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We investigate the equilibrium state and the collective modes of an excitonic insulator (EI) in a Fabry-Pérot
cavity. In an EI, two bands of a semiconductor or semimetal spontaneously hybridize due to the Coulomb
interaction between electrons and holes, leading to the opening of a gap. The coupling to the electromagnetic field
reduces the symmetry of the system with respect to phase rotations of the excitonic order parameter from U (1)
to Z2. While the reduction to a discrete symmetry would, in general, lead to a gapped phase mode and enhance
the stability of the ordered phase, the coupling to the cavity leaves the mean-field ground state unaffected. Its
energy remains invariant under U (1) phase rotations, in spite of the lower Z2 symmetry imposed by the cavity.
In a dipolar gauge, this can be traced back to the balancing of the linear light-matter coupling and the dipolar
self-interaction at zero frequency. At nonzero frequency, however, the collective excitations do reflect the lower
Z2 symmetry. While our model is studied using a mean-field decoupling of the light-matter approximation (which
is exact in the single-mode limit), the results show that fluctuations beyond mean field could play a crucial role
in finding the true phase at finite temperature.
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I. INTRODUCTION

Novel quantum states can arise when matter is driven
by electromagnetic fields beyond a linear response. While
many interesting examples of classical light-driven dynamics
in solids have been reported [1], a new class of unexplored
phenomena is encountered when the quantum nature of the
electromagnetic field becomes relevant. This is achieved by
shaping the field in a cavity so that the light-matter coupling
is enhanced to the point where a single photon becomes rele-
vant. The advance of cavity quantum electrodynamics (QED)
into this ultrastrong-coupling regime [2] has inspired many
proposals for hybrid light-matter states in solids [3–11]. An
interesting situation arises when the coupling to the field
changes the symmetry of a system and thus alters the nature
of its symmetry-broken states. For example, one can consider
a system with a complex order parameter � which breaks a
continuous U (1) symmetry. If the cavity mode Q ∈ R and
the order parameter are linearly coupled, F (Q,�) = a|�|2 +
b|�|4 + γ Q(� + �∗) + ωQ2, the symmetry is reduced from
U (1) to Z2. This should add a mass to the phase mode and
enhance the stability of the symmetry-broken phase. We will
investigate this situation for the ferroelectric excitonic insu-
lator (EI), a quantum phase which has achieved considerable
attention in the context of classical light-driven phenomena.
The transition to the EI is driven by the Coulomb interaction,
and its order parameter involves a spontaneous hybridization
〈c† f 〉 between two bands c and f of a semimetal or insulator
[12–14]. Materials which are supposed to host an EI phase
are Ta2NiSe5 [15,16] and 1T-TiSe2, where the softening of
the exciton mode at the transition has been observed recently
[17]. The electronic nature of the phase transition makes the
EI of interest to study the light-induced dynamics. Several

experimental and theoretical studies have focused on the pho-
toinduced melting [18–20] and the characterization of the
collective modes [17,21,22], and it has been shown that the
gap in Ta2NiSe5 can be enhanced through photodoping [23].

If the charge in the individual bands is conserved, the EI
breaks a U (1) symmetry. This implies a softening of the col-
lective exciton mode in the normal state towards the transition,
and a massless phase mode in the symmetry-broken phase.
The effect of coupling a real mode Q to the U (1)-symmetric
EI has been studied in the framework of an electron-phonon
coupling [15,24–26], where a massive phase mode is ob-
served. The same is found when the EI is linearly coupled
to the q = 0 mode of the transverse vector potential [7]. If the
corresponding interband transition carries a dipole moment,
the EI becomes an electronically driven ferroelectric [27–29].
The phase then linearly couples to the electric field of a cavity
mode Q, and one could expect a similar effect on the EI as for
the phonon. However, the mean-field state is not affected by
the cavity. In a dipolar gauge, this is explained by a balancing
of the linear DP coupling of the displacement field to the
polarization, and the dipolar self-interaction PP. As a result,
the mean-field state still has an arbitrary U (1) phase and a
massless phase mode, in agreement with a similar study by
Andolino [30]. At nonzero frequencies, however, the effect
of the two interactions on the EI does not cancel, so that the
collective properties at ω > 0 do depend on the phase of the
order parameter. This result could be important to understand
pathways for controlling the EI phase in a cavity, and it also
highlights the crucial and often subtle choice of the correct
light-matter Hamiltonian at strong coupling, which has been
discussed widely in the context of cavity QED [31–33].

The paper is outlined as follows. In Sec. II, we define the
model for the two-band EI in a cavity in a dipolar gauge
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FIG. 1. Setup: The system consists of two parallel plane mirrors
at x = ±L/2 and a thin slab of material at x = 0. It contains two
electronic bands with orbitals of opposite parity at each lattice site
(e.g., s-like and pz-like orbitals as shown in the graphic). Therefore,
a hybridization of the bands leads to a finite polarization of the
material. For simplicity, we only take into account modes of the
electric field that are traveling in the x direction, and it is assumed
that the orientation of the orbitals only allows the z component of the
electromagnetic field to couple to the material. Within the y-z-plane,
the entire system is translation invariant and the electromagnetic field
is homogenous.

and provide a detailed outline of the mean-field solution.
Section III presents the results for the collective modes of the
system, and Sec. IV contains a conclusion and discussion.

II. MODEL AND METHODS

A. Dipolar light-matter Hamiltonian

We consider a geometry as sketched in Fig. 1, with a Fabry-
Pérot cavity for modes propagating along the x direction. The
solid occupies a thin slab at x = 0 and is described by a
minimal model for a two-band semiconductor. The symmetry
of the corresponding Wannier orbitals allows for a nonzero
dipolar transition matrix element. Along the y and z axes, the
system is translation invariant and, for the description of the
electromagnetic field, we include only the modes with polar-
ization along z and wave vector along x because modes with
a wave vector q⊥ = 0 and q|| �= 0 parallel to the plane of the
material are not mixed with the q⊥ mode in the semiclassical
treatment below. The restriction to one polarization direction
can be justified by the symmetry of the orbitals (see below).

We formulate the Hamiltonian in a dipolar gauge, where it
can be decomposed in a number of terms,

Ĥ = Ĥem + Ĥ0 + ĤEP + ĤPP + Ĥint, (1)

denoting the empty-cavity Hamiltonian Ĥem, the free-matter
Hamiltonian Ĥ0, the screened Coulomb interaction Ĥint, the
light-matter coupling part ĤEP, and the dipolar interaction
ĤPP. These terms will be discussed one by one below. The
notation is based on Ref. [33], which provides a general dis-
cussion of tight-binding light-matter Hamiltonians.

