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Composite Fermi liquid metals arise at certain special filling fractions in the quantum Hall regime and play an
important role as parents of gapped states with quantized Hall response. They have been successfully described
by the Halperin-Lee-Read (HLR) theory of a Fermi surface of composite fermions coupled to a U (1) gauge
field with a Chern-Simons term. However, the validity of the HLR description when the microscopic system is
restricted to a single Landau level has not been clear. Here for the specific case of bosons at filling ν = 1, we build
on earlier work from the 1990s to formulate a low-energy description that takes the form of a noncommutative
field theory. This theory has a Fermi surface of composite fermions coupled to a U (1) gauge field with no Chern-
Simons term but with the feature that all fields are defined in a noncommutative space-time. An approximate
mapping of the long-wavelength, small-amplitude gauge fluctuations yields a commutative effective-field theory
which, remarkably, takes the HLR form but with microscopic parameters correctly determined by the interaction
strength. Extensions to some other composite Fermi liquids, and to other related states of matter are discussed.
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I. INTRODUCTION

The celebrated quantum Hall effects occur when electrons
move in two space dimensions in a large perpendicular mag-
netic field such that the number of magnetic flux quanta is
comparable to the number of particles. Our interest in this
paper is in metallic phases of matter—dubbed composite
Fermi liquids (see Refs. [1,2] for reviews)—that play a foun-
dational role in our overall understanding of phenomena in
the quantum Hall regime. In electronic systems, these occur at
specific even-denominator filling fractions ν = 1

2 , 1
4 , ... They

are striking experimental examples of metals that are not
standard Landau Fermi liquids. Further, they act as parent
phases for an entire prominent sequence (the Jain states [3])
of topological ordered states with quantized Hall conductivity
that are observed experimentally.

Theoretically, the earliest and phenomenologically suc-
cessful description of the experimentally observed metallic
phase at ν = 1

2 was provided by the seminal work [4] of
Halperin, Lee, and Read (HLR). The HLR theory employed
a construction [5,6]—known as flux attachment—where the
original interacting electron problem is formally rewritten in
terms of a fermionic degree of freedom (dubbed the com-
posite fermion) together with a dynamical U (1) gauge field
with a Chern-Simons term. In a mean-field description, the
composite fermion sees a reduced effective magnetic field B∗
compared to the physical magnetic field B. At filling ν = 1

2 ,
the effective field B∗ = 0, and the composite fermions form
a Fermi surface. The HLR theory explained a number of
essential experimental observations at ν = 1

2 and made further
predictions that were confirmed in subsequent experiments.
The HLR theory also has received considerable numerical
support. This same general procedure was also extended to
ν = 1

4 and captured the observed physics.
Despite its striking phenomenological success, there were

a number of fundamental theoretical questions and diffi-

culties raised by the HLR theory that led to many further
developments in subsequent years [7]. The most crucial
difficulty comes from considering the limit in which the
Coulomb interaction energy is smaller than the Landau-
level spacing. This limit is routinely used in numerical
calculations used to confirm the HLR theory and is not
an unreasonable approximation for experiments. Then it is
appropriate to define the quantum Hall problem by pro-
jecting the Coulomb interaction to the highest occupied
Landau level and ignoring all other levels. [At ν = 1

2 , this
means that we define the problem entirely within the lowest
Landau level (LLL).] In this limit, there is only interac-
tion energy as the electron kinetic energy is completely
quenched by the Landau-level structure. Correspondingly,
there is a single energy scale that is set by the interac-
tion strength; for the Coulomb interaction, this energy scale
is e2

lB
where e is the electron charge and lB is the magnetic

length. Formally, the projection to the LLL can be thought of
as the limit where the bare electron mass m → 0. The HLR
theory, however, is not faithful to this projection. Indeed, in
the mean-field approximation of HLR the composite fermion
effective mass is the same as the bare electron mass m. Thus
it is important to understand how to implement the physics of
flux attachment while working purely within a single Landau
level. A second crucial shortcoming—specific to electrons at
ν = 1/2—has to do with a particle-hole symmetry present
at that filling [8] when the electron motion is restricted to
a single Landau level. This symmetry is known—through
numerical calculations—to be preserved by the composite
Fermi liquid ground state [9,10] but yet is not manifest in
the HLR description and is possibly even absent. This issue
has attracted tremendous attention in recent years, resulting
in a proposal for a modified theory [11] of the half-filled
Landau level in terms of a Dirac composite fermion. This
proposal has been substantiated through field theoretic duality

