondo regime found in Refs. [33,34]. Nevertheless,
aside from the C3-symmetric setup, this requires a substan-
tial small single-ion Kondo temperature and a small impurity
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FIG. 5. Effective tunneling element t eff = Re�off(−i0+) (black)
and �off = Im�off(−i0+) (light blue) as function of the dimension-
less distance RkF for an isotropic linear dispersion ε�k in (a) 2d and
(b) 3d.

separation RkF ≈ 1 in order to achieve an appropriate combi-
nation of �off/�0 > 0 and t eff

c,1 < t eff < t eff
c,2.

B. Multi-impurity problems connected to a 1d host

In this section we present the results for several MIAMs
of the second kind by applying the NRG to the effective
low-energy models. We focus on the low-energy fixed points,
the crossover temperatures, and spin-spin correlation function
for Nf = 3, 4 and Nf = 5 as a function of the band filling,
and identify a series of Kosterlitz-Thouless-type QCPs that
are associated with a change of the fixed-point degeneracy.
Since the decay of the effective hopping matrix element with
the impurity-impurity distance is the slowest in 1d, we used
a 1d host to maximize the magnetic frustration induced by
hopping matrix Re�σ . Note that one of the main results,
namely the existence QCPs in the phase diagram, which
emerge due to FM correlations between the local moments,
is not restricted to 1d systems. These QCPs originate from
the fact that we are studying MIAMs of the second kind with
rank(�σ ) � 2 < Nf , which likewise exist in higher spatial
dimensions as discussed in Sec. II D 1. We also use a simple
nearest-neighbor tight-binding model with a dispersion εkσ =
−2t cos(ka) + εc. In the case of an odd number Nf we prevent
a spin singlet formation already within the multi-impurity
cluster.

The Nf impurities form a short finite-size chain in 1d. The
orbital energies and the Coulomb repulsion U are chosen such
that the local orbitals are approximately singly occupied at
low temperature, and the induced local moment is subject to
the remaining interactions.

By shifting the band center tii = εc from εc = 0 to εc →
D = 2t , we reduce the electron filling in the conduction band
of the host, reduce the Fermi wave vector k f , and hence
alter the matrix elements �lm,σ (−i0+) such that the spin-spin
correlation functions are associated with a longer wavelength.
While εc = 0 refers to a half-filled particle-hole-symmetric
conduction band, we approach the one conduction electron

limit for |εc|/D → 1 that has been considered by Sigrist et al.
[44]. The analysis of this 1d finite-size impurity chain prob-
lem shows that rank(�σ ) = 2, with the exception of |εc| = D
where the rank changes to one.

Three points are worth noting. Such problems (i) can be
treated by a two-band NRG approach as a consequence of
rank(�σ ) � 2 and are limited only by the maximally man-
ageable dimension of the local cluster Hilbert space. (ii) The
cluster contribution [51] to the low-energy fixed-point en-
tropy, Simp, is given by Simp = kB ln(Nf ) in the limit |εc| → D
in accordance with Ref. [44]. For Nf > 2, we are (iii) always
investigating a MIAM problem of the second kind depicted as
regime III in Fig. 1.

In this section we start with dense impurity arrays where
the correlated orbitals are placed next to each other, such
that the antiferromagnetic RKKY interaction dominates for
a roughly half-filled conduction band. We study the effect
of frustrated RKKY interaction at intermediate band fillings
and QCPs due to FM correlations occurring near the band
edges for PH-symmetric impurities and at intermediate fill-
ings for large PH asymmetry. Following this, we present
NRG results for dilute impurity configurations with dom-
inating ferromagnetic RKKY interactions for a half-filled
conduction band, which is more suited for ferromagnetic
HF materials. These dilute multi-impurity models exhibit
FM correlations and the associated QCPs in a realistic re-
gion of the parameter space which might be connected to
those found in the quasi-1d ferromagnetic HF materials
[20,28,29].

Unless otherwise stated, we set the NRG discretization pa-
rameter λ = 3 and kept NS = 5000 states after each iteration.

1. Kosterlitz-Thouless-type quantum phase transitions and the
phase diagram in dense impurity arrays

Above, we introduced the parametrization of the impurity
contribution to the entropy, Simp, in terms of a ground state
degeneracy g: Simp = kB ln(g). This effective degeneracy g =
exp(Simp/kB) is plotted as function of |εc| in Fig. 6(a) for Nf =
3 and a particle-hole-symmetric Hamiltonian Hcorr. It shows
the typical behavior of the MIAM under investigation here.
Starting from a singlet ground state, g = 1, the degeneracy
increases in integer steps to the maximum g = Nf , which is al-
ways reached for |εc|/D → 1. The point of increase defines a
quantum critical point (QCP) which is of Kosterlitz-Thouless
(KT) type as shown below.