1. Empty-cavity Hamiltonian

The first term in Eq. (1), Ĥem, describes the electromagnetic
field of the cavity. Throughout this paper, we will use natu-
ral units (with Lorentz-Heaviside units for electromagnetism)
such that h̄ = 1, c = 1, and ε0 = 1. The free electromag-
netic field is thus described by the standard form Ĥem =
1
2

∫
d3r[ε(r)−1�̂

2 + (∇ × Â)2], where Â is the transverse
vector potential and �̂ its canonically conjugate variable,
which is given by the transverse component of the displace-
ment field,

�̂(r) = −D̂
T

(r). (2)

The space-dependent dielectric function ε(r) accounts for
lossless media (such as partially transparent mirrors) that
define an arbitrary cavity environment, but does not yet in-
clude the electromagnetic response of the EI, which is treated
explicitly below. Taking only the modes with z polarization
traveling in the x direction, the electromagnetic fields are
expanded as Â(r) = ezÂz(x)/

√
L2, where L2 is the transverse

volume. The Hamiltonian then takes the form

Ĥem = 1

2

∫
dx

{
1

ε(x)
�̂2

z (x) + [∂xÂz(x)]2

}
, (3)

where Âz and �̂z are canonically conjugate, [Âz(x), �̂z(x′)] =
iδ(x − x′).

Below it will be convenient to refer to a discrete mode rep-
resentation, which, as long as all modes are taken into account,
is still general. For x-propagating modes with z polarization,
the fields are expanded as

Âz(x) =
∑

ν

φν (x)Q̂ν, (4)

�̂z(x) =
∑

ν

φν (x)∗ε(x) �̂ν, (5)

where the operators Q̂ν and �̂ν denote the canonical variables,
i.e., [Q̂ν, �̂ν ′ ] = iδν,ν ′ , and the mode functions satisfy the
orthogonality condition

∫
dx ε(x) φν (x)∗φν ′ (x) = δν,ν ′ . These

modes may or may not be eigenmodes of the Hamiltonian (3).

2. Uncoupled matter Hamiltonian

The EI is described by a two-band tight-binding model
with repulsive on-site interaction and a direct band gap. In-
troducing the spinors

�̂k =
(

ĉk1

ĉk2

)
(6)

and

�̂ j =
(

ĉ j1

ĉ j2

)
= 1√

N

∑
k

eik·R j �̂k, (7)

with fermionic annihilation operators ĉk,a (ĉ j,a) for an electron
in band a with quasimomentum k (at site j), the noninteract-
ing Hamiltonian of the electronic system without light-matter
coupling reads

Ĥ0 =
∑

k

εk�̂
†
kσz�̂k − μN̂ . (8)
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Here, σz denotes the z component of the vector of Pauli ma-
trices σ = (σx, σy, σz )T , and the electron dispersion is taken
to be symmetric, with ±εk for the lower and upper band,
respectively. In the simulations below, only the density of
states D for the energies εk enters. We parametrize εk by a
continuous variable ϑ , such that

ε = W

2
cos ϑ + ε0, (9)

where ϑ takes values between zero and π , and choose

D(ϑ ) = 2

π
sin2 ϑ, (10)

corresponding to a semielliptic density of states for the vari-
able ε in the range (ε0 − W/2, ε0 + W/2). One can expect the
results to be qualitatively similar for different D, as long as D
is regular.

In addition, Ĥint in Eq. (1) represents a local electron-
electron interaction term,

Ĥint = U
∑

j

n̂ j1n̂ j2, (11)

where n̂ j,a = ĉ†
j,aĉ j,a is the particle-number operator. The

Hamiltonian H0 + Hint is symmetric under the U (1) gauge
transformation generated by U (θ ) = eiθ (N̂1−N̂2 ), where N̂a =∑

j ĉ†
j,aĉ j,a is the particle number in band a, and therefore

the matter Hamiltonian alone conserves the particle number
in each band.

3. Dipolar light-matter coupling

The Hamiltonians ĤEP and ĤPP in Eq. (1) denote the light-
matter coupling and a dipolar self-interaction, respectively.
In general, this Hamiltonian is derived from the con-
tinuum, ĤEP = 1

2

∫
d3r[�̂(r)P̂(r) + H.c.]/ε(r) and ĤPP =

1
2

∫
d3r P̂(r)2/ε(r), where P̂(r) is the transverse polarization

density [33]. In the discrete mode representation (5), they read

ĤEP = 1

2

∑
ν

�̂†
ν P̂ν + H.c., (12)

ĤPP = 1

2

∑
ν

P̂†
ν P̂ν, (13)

where the operators P̂ν represent the expansion of the polar-
ization density in the same modes as the electric field, given
by Eq. (5). For convenience, we set ε(x) = 1 at the position
x = 0 of the solid.

Both P̂ and �̂ must be expanded in the same set of mode
functions if the expansion is truncated. In the present case,
with a slab of the material at x = 0, the mode functions are
homogeneous over the solid, so that P̂ν in Eqs. (12) and
(13) are given by P̂ν = φν (0)/

√
L2 P̂z, where P̂z is the total

polarization along z. In a dipolar gauge, the latter is given
by P̂z = ∑

i jab Dab
i j c†

i,ac j,b, with the dipolar transitions matrix
elements

Dab
i j =

∫
d3r wia(r)∗ z w jb(r) (14)

between Wannier orbitals w j,a. For simplicity, we assume that
the Wannier orbitals corresponding to the two bands have

a symmetry such that a dipolar transition couples only to
fields polarized along the z direction (see Fig. 1), and we take
into account only the dominant local dipolar matrix elements
qD12

j j = qD21
j j ≡ g. Hence, we have P̂z = gP̂, where

P̂ =
∑

j

�̂†
jσx�̂ j =

∑
k

�̂†
kσx�̂k. (15)

In principle, the light-matter coupling in a dipolar gauge
also enters all nonlocal (k-dependent) matrix elements in the
Hamiltonian via a Peierls substitution [33]. However, the latter
can be omitted if the polarization of the field is perpendicular
to the direction of the solid (see Fig. 1).