2469-9950/2020/102(20)/205126(20) 205126-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.205126&domain=pdf&date_stamp=2020-11-20
https://doi.org/10.1103/PhysRevB.102.205126


ZHIHUAN DONG AND T. SENTHIL PHYSICAL REVIEW B 102, 205126 (2020)

transformations and other physical arguments [12–17] and by
numerical calculations [10]. There have also been discussions
of the emergence of particle hole as an approximate symmetry
within the HLR theory [18,19]. However, all this progress
on particle-hole symmetry did not address the basic issue of
projecting to a single Landau level but rather sidestepped it
(see, e.g., the discussion in the review, Ref. [20]). Hence we
will not focus on it in this paper.

Thus an outstanding question in the theory of composite
Fermi liquids is to provide a microscopic derivation of an
effective-field theory by working within the LLL. Despite
considerable theoretical attention [21–25] in the 1990s, this
old question (for a review, see Ref. [7]) remained unanswered.

Theoretically, composite Fermi liquids are also expected
to arise when the charged particles are bosons rather than
fermions. For bosons at filling factor ν = 1, attaching one
flux quantum converts the bosons to composite fermions mov-
ing in an effective field B∗ = 0. Then a composite Fermi
liquid state can arise. Numerical calculations [26] show that
the true ground state (with, say, a repulsive contact interac-
tion) is an incompressible fractional quantum hall state—the
bosonic Pfaffian—obtained by condensing pairs of compos-
ite fermions. Nevertheless, the unpaired metallic composite
fermion state is interesting to consider as a possible ground
state (for some interaction), and as a parent state for un-
derstanding the bosonic Pfaffian. In pioneering work in the
1990s, Read developed [23] a LLL theory of the composite
Fermi liquid state of bosons at filling ν = 1. This work was
based on an exact though redundant representation [22], intro-
duced by Pasquier and Haldane, of the Hilbert space of these
bosons in terms of composite fermions. The redundancy in the
representation leads to constraints in the theory. A Hartree-
Fock solution [22,23] leads to a compressible state with a
composite Fermi surface. Fluctuations beyond Hartree-Fock
were treated diagrammatically in Ref. [23] within a conserv-
ing approximation and lead to physically sensible results for
response functions similar to, but not identical to, those in the
HLR theory.

In this paper, we will revisit the theory of Ref. [23] to
pose and answer several questions that follow from it. What
is a low-energy effective-field theory for the composite Fermi
liquid that results from this theory? How exactly is it related
to the HLR action? Can one understand the emergence of
the paired state in numerics within this microscopic analytic
framework? Is it possible to generalize these results to other
composite Fermi liquids? An answer to the first question was,
in fact, suggested in Sec. II D of Read’s paper. Specifically,
the suggestion was that the low-energy theory consists of a
Fermi surface of composite fermions coupled to a dynamical
U (1) gauge field a without a Chern-Simons term. The external
background U (1) gauge field A was then proposed to couple
linearly to da

2π
. This suggestion, which we review in Appendix

A, was, however, not explicitly obtained based on the dia-
grammatic calculations in the bulk of Ref. [23]. A derivation
of this suggested effective theory using field theoretic duality
transformations was also provided much later in Ref. [27],
however, this derivation is not faithful to the LLL limit. Even
later, this effective action was also proposed [28] to arise when
HLR is projected to the LLL limit through an emergent Berry
phase of the composite fermions. Assuming its correctness,

the Lagrangian of the suggested effective theory is clearly
distinct from HLR; do the two Lagrangians describe the same
universal aspects of the physics or do they describe distinct
phases of matter?