In Fig. 6, we concentrate on parameters close to the
changes of entropy. In order to understand the physics of
the two different quantum phases in the depicted region of
εc, the two different spin-correlation functions are plotted in
Fig. 6(b).

In region I, Simp(T → 0) vanishes, and the correlation
functions of the two outer impurity spins are antiparallel while
the central spin moment is screened by the Kondo effect. This
setup is equivalent to the triangular spin cluster investigated
in Refs. [81,103,104]. The correlation function between the
two outer spins with the central spin almost vanishes. The
spin singlet formation involves two components: the AF in-
teraction mediated by the dominating next-nearest hopping
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FIG. 6. (a) Impurity contribution to the entropy for T → 0 as
function of the band center for three particle-hole-symmetric im-
purities with U/�0 = 10, ε

f
i = −U/2, and D/�0 = 10. (b) The two

spin-spin correlation functions for the same parameter. The center
impurity is labeled i = 2, the two outer correlated sites i = 1, 3.

between two outer spins, and the Kondo effect in the even
sector that removes the local moment of the central spin.

The QCP occurs at the red point added to the horizontal
axis in Fig. 6(a): At this point Simp jumps to kB ln(2) indicating
a doubly degenerate ground state in region II. The spin-spin
correlation function, however, shows a smooth crossover at
this point indicating the physics of the new ground state.
The nearest-neighbor spin-spin correlation function depicted
in red in Fig. 6(b) rises from an antialignment to a finite
ferromagnetic correlation. This observation is consistent with
the notion that a reduction of k f eventually changes the
nearest-neighbor RKKY interaction from AF to FM. The
next-nearest-neighbor spin-spin correlation function changes
sign to ferromagnetic correlations of the same magnitude: All
three local moments of the correlated cluster are ferromag-
netically coupled in this parameter regime and form a large
I = 3/2 total spin at the unstable local moment fixed point.
Since we only have two effective conduction electron band
channels due to rank(�σ ) = 2, we are in an underscreened
Kondo regime. We found a two-stage Kondo effect quenching
the I = 3/2 local spin down to I = 1/2 via the two conduction
electron channels coupling with different coupling constants.
This is consistent with the residual entropy of a remaining
decoupled doublet in the stable low-energy fixed point.

Note that the FM RKKY coupling is essential to stabilize
the LM fixed point. In Refs. [81,104] the authors studied a
quantum dot trimer consisting of a specific symmetry in real
space, such that only the subspace with even parity is directly
coupled to a conduction band screening channel. In this spe-
cial case it is possible to also use the values of single-particle
hopping terms between the orbitals and the hopping-induced

AF coupling between the local moments to stabilize a local
moment with odd parity. However, if the local moments are
coupled via the RKKY interaction, i.e., all orbitals hybridize
with one single conduction band in real space, each irre-
ducible subspace contains at least one screening channel in
general and, consequently, it is impossible to stabilize the LM
fixed point for AF RKKY couplings.

The rank of the �σ matrix changes to rank(�σ ) = 1 at the
point |εc|/D = 1: the total I = 3/2 spin formed by the FM
RKKY interaction defining the unstable local moment fixed
point can only be screened by the single remaining conduction
electron channel leading to the cluster entropy of Simp/kB =
ln(3).

The black entropy curve in Fig. 6(a) suggests that this
is a smooth transition at finite temperature, governed by a
crossover value |εc|/D < 1. This data, however, was obtained
for a fixed number of NRG iterations that corresponds to a
fixed temperature of T/�0 = 10−10. We increased the number
of NRG iterations and added the results as the light-blue curve
representing a temperature that is 20 orders of magnitude
lower, i.e., T/�0 = 10−30. The crossover region is clearly
pushed closer to |εc|/D = 1.