B. Semiclassical description

As discussed above, the operators P̂ν and �̂ν are averaged
over the solid. In the limit of large L, one can therefore use
a mean-field decoupling of the light-matter part in Eqs. (12)
and (13),

�̂†
ν P̂ν → 〈�̂†

ν〉P̂ν + �̂†
ν〈P̂ν〉,

P̂†
ν P̂ν → 〈P̂†

ν 〉P̂ν + P̂†
ν 〈P̂ν〉.

The mean-field decoupling is obtained using a Hubbard-
Stratonovich decoupling of the interaction, which becomes
exact for a model in which a single mode is coupled to the
solid in the thermodynamic limit [7]. In practice, the matter
couples to a small set of modes with finite transverse wave
vector, and the widely employed single-mode model should
rather be viewed as an effective model for a system in which
a narrow continuum of modes is coupled to the solid. Such
a description would require nonperturbative techniques, such
as yet-to-be-developed extensions of dynamical mean-field
theory [34], which is beyond the scope of this paper.

Further, for a thin slab of the material with an extent a
in the x direction that is below a suitable short wavelength
cutoff for the light, one can use a mode expansion in which
precisely one mode (ν = 0) is nonvanishing over the extent
of the solid, with φ0(x) = 1/

√
a, so that

∫
solid dx|φ0(x)|2 = 1.

Then, P̂0 = gP̂/
√

V . The decoupling P̂0〈P̂0 + �̂0〉 and �̂0〈P̂0〉
of the relevant interaction terms leads to the following mean-
field Hamiltonians for light and matter:

Ĥmatter
m f = Ĥ0 + Ĥint − gE0(t )P̂, (16)

Ĥem
m f = Ĥem + �̂0〈P̂0〉, (17)

where E0(t ) = −〈P̂0 + �̂0〉/
√

V . The corresponding equa-
tions of motion can be recast into the form

E0(t ) = −∂t 〈Q̂0〉√
V

= −∂t Az(0, t )√
L2

, (18)[
∂2

t − ε(x)−1∂2
x

]
Az(x, t ) =

√
L2gṗ(t )δ(x), (19)

where p(t ) = 〈P̂〉/V is the volume-averaged polarization,
gṗ(t ) is the current, we used Az(0, t ) = Q̂0/

√
a, and a is taken

to 0 in the equation of motion for the fields.
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Because the coupling is linear, the equation for the field
implies a linear relation between E0 and the polarization p(t ),

E0(t ) =
∫ ∞

0
dtr G(tr ) g ṗ(t − tr ), (20)

where the Green’s function G(t ) depends on the geometry of
the cavity. In Fourier space,

Ẽ0(ω) = −iωgp̃(ω)G̃(ω). (21)

If G(t ) is known, the problem is reduced to obtaining
the time-dependent polarization p(t ) from the dynamics of
the material, which is determined by the Hamiltonian (16)
with the time-dependent self-consistent field (20). This is
equivalent to solving Maxwell’s equations coupled to the mi-
croscopic dynamics in the material. Below we determine G(t )
for the Fabry-Pérot cavity.

C. Green’s function for the Fabry-Pérot cavity

To find a solution of Eq. (19), we first consider the free
wave equation (

∂2
t − ∂2

x

)
Az(x, t ) = jz(t )δ(x), (22)

which is solved by

Az(x, t ) = 1

2

∫ t−|x|

−∞
dt ′ j(t ′). (23)

The electric field

Ez(x, t ) = −∂t Az = − 1
2 j(t − |x|) (24)

allows one to write the response of the electric field Ez(x, t )
to the current at x′ = 0 in terms of a Green’s function,
Gret

E (x, t ; 0, t ′) = − 1
2δ[(t − t ′) − |x|],

Ez(x, t ) =
∫ t

−∞
dt ′ Gret

E (x, t ; 0, t ′) j(t ′). (25)

Next, the effect of lossless dielectric mirrors could be included
by introducing a position-dependent dielectric constant ε(x)
in the wave equation, as in Eq. (19). Here we regard the
mirrors as two infinitely thin layers of material with a finite
reflection coefficient r and a transmission coefficient τ with
τ 2 + r2 = 1. According to Fresnel’s equations for perpendic-
ular incidence, the electric field picks up a phase π when it
is reflected at an interface to an optically thicker medium;
therefore, we take the reflection coefficient r to be negative in
order to mimic the effect of a dielectric mirror with a higher
refractive index than the surrounding medium (Fig. 1).

Let us imagine an infinitely short current pulse at time zero,
j(t ) = δ(t ). Without cavity this would give rise to two pulses
which are released symmetrically from x = 0 and travel in op-
posite directions, as can be seen from Eq. (24). If the cavity is
included, the electric field is determined by the same equation
until the pulses reach the mirrors of the cavity at t = L

2 . At this
point, each pulse is partially reflected and transmitted through
the mirror, and the reflected and the transmitted pulses must be
multiplied by a factor r or τ , respectively. The reflected parts
propagate freely through the cavity until they arrive at the
second mirror at time t = 3L

2 , where they are again partially
reflected and transmitted. The same process may reoccur an

infinite number of times so that the electric field at an arbitrary
position x inside the cavity (i.e., for |x| < L

2 ) is given by

E (x, t ) = −1

2

{
δ(t − |x|) +

∞∑
n=1

rnδ[t − (nL − |x|)]

+
∞∑

n=1

rnδ[t − (nL + |x|)]
}

.

The first δ function in the above expression corresponds to the
pulse that has not been reflected yet, whereas the nth term in
each sum describes a pulse that has been reflected n times. The
two sums correspond to the two different initial propagation
directions. With Eq. (25), this leads to the Green’s function,

Gret
E (x, t ; 0, t ′) = − 1

2
δ[(t − t ′) − |x|]

− 1

2

∞∑
n=1

δ[(t − t ′) − (nL − |x|)]rn

− 1

2

∞∑
n=1

δ[(t − t ′) − (nL + |x|)]rn,

(26)

for |x| < L
2 . The Green’s function for the field outside the

cavity (i.e., for |x| > L
2 ) can be obtained in a similar way,

Gret
E (x, t ; 0, t ′) = −1

2
τ

∞∑
n=0

δ[(t − t ′) − (nL + |x|)]rn. (27)

The electric field at x = 0 is given by

E (0, t ) =
∫ ∞

0
dtrG(tr ) j(t − tr ), (28)

G(t ) = −1

2
δ(t ) −

∞∑
n=1

δ(t − nL)rn, (29)

where G(t − t ′) = Gret
E (0, t ; 0, t ′). In Fourier space,

G̃(ω) = −1

2

(
1 + eiωLr

1 − eiωLr

)
. (30)

Applying this solution to (18) and (19), we finally get
Eqs. (20) and (21).