In this paper, we obtain a low-energy effective theory that
captures the microscopic formulation and results of Ref. [23].
We show that this takes the form of a noncommutative field
theory, i.e., a theory defined in terms of fields that move
in a space with noncommutative coordinates. The theory is
expressed in terms of a single composite fermion field coupled
to a noncommutative dynamical U (1) gauge field a without
a Chern-Simons term. This is a precise formulation of the
suggestion made in Ref. [23] but with many crucial differ-
ences. Specifically, we will find that it does not have the
form suggested there and which we review in Appendix A.
We then use an approximate mapping—due to Seiberg and
Witten [29]—for the long wavelength, low-amplitude gauge
fluctuations between noncommutative and commutative field
theories. We show that the resulting approximate commutative
field theory action is precisely of the HLR form but with pa-
rameters (like the composite fermion effective mass) faithful
to the energetics of the LLL. We also examine the energetic
stability of the paired state in a Hartree-Fock calculation
within the Pasquier-Haldane-Read framework, and find that
the paired state indeed wins in agreement with the numerics.
Finally, we will show that these methods can be readily gener-
alized to describe composite Fermi liquids formed by a system
of spin-1/2 bosons at a total filling νT = 1. Such a spinful
bosonic composite Fermi liquid has been found in numerical
calculations.

Noncommutative field theories were first contemplated in
physics a long time ago [30]. Interest in them re-emerged
in the late 1990s (and faded in the early 2000s) as they
appeared in certain limits of string theory; for reviews, see
Refs. [31,32]. It has long been recognized that a single
Landau level provides a wonderful physical example of
noncommutative geometry (as the guiding center coordinates
do not commute within a Landau level). A rigorous proof
of the quantization of the Hall conductivity in the integer
quantum Hall effect used methods of noncommutative
geometry [33]. For incompressible quantum Hall states,
a noncommutative effective field theory was proposed in
Refs. [34,35]. This is a possible alternate to the successful
standard commutative Chern-Simons topological quantum
field theory description of topologically ordered quantum
Hall states, and has the potential to be obtained from a LLL
description. However, we are not aware of such a microscopic
derivation. The noncommutative geometry of the Landau level
also plays an important role in the work of Haldane [36] on the
geometrical description of the fractional quantum Hall effect.
For the composite Fermi liquids of interest in this paper, the
relevance of noncommutative geometry was pointed out in
Read’s original paper [23] but the full formulation in terms of
noncommutative field theory was not developed.

II. PRELIMINARIES

A. The basic problem

We consider bosons of charge-1 in a magnetic field B in
two space dimensions at filling ν = 1. We take the bosons
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to occupy states in the LLL whose degeneracy we denote N .
Given a basis set |m〉 (m = 1, ....., N) of one-particle states for
the Landau level, the many-particle Hilbert space is defined by
the states

|ψ〉 = �{mi}am1,......mN |m1, ........, mN 〉, (1)

with the am1,....,mN symmetric under permutations. Clearly, the
number of particles equals the Landau-level degeneracy re-
flecting the filling ν = 1. The Hamiltonian is

H = 1

2

∫
d2q

(2π )2
U (q)ρL(q)ρL(−q). (2)

Here q is the momentum and the Hermitian operators ρL(q)
satisfy the algebra [37]:

[ρL(q), ρL(q′)] = 2i sin

(
(q × q′)l2

B

2

)
ρL(q + q′). (3)

This is known as the Girvin-MacDonald-Platzman (GMP)
algebra. l2

B = 1
B is the magnetic length. The ρL(q) are (up to an

overall q-dependent factor that we absorb into the interaction)
the physical density operators projected to the LLL. Then we
have

U (q) = e− q2 l2B
2 U0(q), (4)

where U0 is the Fourier transform of the real-space micro-
scopic two-body repulsion between the bosons. We will work
with a delta-function repulsion so U0(q) = U0 independent
of q. Note that the only length scale is lB and the only en-
ergy scale in the problem is U0

l2
B

. Unless specified, we will
henceforth work in units where lB = 1. ( How this effective
Hamiltonian is obtained by projecting a microscopic Hamil-
tonian with an infinite number of Landau levels to the LLL is
explained well in the literature, see, e.g., Ref. [7].)