The finding in region II of Fig. 6(a) can be understood in
terms of a band-filling-dependent low-energy scale TL(εc) that
governs the crossover from the unstable local moment fixed
point with I = 3/2 to the stable low-energy fixed point which
is characterized by Simp = kB ln(2). This low-energy scale can
be associated with the Kondo screening due to the smaller
coupling �n that vanishes for |εc| → D. To access the entropy
of the low-energy fixed point requires that T � TL(εc). From
our NRG data we can conclude that

lim
|εc|→D

TL(εc) = 0 (30)

and, therefore, the critical point (i) is located at |εc|/D = 1 and
(ii) is of Kosterlitz-Thouless type since it vanishes as TL(εc) ∝
exp(A/

√
D − |εc|) with some fitting parameter A.

The investigation of the low-energy fixed points of the
MIAM with Nf = 4 and Nf = 5 reveals a similar picture as
shown in Fig. 7: for a half-filled conduction band we always
find a vanishing Simp for the stable low-temperature fixed
point that can be interpreted as a spin-singlet ground state
formation. In the limit |εc| → D, we reproduce the prediction
of Sigrist et al. [44,105] even in our finite-size system: an
unstable local moment fixed point with I = Nf /2 is formed
via FM RKKY interactions, and is screened by the Kondo
effect to the stable fixed point spin I = (Nf − 1)/2, corre-
sponding to Simp = kb ln(Nf ), since rank(�σ ) = 1 at this point
independently of Nf . The ground state degeneracy g rises in
integer steps from g = 1 to g = Nf , and the corresponding
QPTs are of KT type.

In each of the regions one additional moment is aligned fer-
romagnetically with the others: The self-screening of the local
impurity spins via the RKKY-mediated interaction becomes
less and less effective since this interaction becomes pre-
dominantly ferromagnetic for low band fillings. The hopping
matrix elements Re�lm(εc) reach their maximum at |εc| = D
due to the maximal particle-hole asymmetry of the conduction
band. At the same time, the density of states diverges at the
band edge in 1d, such that the hybridization to the conduction

205132-15



FABIAN EICKHOFF AND FRITHJOF B. ANDERS PHYSICAL REVIEW B 102, 205132 (2020)

FIG. 7. Simp as function of |εc|/D for (a) Nf = 4 and (b) Nf = 5
and a fixed temperature T/�0 = 10−11 (corresponding to a fixed
number of NRG iterations N = 50) for particle-hole-symmetric im-
purities with U/�0 = 10. For Nf = 4 we find three regions and
three KT quantum phase transition points; for Nf = 5 four regions
separated by a KT-type phase transition are identified.

bands start to dominate resulting in a FM alignment of the
spins [31,32].

Depleting the conduction band more and more leaves
asymptotically a Hubbard-type model [74] where close to half
filling the FM-aligned local moments could be interpreted as
a precursor of the Nagaoka mechanism [105] to ferromag-
netism in the Hubbard model. Energy is gained by allowing
the impurity electrons to delocalize in a uniform polarized
background.

We still need to prove the claim that the transitions be-
tween the different regions in Fig. 6(a) and Fig. 7, indicated
by the red dots on the horizontal axis, are indeed QCPs
of the KT type. We exemplify this point by investigating
the low-temperature scale T0(εc) as a function of εc in the
three-impurity problem, Nf = 3, for four different values of
ε f and a fixed U/�0 = 50. We selected these parameters to
demonstrate that the transition type is unrelated to the particle-
hole symmetry and that the critical value of εc

c depends on
the particle-hole asymmetry of the correlated cluster. In Ce,
for instance, the 4 f -shell occupation fluctuates between zero
and one, so that the limit U → ∞ was successfully em-
ployed [68,106,107] to understand the basic properties of such
systems.

The low-temperature scale T0(εc) is defined via the
crossover from the last unstable local moment fixed point to
the stable low-temperature fixed point when Simp(T ) reaches
the midpoint between both entropies:

Simp(T0) = 1
2

[
SLM

imp + SLT
imp(0)

]
. (31)

FIG. 8. (a) Low-temperature scale T0 for particle-hole-
asymmetric three-impurity models with U/�0 = 50, D/�0 = 10,
and four different values of ε f . (b) The critical value εc

c as a function
of ε f .

We fitted the T0(εc) to the exponential form

T0(εc) = C1e
C2√
εc
c −εc (32)

close to the transition point and extracted the transition point
εc

c as well as the parameters C1 and C2. We plotted the NRG
data T0(εc)/C1 as a function of (εc

c − εc)/D in Fig. 8(a). In
addition we added the fitting curve defined in Eq. (32) as
black solid lines for the four cases demonstrating an excellent
agreement with the NRG data with this analytical form. This
can be done in the vicinity of all QCPs for different cluster
sizes Nf . Therefore, all QCPs at the critical values indicated
by red or black dots in Figs. 6(a) and Fig. 7 are of the KT
universality class.