D. Mean-field decoupling of the electron-electron interaction

We will treat the local electron-electron interaction Ĥint in
the Hamiltonian (16) using a mean-field decoupling of the
form

n̂ j1n̂ j2 → n j1n̂ j2 + n̂ j1n j2 − φ∗ĉ†
j2ĉ j1 − φĉ†

j1ĉ j2, (31)

where na = 〈n̂ j,a〉 represents the average number of electrons
in band a per lattice site, and φ is the order parameter of the
excitonic condensate (which is the same for all lattice sites j),

φ =〈ĉ†
j2ĉ j1〉 = 〈ĉ†

j1ĉ j2〉∗. (32)

The mean-field Hamiltonian is thus given by

Ĥm f =
∑

k

�̂†
khk�̂k, (33)
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with the single-particle Hamiltonian

hk =
(

εk + Un2 − μ −Uφ − gE0(t )
−Uφ∗ − gE0(t ) −εk + Un1 − μ

)
. (34)

Henceforth, we set the chemical potential to μ = U/2 and
fix the average electron number per lattice site to ntot = n1 +
n2 = 1. With this, (34) becomes

hk =
(

εk + 1
2U (n2 − n1) −Uφ − gE0(t )

−Uφ∗ − gE0(t ) −εk − 1
2U (n2 − n1)

)
. (35)

Within the mean-field approximation, the state of the material
is described by the momentum-dependent density matrix,

ρk =
(

〈ĉ†
k1ĉk1〉 〈ĉ†

k2ĉk1〉
〈ĉ†

k1ĉk2〉 〈ĉ†
k2ĉk2〉

)
, (36)

and the corresponding local density matrix,

ρ =
(

n1 φ

φ∗ n2

)
= 1

N

∑
k

ρk. (37)

The expectation value ρk is obtained from the self-consistent
mean-field Hamiltonian Ĥm f . Diagonalizing hk = WkDkW †

k

with a diagonal matrix Dk = diag(E (+)
k , E (−)

k ) leads to the
expression

ρk = Wk

(
f (E (+)

k ) 0

0 f (E (−)
k )

)
W †

k , (38)

with the Fermi function f (x) = 1
1+eβx . With this, the static

solution for the local density matrix ρ can be obtained self-
consistently from Eqs. (38) and (37).

E. Pseudospin representation

To study the collective modes of the EI, it is convenient
to adopt an Anderson pseudospin representation. We define a
three-component pseudospin vector,

ŝk =

⎛
⎜⎝

ŝx
k

ŝy
k

ŝz
k

⎞
⎟⎠, ŝα

k = 1

2
�̂†

kσα�̂k, (39)

which satisfies the spin algebra. With the three-component
vector,

� = 1

N

∑
k

sk =

⎛
⎜⎝

φ′

φ′′

m

⎞
⎟⎠ (40)

[φ′ = Re{φ}, φ′′ = − Im{φ}, m = 1
2 (n1 − n2)], the mean-

field Hamiltonian reads

Ĥm f =
∑

k

Bk · ŝk, (41)

where

Bk = 2

⎛
⎜⎝

−gE0(t )

0

0

⎞
⎟⎠ + 2

⎛
⎜⎝

0

0

εk

⎞
⎟⎠ − 2U� (42)

is the pseudomagnetic field. The Heisenberg equation of mo-
tion is given by the pseudospin precession,

dŝα
k

dt
= i

[
Ĥm f , ŝα

k

] = Bk × ŝk. (43)

Finally, the expression of the polarization operator in terms
of the pseudospin variables is given by P̂ = 2

∑
k ŝx

k, so that
〈P̂〉 = 2Nφ′, and therefore p(t ) = N

V 2φ′(t ). Henceforth, we
will set the factor N

V to one (fixing the volume of the unit cell),
so that

p(t ) = 2φ′(t ). (44)

F. Linear susceptibility

To calculate the collective modes, we derive the linear
susceptibility of φ′, φ′′, and m to an external field f ∝ e−iωt

that couples to the pseudospin operators like

Ĥ = Ĥm f + f ·
∑

k

ŝk, (45)

where Ĥm f is still given by Eq. (41). We define the full linear
susceptibility χ such that

δ� = χf . (46)

The external field f causes a change in Bk as it alters the values
of φ′, φ′′, m, and E0. We first define the bare response

δsk = χ0
kf (47)

of an individual pseudospin 〈ŝk〉 at fixed Bk ≡ B(0)
k , where

B(0)
k still denotes the value of Bk evaluated at f = 0. In analogy

to Eq. (43), the new semiclassical equation of motion reads

ṡk = (
B(0)

k + f
) × sk, (48)

with the shorthand notation sk ≡ 〈ŝk〉 and sα
k ≡ 〈ŝα

k〉. Rewrit-
ing the expectation value of the pseudospin as

sk = s(0)
k + δsk, (49)

where s(0)
k denotes the static expectation value evaluated at f =

0, and taking δsk ∝ e−iωt , one finds

−iωδsk = f × s(0)
k + B(0)

k × δsk. (50)

This can be rewritten as(
iω + B(0)

k × )
δsk = s(0)

k × f, (51)

or

Akδsk = Ckf, (52)

with the 3 × 3 matrices

Ak ≡ iω13×3 +

⎛
⎜⎜⎝

0 −B(0)
kz B(0)

ky

B(0)
kz 0 −B(0)

kx

−B(0)
ky B(0)

kx 0

⎞
⎟⎟⎠ (53)

and

Ck =

⎛
⎜⎜⎝

0 −s(0)
kz s(0)

ky

s(0)
kz 0 −s(0)

kx

−s(0)
ky s(0)

kx 0

⎞
⎟⎟⎠. (54)
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FIG. 2. Left panel: Imaginary part of − tr{χ0} as a function of the frequency ω and the electron-electron interaction U . White dashed lines
mark the interactions for which the energy bands are shown in the right panel. Labels indicate the BCS and the BEC regime of the EI phase, as
well as the SC (normal state) for U > 8. Right panel: Electron dispersion of the interacting system at U = 3, U = 7, and U = 14. The dashed
lines indicate the noninteracting bands plus Hartree shift. Energies are parametrized by the variable ϑ ; see Eq. (9).