We will begin with a representation of the GMP algebra
in terms of canonical fermion operators ck found by Pasquier
and Haldane [22], and developed extensively by Read [23].
We write

ρL(q) =
∫

d2k
(2π )2

c†
k−qckei k×q

2 . (5)

The fermion operators satisfy the usual anticommutation rela-
tions:

{ck, c†
k′ } = (2π )2δ(2)(k − k′). (6)

This is a redundant description and requires dealing with a
constraint:

ρR(q) =
∫

d2k
(2π )2

c†
k−qcke−i k×q

2 = (2π )2ρδ(2)(q). (7)

Here ρ = B
2π

= 1
2π l2

B
is the mean density. It is readily seen that

ρR satisfies a GMP algebra but with a sign opposite to Eq. (3).
Furthermore, ρR commutes with ρL at all momenta and hence
with the Hamiltonian itself. The constraint operators may
(for large but finite N) be thought of as generators of U (N )
gauge transformations (corresponding to a large redundancy
in representing the physical Hilbert space in terms of the
fermion operators). The fermions ck are interpreted as (the
LLL version of) the composite fermions. For a discussion of a
physical picture in terms of vortex attachment to the particles,

we refer to Ref. [23]. Note that the q → 0 limit of Eq. (5)
implies that the total number of composite fermions equals
the number of physical bosons.

Substituting Eq. (5) into Eq. (2) gives a four-fermion
Hamiltonian which must be solved together with the con-
straint Eq. (7) imposed. A simple Hartree-Fock approximation
that respects translation symmetry seeks a solution where

〈c†
kck〉 �= 0. (8)

The resulting Hartree-Fock Hamiltonian takes the form

HHF =
∫

d2k
(2π )2

εkc†
kck. (9)

The composite fermions then form a Fermi sea and we get a
mean-field description of a composite Fermi liquid. To treat
fluctuations beyond Hartree-Fock, we note that the Hartree-
Fock “order parameter” c†

kck does not commute with ρR(q)
except at q = 0. Thus the huge group of gauge transforma-
tions generated by ρR is broken spontaneously (Higgsed). The
important fluctuations are those generated by q ≈ 0—these
can be thought of as a U (1) gauge field. Thus we should
expect to end up with an effective description in terms of a
Fermi surface of composite fermions coupled to an emergent
dynamical U (1) gauge field. The precise form of this effective
theory and its relationship with HLR will be discussed in the
bulk of this paper. We will show that the effective theory is
conveniently formulated as a noncommutative field theory and
that HLR emerges in a long-wavelength approximation.

B. Noncommutative field theory

To set the stage, we provide a lightning review of the
basic formalism of noncommutative field theory. A detailed
exposition may be found in Refs. [31,32]. Consider 2 + 1-
dimensional space-time where the two spatial coordinates X
and Y do not commute:

[X,Y ] = i	. (10)

Here 	—known as the noncommutative parameter—is a con-
stant. We can think of X,Y as operators in a space of states. In
the specific context of the LLL, X,Y will be the components
of the guiding center coordinate. They are operators in the
space of single-particle eigenstates of LLL. We are interested
in fields that live in this noncommutative space. To that end,
first let us define scalar functions f (R) [where R = (X,Y )].
As X,Y do not commute, we need to specify what we mean
by f (R). A standard choice is known as the Weyl ordering
which defines functions in terms of their Fourier transform:

f (R) =
∫

d2k

(2π )
3
2

eik·R f̃ (k). (11)

Here f̃ (k) is an ordinary function of the ordinary momentum
k whose components commute with each other. The plane-
wave factor

τk ≡ eik·R (12)

may be defined through its power series expansion and fixes
the ordering of X and Y . The inverse Fourier transform is
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readily obtained:

f̃ (k) = (2π )
1
2

∫
d2RTr

(
f (R)e−ik·R)

. (13)

Here
∫

Tr is over the space spanned by R. For notational
convenience, we will drop the Tr symbol in the subsequent
equations and simply write

∫
d2R.

Note that as R is an operator, we should regard f (R) also as
an operator. It will be convenient to associate to this operator
an ordinary function f (x) of commuting coordinates x by
taking the ordinary inverse transformation of f̃ (k).