We added the particle-hole-asymmetry dependency of εc
c as

Fig. 8(b). Upon increasing ε f from ε f /�0 = −5 to ε f /�0 =
−2, εc

c is significantly reduced.

2. The role of magnetic frustration in the Simp = 0 phase

After establishing a stepwise increase of the fixed-point
degeneracy g in the limit |εc|/D → 1 (vanishing electron or
hole conduction band filling,) we focus on the largest interval
in the εc parameter space in this section. This regime is de-
termined by Simp = 0, indicating a singlet ground state of the
low-energy fixed point.

The notion of a competition between an AF RKKY screen-
ing and the Kondo screening by the two conduction channels
was established in the two-impurity model [31]. In this MIAM
of first kind, there are always enough conduction electron
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FIG. 9. (a) The two low-temperature scales T0 and T1 vs εc in the
three-impurity model. T1 (blue) is defined as crossover temperature
approaching the unstable LM fixed point with I = 1/2 and T0 (red)
denotes the crossover temperature from the unstable S = 1/2 LM
fixed point to the singlet fixed point. The crossover temperature
for the multi-impurity system without coupling to the conduction
band channels is added as a black line. (b) Low-energy fixed-point
spin-spin correlation functions 〈�S1 �S2〉 and 〈�S1 �S3〉 vs εc. Parameters:
particle-hole-symmetric impurities with U/�0 = 30, ε

f
l = −U/2,

D/�0 = 10.

channels available to Kondo-screen all the local moments.
For Nf > 2 and rank(�σ ) < Nf , the topology of the model
becomes different and such a scenario is not applicable any
more. The concept of competing Kondo effect and RKKY
interaction, both generated by the host conduction electrons,
become less meaningful due to the lack of available screen-
ing channels. For periodic systems, Eq. (6) suggests that the
rank(�σ ) is of the order of the �k points on the Fermi surface
and, therefore, is much smaller then Nf .

We begin with the three-impurity model and calculate the
two low-energy crossover temperatures to the Simp = 0 stable
fixed point: T1(εc) denotes the crossover temperature to the
last unstable S = 1/2 LM fixed point, and T0(ε0) character-
izes the approach to the stable low-energy fixed point. The
temperature T0 replaces TK in the single-impurity model since
it is associated with the Kondo effect. The results are plotted
in Fig. 9(a). We note that both crossover temperatures change
continuously with εc but develop a cusp at |εc|/D = 0.5. T0

remains finite over the whole parameter regime until the end at
about |εc|/D ≈ 0.945 where the KT-type QPT to a stable fixed

FIG. 10. Schematic diagram of the tight-binding hopping param-
eters between the tree impurities.

point with Simp/kB = ln(2) occurs that was discussed in the
previous section. The overall decrease in T0(εc) is related to
the dependency of the effective change of fluctuation strengths
�nσ as function of εc: the coupling to the relevant orbital
involved in the Kondo screening decreases with increasing
|εc|.

The spin-spin correlation functions calculated at the low-
energy fixed point reveals that two different regions emerge
as shown in Fig. 9(b). For small values |εc|/D, the nearest-
neighbor spins are AF aligned while the two outer impurity
spin are FM correlated. The spin-spin correlation functions
indicate that the three local spins always add up to a S = 1/2
ground state at intermediate temperature due to the RKKY
interaction. The approach to the ground state configuration of
the impurity cluster occurs on the temperature scale T1. One of
the two conduction electron channels is sufficient to Kondo-
screen the remaining S = 1/2 distributed over all impurities.
That occurs on the crossover temperature scale T0 where the
impurity entropy is removed. For 0.5 < |εc|/D, the two local
spins connected to the same sublattice are AF aligned while
the center spin is screened by the Kondo effect.

In order to shed some light onto the nature of the observed
cusp, |εc|/D ≈ 0.5, we solved the three-impurity cluster
model for �σ = 0, i.e., by decoupling the impurities from the
two effective conduction bands, using exact diagonalization.
We calculated the crossover temperature to the low-energy
ground state from the temperature dependence of the entropy
Simp(T ). This crossover scale was added as a continuous black
line to Fig. 9(a) and traces the NRG temperature T1 very well.
At the cusp, however, this crossover temperature vanishes in
the decoupled cluster model: a level crossing between two dif-
ferent twofold-degenerate cluster ground states occurs which
can be characterized by different spin-spin correlation func-
tions. This defined a point of maximal magnetic frustration in
the system.