Comparing Eqs. (47) and (52), one finds that

χ0
k = A−1

k Ck. (55)

In the next step we include the feedback on Bk,

Bk = B(0)
k + δBk. (56)

Then the change in sk can be calculated from the bare response
using the expression

δsk = χ0
k [f + δBk]. (57)

From the definition of Bk [cf. Eq. (71)], it follows that

δBk = −2Uδ� −

⎛
⎜⎝

1

0

0

⎞
⎟⎠2gδE0. (58)

Since the above expression does not depend on k, we can omit
the k index, i.e., we define δB ≡ δBk. With (21), we have
δE0 = −iωG̃(ω)2gδφ′, and therefore

δB = V δ� (59)

with the interaction matrix

V = VU + Vg, (60)

where

VU = −2U13×3 (61)

and

Vg = 4g2iωG̃(ω)

⎛
⎜⎝

1 0 0

0 0 0

0 0 0

⎞
⎟⎠. (62)

In order to derive an expression for the full linear suscep-
tibility (46), we multiply Eq. (57) by 1

N and sum it over all k
values. This yields the following equation:

δ� = χ0[f + δB] = χ0[f + V δ�], (63)

where we have defined the bare susceptibility

χ0 = 1

N

∑
k

χ0
k . (64)

Solving Eq. (63) for δ� and comparing the result to Eq. (46)
finally leads to the random phase approximation (RPA) equa-
tion

χ = [13×3 − χ0V ]−1χ0. (65)

III. RESULTS

A. Equilibrium state

In this section, we study the equilibrium states and collec-
tive modes of the EI at different values of the electron-electron
interaction U . We first recapitulate the equilibrium phase di-
agram of the model. For all calculations, the bandwidth is
W = 8 and the bare energy shift of the bands is ε0 = 1. There-
fore, at U = 0, the material is a normal metal with overlapping
bands. The right panel of Fig. 2 shows the mean-field band
structure for three different values of U . Dashed lines indicate
the energy bands in the normal state. For U > 0, the Hartree
term 1

2U (n2 − n1) in the diagonal entries of the single-particle
Hamiltonian (35) results in a shift. With increasing U , this
opens a gap, leading to a transition from a metal to a semi-
conductor (SC) with a fully occupied conduction band and
an empty valence band. In the SC regime, the occupation
difference is thus fixed to n1 − n2 = 1 so that the band gap
increases linearly with U .

Even though the EI phases at different U are continuously
related, the mechanism for the transition differs when the EI
is approached from the SC or the metallic state: Starting from
the metallic phase, the formation of the exciton condensate
is mathematically equivalent (through a particle-hole trans-
formation) to the BCS theory for the condensation of Cooper
pairs in a metal, opening up a gap. On the insulating side, exci-
tons in the normal state correspond to a well-defined collective
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mode within the gap, which corresponds to a two-particle ex-
citation with a localized wave function. The formation of the
condensate proceeds through a softening of this mode, which
can be described as a Bose-Einstein condensation (BEC) of
excitons. We therefore label the two sides of the crossover as
the BCS and BEC side, respectively [7], which is in analogy
to a similar crossover in the Falicov-Kimball model [35].

Importantly, it turns out that the self-consistent equilibrium
state is entirely independent of the light-matter coupling. This
fact will be analyzed in more detail in Sec. III C. In short,
from Eq. (20), one can see that the field E0, which is the only
feedback of the electromagnetic field on the matter, vanishes
whenever the system is time independent, and hence ṗ = 0.
As a consequence, the equilibrium state does not depend on
the light-matter coupling strength g and can be evaluated at
g = 0. Also, the phase θ of the order parameter φ = |φ|eiθ in
the equilibrium solution is arbitrary. It will be fixed to θ = 0,
unless stated otherwise.

The left panel of Fig. 2 shows the imaginary part − tr{χ0}
of the bare response χ0 of the system, which is given by
Eq. (64). To analyze the susceptibility matrix χ, it is conve-
nient to compute its trace, which is equal to the sum of its
eigenvalues and therefore contains all the relevant informa-
tion on the excitation spectrum. The region of nonvanishing
susceptibility marks the particle-hole continuum, which is
limited by the possible transitions between the valence and
conduction bands. Its upper and lower boundary at a given
value of U is given by the maximum and minimum band gap,
respectively. The phase boundary between the EI and the SC
state at U = 8 is indicated by the orange dot-dashed line. It
can be clearly seen how the U dependence of the minimum
band gap changes at the transition. The yellow dotted line
shows the minimum band gap for the bare bands (noninteract-
ing electron dispersion plus Hartree shift). It coincides with
the lower edge of the particle-hole continuum if the system is
in the SC state. Another interesting feature is the diagonal kink
in the particle-hole continuum, which starts at about ω = 6 for
U = 0 and ends at the BEC-BCS crossover, where it reaches
the lower boundary of the particle-hole continuum. As can be
seen for U = 3 in the right panel of Fig. 2, the separation
of the bands on the BCS side of the crossover has a global
minimum at 0 < U < π and a local minimum at ϑ = π . The
latter gives rise to a kink in the particle-hole continuum at the
corresponding frequency ω.

B. Linear susceptibility and collective modes

In the following, we will consider the full susceptibility
χ, which, in contrast to χ0, does depend on the light-matter
coupling g. We will start by recapitulating the response of the
bare EI (g = 0). Figure 3 shows the imaginary part of − tr{χ}.
Figures 3(b)–3(d) display three slices through Fig. 3(a) at
different values of U , as indicated by the white dashed lines.
In addition to the particle-hole continuum, which is already
contained in the bare susceptibility, one can identify the col-
lective excitations. They correspond to zero eigenvalues of the
matrix [1 − χ0V ] [cf. Eq. (65)] and appear as sharp peaks in
− tr{χ}: In the normal state (U > 8), there is a pole at some
frequency ωex(U ) > 0 within the band gap. This mode softens
at the transition to the EI phase at U = 8, which indicates the

FIG. 3. (a) Imaginary part of − tr{χ} for the material without
light-matter interaction (i.e., g = 0). A small imaginary part has been
added to the frequency in order to make δ peaks visible. The white
dashed lines in (a) indicate the values of U for the plots in the lower
panels. (b)–(d) Imaginary part of − tr{χ} and − tr{χ0} as a function
of the frequency for three different values of U .