Next consider the product of two operator-valued functions
f (R) and g(R). It is easy to see from the definition through the
Fourier transforms that

f (R)g(R) =
∫

d2kd2k′

(2π )3

(
e−i 	k×k′

2 f̃ (k)g̃(k′)
)

ei(k+k′ )·R. (14)

Taking the ordinary inverse Fourier transform, we find that the
ordinary function f (x) ∗ g(x) that corresponds to this product
is not the ordinary product of functions but rather to a modifi-
cation known as the star product. Thus the Fourier transform
of f (x) ∗ g(x) at momentum q is∫

d2k

(2π )
3
2

f̃ (q − k)g̃(k)e−i 	k×q
2 . (15)

The star product is associative but not commutative. We
will henceforth remove the tilde from the momentum space
variables and simply use the argument (coordinate versus
momentum space) as an identification of which object we
are talking about. Derivatives of operators can also be readily
defined and correspond to ordinary derivatives of the functions
f (x).

Given an operator-valued field φ(R), consider a term
in a putative Lagrangian such as φ(R)φ(R). Its integral∫

d2Rφ(R)φ(R) can be written as an ordinary Fourier space
integral and hence is precisely defined. Thus we can build
field theories defined in noncommutative space. Equivalently,
we can also work with the corresponding ordinary fields φ(x)
and write the action with all products being star products. For
instance, the noncommutative φ4 theory has an action that can
be written

S =
∫

dτd2x[∂μφ ∗ ∂μφ + rφ ∗ φ + uφ ∗ φ ∗ φ ∗ φ]. (16)

From the definitions above, we see that the noncommutativity
shows up only in the product that defines the quartic term.

Noncommutative gauge theories can be similarly defined.
We will only need to work with U (1) gauge fields aμ(R, τ )
which will again be defined in terms of their Fourier transform
or the corresponding aμ(x, τ ). We use the latter below. The
corresponding field strength is

fμν = ∂μaν − ∂νaμ + i[aν, aν]∗. (17)

Here we introduced the ∗ commutator:

[A, B]∗ = A ∗ B − B ∗ A. (18)

Gauge transformations correspond to

aμ → aμ + ∂μλ + i[aμ, λ]∗. (19)

These leave the field strength fμν invariant.

C. Summary of results

We can now state the main results of this paper. We begin
by showing that an effective low-energy theory that describes
the results of Ref. [23] is a noncommutative gauge theory
with the imaginary time Lagrangian in terms of a composite
fermion field c:

L = c ∗ D0c + ia0ρ + 1

2m∗ DicDic. (20)

Here the covariant derivatives are defined through

Dμc = ∂μc − ic ∗ aμ − iAμ ∗ c, (21)

where aμ (μ = 0, 1, 2) is a dynamical U (1) gauge field and
Aμ is an external background U (1) gauge field. The non-
commutative parameter 	 = −l2

B. The composite fermion
effective mass m∗ is determined by the interaction strength.
The composite fermions have a density ρ. The theory thus
takes the expected form of a Fermi surface of composite
fermions coupled to a dynamical U (1) gauge field. Further-
more, in agreement with what is claimed in Ref. [23], this
theory has no Chern-Simons term for the dynamical gauge
field.

However, these results come with the added feature not
mentioned in Ref. [23], namely, this is a noncommutative field
theory. In contrast, the standard descriptions (such as HLR) of
composite Fermi liquids obtained without paying restricting
to the LLL is in terms of commutative field theories. We will
show that there is an approximate mapping of the theory in
Eq. (20) to a commutative field theory which remarkably is
the same as the effective action of HLR (with some calculable
subleading corrections) but with an effective mass set by the
interaction strength.

The key technical tool we use is known as the Seiberg-
Witten map. This map enables trading a noncommutative field
theory for a commutative one in a systematic series expan-
sion1 in powers of the noncommutative parameter 	 = −l2

B.
As 	 is dimensionful this should really be regarded as an
expansion in (lBq)2, l2

BδρL where q is the momentum of the
gauge field, and δρL is the deviation of the real space density
from it’s mean, i.e., as a long wavelength, low-amplitude
expansion.

Thus we conclude that though the noncommutative field
theory Eq. (20) is a more microscopically faithful effective
theory, its approximate equivalence to HLR in the long wave-
length limit vindicates the use of HLR for addressing many
universal physical properties.