The nature of those local ground states can be understood
in terms of the effective hopping parameters in the mapped
model as shown schematically in Fig. 10. Note that we drop
the spin index for clarity in the following since all param-
eters are spin-independent in the absence of spin-polarized
conduction band. By only considering Re�13(εc), we obtain
from the orbitals 1 and 3 two molecular orbitals that have
even or odd symmetry under a parity transformation that
can be constructed. The even orbital couples to the orbital 2
via Re�12(εc) and Re�23(εc) and two new even orbitals are
generated. Then we fill these orbitals with three electrons. For
|εc|/D < 0.5, one of the even orbitals has the lowest energy
and is filled with two electrons forming a singlet. The third
electron occupies the orbital with odd symmetry. Therefore,
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the local moment is located at the outer edge on the orbitals
1 and 3 in real space. For |εc|/D > 0.5, Re�13(εc) dominates
and the odd symmetry orbital has the lowest single-particle
energy, and is doubly occupied. This singlet formation results
in a strong AF correlation function 〈�S1 �S3〉 in this regime. The
local moment is located in the higher-lying even orbital, and
therefore, more localized in the orbital 2.

At the degeneracy point, all three hopping matrix elements
in Fig. 10 become equal and generate a maximally magnet-
ically frustrated system. A level crossing between these two
doublet ground states occurs forming a fourfold-degenerate
cluster ground state. This emerging local picture also explains
the observed change in the spin-spin correlation function
shown in Fig. 9(b) for the full problem. For |εd |/D > 0.5,
the nearest-neighbor spin correlations are suppressed and the
central spin is Kondo screened.

Although the real-space geometry of our cluster is a short
three-site chain, the hopping matrix elements Re�i j generate
a trimer with degenerate AF Heisenberg couplings as inves-
tigated in the literature [33–35,103]. The different physics
found here is related to the reduced number of screening chan-
nels: While Refs. [33–35] investigate a Kondo trimer model
of first kind, we derived an example of a trimer model of the
second kind [103].

Right at the degeneracy point, both doublets with different
parity symmetry couple to one of the two effective conduction
bands. If we assume PH symmetry and identical couplings
�n, this would result in the isospin Kondo regime found in
Refs. [33,34] and already discussed in Sec. III A. However,
the effective tunneling elements Re�i j , which generate the
AF RKKY interaction and, therefore, are necessary in order to
obtain magnetic frustration, break the PH symmetry and cause
a FL with spin-singlet ground state, since this is a relevant
perturbation of the isospin Kondo FP [33,34].

Furthermore, the mapped MIAM lacks the helicity sym-
metry of the C3 group in general, and, consequently, the two
couplings �n of the degenerate doublets are not identical.
In this case, the cluster ground state degeneracy is lifted at
the degeneracy point by the asymmetric coupling to the two
conduction band channels, such that even the coupling of only
one of the conduction electron channels to one of the two
degenerate doublets can quench the remaining cluster entropy.
The energy splitting of both doublets, however, is dynamically
generated by the RG procedure and remains small. Therefore,
we do not observe a two-stage screening process: only one
low-temperature scale T0 emerges, even at the degeneracy
point, defining the crossover from the LM fixed point with
Simp ≈ kB ln(4) to the stable strong coupling fixed point with
Simp = 0.

At the degeneracy point, the definition of T1 becomes
obsolete since we observe a direct crossover from a fourfold-
degenerate unstable local moment fixed point to the singlet
ground state. Therefore, we do not find another QCP in the
Simp = 0 regime.

While the low-energy scale T0 decreases with increasing
|εc|/D due to the change in the eigenvalues �n that couple
to the impurity ground state multiplet, the enhancement of
the magnetic fluctuations in the vicinity of the degeneracy
point causes the cusp in T0 signaling the adiabatic change
of the spin correlations in the low-energy fixed point. The
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FIG. 11. The two low-temperature scales T0 and T1 vs εc in the
Nf = 5 MIAM. T1 (blue) denotes crossover temperature approaching
the lowest unstable LM fixed point and T0 (red) crossover temper-
ature from the unstable LM fixed point to the singlet fixed point.
The crossover temperature for the multi-impurity system without
coupling to the conduction band channels is added as a black line.
Parameters: as in Fig. 9.

crossover temperature T0(εc) and the location of the cusp
is symmetric in ±εc, for particle-hole-symmetric impurities;
qualitatively the same phases are observed for particle-hole-
asymmetric impurities but with asymmetric curves, not shown
here.