Bose-Einstein condensation of excitons. For U < 8, there is
a sharp peak at ω = 0. The nature of these modes is seen
from the eigenvectors of χ at the corresponding resonance
frequencies. The eigenvector of the ω = 0 pole in the EI phase
is proportional to (0, 1, 0)T . Because the equilibrium order
parameter is chosen to be real, this mode is therefore iden-
tified as the phase mode. In the normal phase, the eigenvector
corresponding to the exciton mode is proportional to (1, i, 0)T
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for ω > 0 and (1,−i, 0)T for ω < 0, which implies a circular
oscillation of φ around the equilibrium value φ = 0. Further-
more, the line-outs in Figs. 3(b)–3(d) show the amplitude
mode of the condensate. For small U (on the BCS side of
the phase diagram), the amplitude mode corresponds to a zero
eigenvalue of [1 − χ0V ] at the lower edge of the particle-hole
continuum, where the mode appears as a sharp peak [U = 3;
Fig. 3(b)]. At the resonance frequency, the eigenvector of χ

with the largest absolute value is approximately proportional
to (1, 0, 0)T , i.e., it points in the radial direction. With this,
the corresponding excitation can be identified as the amplitude
mode of the excitonic order parameter. For larger U , the mode
becomes strongly broadened [U = 7; Fig. 3(c)] since the zero
eigenvalue of [1 − χ0V ] is shifted into the particle-hole con-
tinuum, and it has disappeared at U = 14 [Fig. 3(d)].

We now turn to the case g > 0 to analyze how the light-
matter interaction influences the collective excitations of the
system (Fig. 4). The boundaries of the particle-hole contin-
uum remain unchanged because the latter is already contained
in the g-independent bare susceptibility χ0. However, there are
additional resonances at odd integer multiples of the cavity
frequency ωcav = π

L . Resonances at even multiples of ωcav do
not appear because the corresponding frequency component
of the electric field has a node at the center of the cavity,
where the material is located. Comparing the purple line for
r = −0.999 and the green line for r = −0.8 in Fig. 4(c) shows
that a lower reflectivity of the mirrors leads to a stronger
damping of the cavity modes. Moreover, one can observe var-
ious effects that occur when the cavity resonances hybridize
with other parts of the spectrum: First, a hybridization of
the cavity modes and the particle-hole continuum gives rise
to an asymmetric line shape with a dip at lower frequencies
and a maximum at higher frequencies, which resembles a
Fano resonance. Second, whenever a cavity mode intercepts
the exciton peak in the insulating phase, there is an avoided
crossing, as can be seen around U = 9, ω = 0.5 in Fig 4(a).
Lastly, the amplitude mode in the EI phase can be pushed
out of the particle-hole continuum by a cavity mode in its
proximity if the light-matter coupling is strong enough [see
the behavior around ω ≈ 2.5 and U = 5 in Fig. 4(a)].

The phase mode in the EI phase, however, always remains
at ω = 0, even though the light-matter interaction breaks the
U (1) symmetry of the system. As mentioned in Sec. I, this
is in stark contrast to the coupling of the U (1) invariant two-
band model to a generic oscillator mode, which adds a mass
to the phase mode. To elucidate the origin of this behavior,
it is helpful to directly contrast the model studied above with
a model of an EI with a generic coupling to a phonon mode
(electron-phonon coupling). A one-to-one comparison is fa-
cilitated by restricting the field in the cavity to a single mode,
as discussed in greater detail in the following section.

C. Single-mode models

1. Model

In model calculations, it is convenient to replace the field in
the cavity by one or a few modes. To derive the corresponding
Hamiltonian, the modes �̂ν and Q̂ν can be taken as normal
modes of the resonator Hamiltonian Hem [Eq. (3)] so that
Ĥem = ∑

ν
1
2 (�̂2

ν + ω2
νQ̂2

ν ). If we keep only a single mode

FIG. 4. (a) Imaginary part of − tr{χ} for coupling g = 0.8, re-
flection coefficient r = −0.999, and cavity frequency ωcav = π/6.
(b) Line-out of the data at U = 5, for weak and strong coupling g.
The dashed black line is obtained from a one-mode approximation at
g̃ = 0.2 (see Sec. III C). (c) Line-out of data at U = 9, including data
for a low reflectivity r = −0.8 of the cavity mirrors.

ν = 0, the total Hamiltonian reads

Ĥ = Ĥ0 + Ĥint + 1

2

[(
�̂0 + g̃√

L2
P̂

)2

+ ω2
0Q̂2

0

]
, (66)

with g̃ = φ0(0)g. We will see that this Hamiltonian has a
similar phenomenology as the full cavity Hamiltonian, in
particular a massless phase mode. In an energy range where
the behavior of the system is dominated by a single mode,
the one-mode approximation is quantitatively accurate: For
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example, the dashed black line in Fig. 4(b) shows the spectrum
of the one-mode Hamiltonian for the same cavity frequency
as the full Hamiltonian and a coupling strength of g̃ = 0.2.
The spectrum captures well the low-energy behavior around
the mode frequency, while the broadening due to the cavity
loss (|r| < 1) as well as the signatures of the higher cavity
modes are missing. At larger coupling, the different cavity
modes are less well separated and the one-mode approxima-
tion becomes quantitatively less accurate. For the following
qualitative discussion of the low-frequency behavior, how-
ever, the one-mode approximation will be sufficient.