We also examine the energetics of pairing of composite
fermions within the Hartree-Fock theory. Within this treat-
ment we find that the composite Fermi liquid is unstable to
pairing. However the pairing gap is numerically small com-
pared to the Fermi energy of the composite fermions. Thus
fluctuations beyond mean field may affect the relative stability
of the paired state as compared to the composite Fermi liquid.

1For pure noncommutative U (1) gauge theory, there is an exact
nonperturbative version [38–41] of the Seiberg-Witten map relating
it to a commutative U (1) gauge theory. A physically appealing un-
derstanding [42] (see also Ref. [34]) of this result relates it to the map
in fluid dynamics between the Lagrangian and Eulerian frameworks.
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In particular it is known that gauge fluctuations oppose pair-
ing. Nevertheless the mean field stability of the paired state is
encouraging and agrees with existing numerical results.

We generalize these methods to study the problem of two-
component bosons with full U (2) symmetry at a total filling
fraction νT = 1. Numerical work [43,44] has indicated the
presence of a spin unpolarized composite Fermi liquid at this
filling. We develop an effective non-commutative field theory
of this composite Fermi liquid, and show again that it reduces
to a HLR form in the long wavelength, low amplitude approx-
imation. At the mean-field level, we find a pairing instability
which is somewhat weaker than for the spinless case.

III. PASQUIER-HALDANE-READ CONSTRUCTION
FOR COMPOSITE FERMION

A. Parton construction and gauge structure

We begin with a brief discussion of some physical pictures
[45] that motivate the formal parton construction of the com-
posite fermion. In the LLL, the process of flux attachment to
the particles to produce the composite fermion is replaced by
the concept of vortex attachment. The vortex comes with a
depletion of charge density at its core. A heuristic argument
shows that the depletion is precisely equal to the boson charge.
Thus we may view the composite fermion as a bound state of
the boson with electric charge +1 and a vortex with electric
charge −1. Such a bound state is electrically neutral but has
a dipole moment d that is determined2 by the composite
fermion momentum k:

d = l2
Bk × ẑ. (22)

This dipole moment gives an appealing physical picture for
how the composite fermion gets a dispersion. It is simply the
polarization energy ∼d2 (for small |d|) which leads to a k-
dependent energy.

The Pasquier-Haldane formalism begins with a redundant
description of the Hilbert space of bosons at ν = 1 in terms
of the composite fermion Hilbert space. We will follow the
presentation in Ref. [23]. Introduce the fermion operators
cnm, c†

mn satisfying

{cmn, c†
m′n′ } = δmm′δnn′ . (23)

Here m, n are integers that range from 1 to N . Below we will
identify N to be the total number of orbitals in a single Landau
level, and will eventually take N → ∞. The basis states of
the physical Hilbert space [see Eq. (1)] of the bosons is then
constructed as

|m1, ......, mN 〉 = εn1n2.....nN c†
n1m1

c†
n2m2

......c†
nN mN

|0〉. (24)

Here |0〉 is the Fock vacuum annihilated by all the c operators,
and ε is fully antisymmetric with ε12....N = 1. A sum over re-
peated indices is assumed. Clearly, the states thus constructed
are fully symmetric (and hence describe bosons) and corre-
spond to a total number N of bosons in the N orbitals. Thus
we describe bosons at filling ν = 1. The antisymmetrization

2This follows from the relation between position and momentum in
the LLL.

implied by the ε symbol implies that physical states are sin-
glets under SU (N ) transformations of the n index of the cmn

operators. The generators of these transformations are

ρR
nn′ = c†

nmcmn′ (25)

Here we have included a global U (1) generator given by
c†

nmcnm so the ρR generate U (N ) transformations. The con-
straint that physical states are SU (N ) singlets can be restated
in terms of these operators as

ρR
nn′ |ψphys〉 = δnn′ |ψphys〉. (26)

These SU (N ) transformations express an SU (N ) gauge re-
dundancy in the representation of the boson Hilbert space
in terms of fermions. We can similarly define unitary U (N )
transformations on the physical left index m generated by

ρL
mm′ = c†

nm′cmn. (27)

Unlike the transformations on the right index, the transforma-
tions generated by ρL are physical operations in the boson
Hilbert space. Note that the overall U (1) generator N =
TrρL = TrρR is shared by both the left and right generators
(and in any case is fixed to be N as we work with a fixed total
number of bosons). We will refer to ρL and ρR as the left and
right densities, respectively.