A similar picture emerges for Nf = 5 in the Simp = 0
regime, as shown in Fig. 11. For even Nf , the impurity clus-
ter can form a singlet ground state without coupling to the
conduction bands: Hence we focus on odd Nf where the
interplay between the RKKY interaction and the Kondo effect
is relevant. Clearly visible is the continuous change of T0(εc)
but now showing four cusps.

Since the total spin is conserved in the model, the impu-
rity cluster eigenstates can be classified by the total angular
momentum. The hopping matrix Re�i j (εc) induces AF in-
teractions between the spins, so that the cluster ground state
is located in the subspace with the lowest angular moment.
Adding Nf = 5 local moments S = 1/2 yields five spin J =
1/2 multiplets. Changing εc is changing the energy spectrum
of the five J = 1/2 eigenstates, and, therefore, the nature of
the cluster ground state within the subspace J = 1/2. The
black solid line for T1 added to Fig. 11 was calculated from the
impurity cluster spectrum including the Coulomb interaction
but neglecting the coupling to conduction electrons channels
in Eq. (11).

The cluster calculation demonstrates that the cusps ob-
tained from the full model are associated with a change of
the cluster ground state in the unstable intermediate fixed
point. Note, however, that in the impurity cluster the scale
T1 vanishes at the four level crossing points of the ground
states, which is not visibly here since we did not zoom into
the degeneracy point with high resolution.
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For the five different J = 1/2 multiplets four different clus-
ter degeneracy points are found. At each degeneracy point, the
two low-lying doublets couple to the two conduction electron
bands. The screening of the impurity cluster entropy Simp =
kB ln(4) is characterized by the crossover temperature T0.
Quantum fluctuations enhance T0 at the degeneracy point and
we also found that a single spin degenerate band is sufficient
to quench the local moments even at the degeneracy point of
the impurity cluster, where the local system is magnetically
frustrated.

3. Kosterlitz-Thouless-type quantum phase transitions and the
phase diagram in dilute impurity arrays

In dense impurity arrays, where the correlated orbitals are
located next to each other, the antiferromagnetic RKKY inter-
action typically dominates the interaction between the local
moments of the correlated orbitals for a roughly half-filled
host conduction band. In order to qualitatively simulate fer-
romagnetic HF materials [17–24,28–30], we study the dilute
impurity configuration already discussed in Sec. II F 2 and
schematically depicted in Fig. 3. In this case, the correlated
orbitals only hybridize with the host Wannier orbitals of one of
two sublattices in a bipartite lattice. In Sec. II F 2 we ascribed
the ferromagnetic ground state at half filling, εc = 0, obtained
by DMRG calculations [42,43,95,96], to the absence of an
effective tunneling between the correlated orbitals Re�σ (εc =
0) = 0 and rank(�σ ) < Nf .

In the noninteracting limit (U = 0), the d-dimensional,
depleted PAM can be exactly diagonalized, resulting in three
bands. At particle-hole symmetry, corresponding to half fill-
ing, one of these bands is totally flat, leading to a high
degeneracy of the ground state, and possesses mainly f
character for small couplings V/D. As demonstrated by a
first-order perturbation theory in U , weak interactions within
this flat band result in a fully polarized ground state of the
model [95]. For 1d and 2d, it was further shown that this
polarized state persists to arbitrary strengths of the Coulomb
interaction U [42,43,95,96].

From the perspective of our low-energy mapping, this
result is just a consequence of the absence of the delo-
calizing, band-generated effective hopping matrix elements
Re�i j,σ (εc = 0) = 0 in combination with an extreme reduc-
tion of available conduction band screening channels due
to rank (�σ ) = 1. However, for any εc = 0, the flat band
becomes dispersive, tantamount with the appearance of de-
localizing tunneling elements Re�i j,σ (εc = 0) = 0 in the
mapped Hamiltonian. These delocalizing terms might lead
to a localized/delocalized Mott-Hubbard insulator transition
in the strongly interacting limit of the depleted PAM, with a
possible connection to the emerging NFL behavior at the FM
QCP in heavy-fermion ferromagnets [20,28,29].

In order to qualitative study this competition between the
AF and FM RKKY interaction, we analyze the depleted
Anderson model for a finite number of Nf = 3 and Nf = 4
correlated orbitals in 1d, the simplest MIAMs of the second
kind. However, as already discussed, such QCPs generally
occur in MIAMs of the second kind and, therefore, are not
restricted to 1d.