We contrast the one-mode cavity Hamiltonian with the
coupling to a generic oscillator, such as an optical phonon.
The excitonic insulator with electron-phonon coupling is ob-
tained by replacing ĤEP and ĤPP in Eq. (1) by a Holstein
interaction,

Ĥ ph
coupl = gph

∑
j

(b̂†
j + b̂ j )(ĉ

†
j2ĉ j1 + ĉ†

j1ĉ j2), (67)

where the operator b̂†
j (b̂ j) is the creation (annihilation) oper-

ator of an Einstein phonon at site j, and gph determines the
electron-phonon coupling strength. The free phonon Hamilto-
nian is given by Ĥ ph

free = ω0
∑

j (b̂
†
j b̂ j + 1

2 ). We treat the model
within mean-field theory, in analogy to the decoupling of the
light-matter interaction. In mean-field approximation, only the
homogeneous (q = 0) phonon mode b̂0 = 1√

L2

∑
j b̂ j is rele-

vant. Singling out the q = 0 mode, the Hamiltonian becomes

Ĥ = Ĥ0 + Ĥint + gph
√

2ω0√
L2

Q̂phP̂ + Ĥ ph
free, (68)

where Q̂ph = (b̂†
0 + b̂0)/

√
2ω0, �̂ph is the canonically con-

jugate momentum, Ĥ ph
free = 1

2 (�̂2
ph + Q̂2

phω
2
0 ), and terms in-

volving q �= 0 phonons are omitted. With a canonical trans-
formation �̂0 = Q̂phω0, Q̂0 = −�̂ph/ω0, the electron-phonon
interaction is transformed to g̃√

L2
�̂0P̂, with g̃ = gph

√
2/ω0.

Thus, the Hamiltonian is entirely analogous to the single-
mode cavity Hamiltonian (66), apart from the absence of a
term proportional to P̂2. We therefore define

Ĥ (α) = Ĥ0 + Ĥint + g̃√
L2

�̂0P̂ + Ĥosc
free + α

g̃2P̂2

2L2
, (69)

where Ĥocs
free = 1

2 (�̂2
0 + Q̂2

0ω
2
0 ). Furthermore, we have intro-

duced the factor α such that α = 0 corresponds to the phonon
Hamiltonian, and α = 1 yields the one-mode cavity Hamilto-
nian.

2. Mean-field solution

The solution of the one-mode Hamiltonian within mean-
field theory is analogous to the treatment of the full model
discussed in Secs. II B to II F. We decouple the products �̂0P̂
and P̂2, and introduce the expectation values 〈P̂〉 = 2φ′L2 and

〈�̂0〉 =
√

L2π0. The mean-field oscillator Hamiltonian reads

Ĥosc
m f = g̃

√
L2�̂02φ′ + Ĥosc

free, (70)

and the electronic mean-field Hamiltonian is defined as in
Eq. (41), with the pseudomagnetic field

Bk = 2

⎛
⎜⎝

g̃X (α, t )

0

0

⎞
⎟⎠ + 2

⎛
⎜⎝

0

0

εk

⎞
⎟⎠ − 2U�, (71)

where

X (α, t ) = π0(t ) + α2g̃φ′. (72)

We look for static solutions and collective modes by making
the ansatz a(t ) = a(0) + δa e−iωt for all expectation values,
such as φ′ and π0. Inserting this into the semiclassical equa-
tion of motion

π̈0 = − ω2
0(π0 + 2g̃φ′), (73)

which can be derived from the oscillator Hamiltonian (70),
yields the static solution

π
(0)
0 = −2g̃φ′(0)

, (74)

X (0) = −(1 − α)2g̃φ′(0)
. (75)

The equilibrium state of the material can be obtained as de-
scribed in Sec. II D, but −E0 must be replaced by X (0), i.e.,
the equilibrium pseudomagnetic field is given by

B(0)
k = 2

⎛
⎜⎝

−2g̃2(1 − α)φ′(0)

0

0

⎞
⎟⎠ + 2

⎛
⎜⎝

0

0

εk

⎞
⎟⎠ − 2U�(0). (76)

Finally, turning to the collective modes, the equation of mo-
tion (73) gives the response

δπ0 = 2g̃
ω2

0

ω2 − ω2
0

δφ′, (77)

δX = 2g̃

(
ω2

0

ω2 − ω2
0

+ α

)
δφ′. (78)

With this, the induced change in the field B can be written as

δB = [VU + Vg(α)]δ� (79)

and thus takes the same form as Eq. (59), where VU is still
defined by Eq. (61) and

Vg(α) = 4g̃2 (1 − α)ω2
0 + αω2

ω2 − ω2
0

⎛
⎜⎝

1 0 0

0 0 0

0 0 0

⎞
⎟⎠. (80)

3. Results

The results for the electron-phonon case (α = 0) are shown
in Fig. 5(a), while Fig. 5(b) corresponds to the cavity case
(α = 1). For α = 0, the transition (which is marked by the
softening of the exciton mode) is shifted to larger inter-
action strengths U ≈ 10. Along with this enhancement of
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FIG. 5. Imaginary part of − tr{χ} for the one-mode Hamiltonian, for (a) the electron-phonon case (α = 0), (b) the cavity (α = 1), and
(c) the overestimated P2 interaction with a real-valued order parameter (α = 2). The white region in (c) indicates a negative spectral weight
(unstable region).

the symmetry-broken phase, the order parameter |φ| and the
single-particle gap are increased, which is reflected in a shift
of the boundaries of the particle-hole continuum. In contrast,
the transition for the single-mode cavity (α = 1) is still at
U = 8 and the magnitude of the order parameter remains un-
changed. This behavior can be understood from the mean-field
equations: For α = 1, the static field X (0) [Eq. (75)] vanishes,
so that the cavity mode does not affect the equilibrium state
of the system. The vanishing of X (0) can be traced back to the
exact cancellation of the dipolar light-matter coupling �P and
the dipolar interaction PP. For α < 1, the feedback further-
more favors a real order parameter, so that the breaking of the
U (1) symmetry due to the coupling to the oscillator directly
manifests itself in the static solution. At α = 1, however, the
phase of the order parameter is arbitrary.

In agreement with the static behavior, the phase mode
remains massless for the cavity case (α = 1), while it be-
comes massive for α = 0. The feedback of the oscillator on
the collective modes at low frequencies is determined by the
interaction matrix Vg at ω → 0. Again, one can see that at
α = 1, the contributions from the dipolar interaction HPP and
the linear light-matter coupling HEP in Eq. (80) exactly cancel
for ω = 0, so that Vg = 0.

The cancellation of the static feedback of the cavity on
the material is fully consistent with classical electrostatics:
In a dipolar gauge, the canonical field −� represents the
displacement field [cf. Eq. (2)], so that the feedback E0(t ) =
−〈P̂0 + �̂0〉/

√
V in Eq. (16) and, equivalently, X in Eq. (71)

represents the electric field. Within classical electrostatics,
there is no electric field generated by a material with a
homogeneous in-plane polarization, with ∇ · P = 0 [36]. In
contrast, in a Coulomb gauge, it is more subtle to maintain
the correct electrostatics. This can be seen by transforming
the Hamiltonian (66) back to a representation in which the
light-matter coupling enters via the vector potential, repre-
sented by the other quadrature Q0 of the cavity mode: Such
a transformation is achieved via the unitary transformation
W = eig̃/

√
LP̂Q̂0 , which shifts �̂0 → �̂0 − g/

√
LP̂. The matter

Hamiltonian Ĥm = Ĥ0 + Ĥint is transformed to WĤmW† ≡
Ĥ (Q0). Upon expansion in Q0,

H (Q0) = Ĥm + Ĵ
Q̂0√
L2

+ K̂
Q̂2

0

L2
+ · · · , (81)

Ĵ = i[Ĥm, g̃P̂], K̂ = 1

2
[[Ĥm, g̃P̂], g̃P̂], (82)

one arrives at a nonlinear Hamiltonian [30,31], with a con-
ventional linear coupling of the vector potential to the current
J ∝ dP/dt , but a nonlinear term Q2

0 which differs from a
simple diamagnetic interaction with a coupling of Q̂2

0 to the
density. Hence, in a light-matter Hamiltonian obtained from
a straightforward projection of the continuum theory in a
Coulomb gauge to a restricted set of bands, the classical
electrostatic limit is not recovered.

This result highlights the crucial importance to
correctly choose the light-matter Hamiltonian. If the
continuum description of the light-matter interaction,
ĤEP = 1

2

∫
d3r[�̂(r)P̂(r) + H.c.]/ε(r) and ĤPP =

1
2

∫
d3r P̂(r)2/ε(r), is restricted to a certain subset of states

(energy bands in the solid modes of the electromagnetic field)
[33], the balancing of the two parts is only kept if both the
polarization P(r) and the field �(r) are represented in the
same field modes ν, and if the operator Pν in the interaction
HPP and HEP [Eqs. (12) and (13)] is projected to the
valence-band manifold in a consistent manner. For illustrative
purposes, we will therefore briefly discuss the consequence
of choosing the P2 term too large, i.e., α > 1. This would
arise if the light-matter Hamiltonian was constructed from the
continuum by projecting the P(r)2 operator in the polarization
energy

∫
d3rP(r)2 to the valence-band manifold, instead of

taking the square of the projected operator P(r). Figure 5(c)
shows the spectrum of the single-mode Hamiltonian for
α = 2. Most strikingly, one finds a region of negative spectral
weight and a disappearance of the phase mode. This is
explained as follows: Because the feedback on X (0) in
Eq. (76) has the opposite sign of the one for α < 1, the
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FIG. 6. Imaginary part of − tr{χ} as a function of the frequency
ω and the complex phase θ of the order parameter φ = |φ|eiθ for a
single-mode Hamiltonian with g̃ = 0.5, ω0 = π , U = 6, and α = 1.

stable phase of the order parameter φ = |φ|eiθ is locked to
θ = ±π/2 (φ′ = 0) instead of φ′′ = 0 for α < 1. Choosing
θ = 0 [as in Fig. 5(c)] leads to an unstable solution of the
equation with a negative spectral weight. The stable solution
at θ = ±π/2 features a massive phase mode, as the solution
at α < 0.

D. Breaking of the U (1) symmetry

The discussion in the previous section has shown how the
effects of the dipolar interaction HPP and the light-matter
coupling HEP cancel each other. As a consequence, the static
mean-field solution is entirely U (1) symmetric, so that the
complex phase θ of the order parameter φ = |φ|eiθ can
be chosen arbitrarily. It should be stressed, however, that the
coupling to the electromagnetic field nevertheless does reduce
the symmetry of the Hamiltonian from U (1) to Z2, even if the
P2 term is present (α = 1). The symmetry is only restored at
low frequencies because the interaction matrix (80) at α = 1 is
proportional to ω. This is illustrated in Fig. 6, where the spec-
trum of the single-mode Hamiltonian for α = 1 and U = 6
is plotted as a function of the phase θ (in all previous plots,
the complex phase was fixed to θ = 0). It is clearly visible
that the spectral weight for θ = 0 is concentrated at lower
frequencies than for θ = π/2. This may have an interesting
consequence: If fluctuations of the order parameter beyond

mean field are included, there is a larger phase space of
low-energy excitations, which typically implies a larger en-
tropy at finite temperature and hence a stabilization of the
phase. Therefore, the finite-temperature fluctuations of the or-
der parameter might lead to a breaking of the U (1) symmetry,
so that the phase is fixed to θ = 0, π .

IV. CONCLUSION

In conclusion, we have studied a minimal model for
a two-band U (1)-symmetric excitonic insulator in a cav-
ity. If the electromagnetic field is taken into account, the
continuous symmetry of the Hamiltonian is reduced to a dis-
crete Z2 invariance. Nevertheless, the order parameter of the
symmetry-broken mean-field state retains an arbitrary U (1)
phase, and the phase transition is not affected by the cavity
[30]. In a dipolar gauge, the effect can be traced back to a
balancing of the linear coupling DP between the displacement
field and the polarization, and the dipolar self-interaction PP.
The importance of this mutual elimination has been stressed
recently for atomic systems in strong coupling [37].

At nonzero frequencies, light-matter interaction and dipo-
lar self-interaction do not cancel, so that the collective
properties at ω > 0 depend on the phase of the order param-
eter. A somewhat similar situation is encountered in orbital
spin models, where the Hamiltonian is only symmetric under
a point group of the lattice, but the manifold of mean-field
ground states can have a continuous symmetry. In this case,
fluctuations beyond mean field reflect the lower symmetry
and play a crucial role in finding the true phase at finite
temperature [38]. It should therefore be interesting to include
fluctuations beyond mean field in the description of the EI in
a cavity.

The hybridization between the cavity mode and the ma-
terial at ω > 0 can have other interesting consequences. For
example, it can push the amplitude mode of the condensate
out of the particle-hole continuum and make it long lived.
Moreover, it is questionable if the U(1)-symmetric model for
the EI captures the behavior of real materials. Rather, one
would expect that phonons as well as interband hybridizations
already reduce the continuous U(1) invariance to some point-
group symmetry of the lattice. Because collective modes at
nonzero frequency are affected by the light-matter interaction,
it may be possible to control the behavior of such a material
inside a cavity through nonlinear driving. Also for these situa-
tions, our results show that it is important to properly include
the nonlinearities (A2 or P2) arising from the light-matter
coupling.
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