FIG. 12. exp(Simp/kB) phase diagram for (a) Nf = 3 and (b)
Nf = 4 impurities, separated by �R = 2a and plotted against εc/D
and U/�0 for a constant temperature T/�0 = 10−15, ε

f
l /�0 = −3,

and D/�0 = 10.

In Fig. 12, we color-plotted the degeneracy g =
exp(Simp/kB) for the dilute MIAM at a fixed temperature
T/�0 = 10−15 with (a) Nf = 3 and (b) Nf = 4 impurities, as a
function of the band filling εc and the strength of the Coulomb
interaction U , with ε f /�0 = −3 and D/�0 = 10. The phase
diagram for Nf = 3 and Nf = 4 correlated orbitals is qualita-
tively identical, separating a spin-compensated singlet phase
at finite εc (black) from a phase with finite degeneracy around
εc = 0 (yellow red blue).

The maximal value of the degeneracy near εc = 0 (yel-
low) is exp(Simp/kB) = 3 for Nf = 3 in Fig. 12(a), and
exp(Simp/kB) = 4 for Nf = 4 in Fig. 12(b). At T = 0, how-
ever, this value color coded in yellow can only be reached at
precisely εc = 0, where rank(�σ ) = 1: for a very small but fi-
nite |εc| > 0, rank(�σ ) = 2 such that g = gmax − 1. Since one
of the two effective hybridizations, �nσ , is very small for small
deviations from half filling, the associated Kondo tempera-
ture is exponentially suppressed. Consequently, the extended
yellow region of the maximal degeneracy is only replaced
by a region with gmax − 1, once the temperature is lower
than the exponentially suppressed lowest Kondo temperature.
However, even at T = 0, two/three regions with different
degeneracy of the ground state remain for Nf = 3/Nf = 4.

As discussed in Sec. III B 1, regions with different de-
generacy of the ground state are separated by a QCP of
Kosterlitz-Thouless type and associated with the decoupling
of an effective spin-1/2 degree of freedom from the contin-
uum: the coupling of that spin to the continuum changes from
antiferromagnetic to ferromagnetic, and the screening breaks
down.
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The phase boundaries are symmetric with respect to εc for
PH-symmetric impurities (U = −2ε f = 6�0 in Fig. 12). In
the case of U < −2ε f , the degenerate phase is shifted into the
εc/D < 0 side of the phase diagram, whereas it is vice versa
for U > −2ε f .

In the two-impurity model, a spin-singlet ground state is
always generated for finite εc since enough screening channels
are available. The emergence of QCPs due to FM correlations,
as reported in this and the previous section, however, are a
common feature of MIAMs of the second kind. Since the
phase diagram for Nf = 3 and Nf = 4, shown in Fig. 12, is
qualitatively identical for Nf = 5 (not shown here), and the
physical origin of the QCPs is just a consequence of a compe-
tition between AF and FM RKKY interactions in combination
with the reduced number of available conduction band screen-
ing channels, the phase diagram will be qualitatively identical
if more correlated orbitals are added. The geometric arrange-
ment of the correlated orbitals onto the lattice governs the
hybridization matrix �σ (z). While the FM QCPs occur in
depleted host bands, |εc/D| → 1, in dense impurity setups,
they are shifted to half filling in dilute impurity arrays. First-
order perturbation theory in U revealed that the FM ground
state in the depleted model at half filling also exists in higher
spatial dimensions of the lattice [95], and is not an artifact
of a 1d host geometry. Altogether, these results indicate that
a transition from a delocalized paramagnetic to a localized
ferromagnetic state, which is beyond a Hertz-Millis-Moriya
spin density wave scenario, might be realizable in the depleted
PAM with εc = 0. Due to the exponential suppression of the
lowest crossover scale in such models, the unstable intermedi-
ate fixed points might be more relevant for the experimentally
accessible temperatures.

IV. CONCLUSION AND OUTLOOK

We presented a mapping of a strongly correlated multi-
impurity model onto a correlated cluster model subject to
couplings to a number of effective conduction bands that is
exact in the wide-band limit. The AF exchange interaction is
encoded in the cluster orbital hopping matrix, whereas the
FM interaction and the competing Kondo effect by the re-
maining host degrees of freedom are included in the coupling
to the effective conduction band channels. This allows us to
study the self-screening of the local moments as well as the
emerging local moment fixed points via exact diagonalization
of the cluster prior to an investigation of the full problem.
It also opens the door for determining the requirements in
the models with potential magnetic frustrations such as the
trimer model. An interesting question arises in particle-hole-
asymmetric situations beyond the wide-band limit. Potentially
the flow to some asymmetric strong-coupling fixed point can
increase the number of effective screening channels and will
require a more careful analysis.

Since our mapping incorporates the RKKY interaction and
the related potential scattering on an equal footing, we were
able to show that the frustration-induced NFL fixed point
of a trimer model with C3 symmetry [33,34] is restricted to
only a finite range of AF RKKY interaction strength, and
can completely disappear in the phase diagram if the Kondo
temperature exceeds a certain limit.

For large Nf , the MIAMs fall typically into problems of
the second kind, where the number of impurities exceeds
the number of available Kondo screening channels. The most
prominent example is the PAM. Since the maximal number
of independent conduction bands that couple to the corre-
lated cluster scales with the number of k points on the Fermi
surface, it is limited to Nb = 2 in 1d. As a consequence,
our mapped model predicts a local moment fixed point for
the dilute Anderson lattice in 1d [42,43] with a large local
moment of I = (Nf − 1)/2.

The physical properties of strongly correlated multi-
impurity models strongly depend on whether they are of first
or second kind. Ferromagnetic correlations between the local
moments are irrelevant for the spin-compensated ground state
in MIAMs of the first kind, whereas they lead to QCPs of KT
type and the suppression of the screening of effective spin-1/2
degrees of freedom in models belonging to the second kind.
Therefore, it would be helpful to decide in advance into which
kind of category these models fall.

We demonstrated how the matrix elements of the mapped
model depend on the chemical potential or the band center
of the original model. With increasing particle-hole asym-
metry, the ground state multiplet in the cluster shows a
precursor of a spin-density wave modulation in the spin-
spin correlation function. Level crossings between different
cluster ground states are associated with magnetic frustra-
tions and an enhancement of the lowest temperature scale
of the problem taking the role of the Kondo tempera-
ture. The magnetic energy scale, defined via the change
of the cluster entropy, however, is decreasing. It van-
ishes for a decoupled cluster but remains finite due to the
asymmetric couplings to the remaining conduction electron
bands.

For an exponential suppression of the Kondo scale, the
strong decrease of the magnetic energy scale T1 at the point
of magnetic frustration could be misread as a indication of
a QCP between different ground states. NRG calculations
reveal, however, that there is still a smooth crossover be-
tween two different singlet states since the asymmetry is a
relevant perturbation for the frustrated isospin Kondo regime
[33,34], just as has been shown for the two-impurity problem
[11,12]. At the band edges the ferromagnetic correlations are
recovered even for a small finite-size impurity cluster, and the
system shows a series of QCPs of KT type when changing the
ground state degeneracy by one.

There is an ongoing debate about a confinement/
deconfinement transition in HFs where magnetic order might
reduce the number of conduction electrons contributing to
the Fermi surface: a heavy FL should be characterized by
a large Fermi surface while in a local moment magnetic
metal the correlated electrons are excluded from the Fermi
volume [4]. Such a scenario of fractionalized Fermi liquids
[108] requires a two-fluid model, where the well defined light
quasiparticles and a spin-liquid are disconnected. This might
be achievable by a Mott-Hubbard insulator transition within
the correlated electron subsystem, in which the remaining
spin-spin interactions induce a spin liquid. The lack of charge
fluctuation channels suppresses the coherent quasiparticle for-
mation decoupling the light quasiparticles on a low-energy
scale.
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Recent experiments [28–30] revealed strange-metal behav-
ior at the FM-PM transition in HFs, and from the theoretical
point of view it is known that the FM Kondo lattice possesses
a small Fermi surface excluding the local moments [109].
Motivated by theses results, we investigated dilute multi-
impurity models of the second kind, where the FM RKKY
interaction dominates for a roughly half-filled conduction
band, and demonstrated the existence of several QCPs of KT
type at which local moments decouple from the continuum.

This finding indicates a possible confinement/deconfinement
transition in a periodic extension of such models, the
depleted PAM.

Another fascinating subject is the physics of Kondo holes
[110–113]. Our mapping can provide some insight into the
spatial distribution of the generated local magnetic moments
by those holes as well as providing another low-energy scale
characterizing the screening of those moments under realistic
conditions.
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