We will now proceed slightly differently from the devel-
opment in Ref. [23] in a manner suitable for our purposes.
We will identify the m and n indices to denote orbitals in
a single Landau level. Then we may regard the matrix cnm

as the matrix elements of an abstract operator c defined in
such a Landau level. As is well known, a single Landau level
is a noncommutative space. Specifically consider the guiding
center coordinate R of a single particle moving in the LLL. Its
components X,Y satisfy

[X,Y ] = −il2
B. (28)

We can use R to define a magnetic translation operator:

τk = eik·R. (29)

Any matrix in the LLL can be expanded in terms of the matrix
elements of τk. Thus we write

cmn =
∫

d2k
(2π )2

〈m|τk|n〉ck. (30)

The momentum space operator ck is readily seen to satisfy the
usual anticommutation relations:

{ck, c†
k′ } = (2π )2δ(2)(k − k′). (31)

The densities ρL,R may also be similarly expressed in momen-
tum space. We define

ρL
mm′ =

∫
d2k

(2π )2
〈m|τk|m′〉ρL(k), (32)

ρR
nn′ =

∫
d2k

(2π )2
〈n|τk|n′〉ρR(k). (33)

It is readily seen that ρL(k) satisfies the standard GMP
algebra of Eq. (3) as expected for the physical boson density.
The ρR(k) also satisfies a GMP algebra but with the opposite
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sign:

[ρR(q), ρR(q′)] = −2i sin

(
(q × q′)l2

B

2

)
ρR(q + q′). (34)

Furthermore, ρL and ρR commute with each other. In mo-
mentum space, the constraint in Eq. (25) then becomes
exactly Eq. (7). Furthermore, the left and right densities—
when expressed in terms of the momentum space fermion
operators—take precisely the forms given in Eqs. (5) and (7).
Thus, as advertised before, the momentum space version of
the Pasquier-Haldane representation faithfully reproduces the
Hilbert space of bosons at ν = 1.

The c(k) are identified with composite fermion destruction
operators at momentum k. To bolster this interpretation, let us
establish that these fermions have the correct dipole moment
given by Eq. (22).

B. Dipole moment of the composite fermion

Consider the deviation δρL(q) of the physical density op-
erator from its mean:

δρL(q) = ρL(q) − ρL(q = 0). (35)

Expanding to o(q), we get

δρL(q) �
∫

d2k

(2π )2

(
i

2
k × qc†

kck − q · ∂c†
k

∂k
ck

)
+ o(q2).

(36)

The second term involving ∂c†
k

∂k ck can be simplified using
the definition of ck but we will use a different argument to
obtain its form in the physical Hilbert space. To the same order
in q, the deviation δρR(q) of the constraint density is

δρR(q) � d2k

(2π )2

(
− i

2
k × qc†

kck − q · ∂c†
k

∂k
ck

)
+ o(q2).

(37)
Acting on physical states in the Hilbert space, we must

have

δρR(q)|ψphys〉 = 0. (38)

It follows that∫
d2k

(2π )2
q · ∂c†

k

∂k
ck|ψphys〉 = −i

∫
d2k

(2π )2

k × q
2

c†
kck|ψphys〉.

(39)
Substituting in Eq. (36), we get

δρL(q)|ψphys〉 � i
∫

d2k

(2π )2
k × qc†

kck|ψphys〉. (40)

In the long wavelength limit, in real space, we write

δρL(x) = −∇ · P, (41)

where P is the net dipole moment per unit area. In Fourier
space we then have δρL(q) = −iq · Pq � −iq · Pq=0 to lead-
ing order in q. Thus we identify

Pq=0 =
∫

d2k

(2π )2
k × ẑc†

kck. (42)

Thus, each fermion at momentum k can be assigned a dipole
moment exactly as given by Eq. (22).

C. Hartree-Fock theory

Substituting the expression for ρL in terms of the c
fermions leads to a four-fermion Hamiltonian. In a Hartree-
Fock treatment, Ref. [23] sought for and found a ground state
with a filled Fermi sea. Here we will modify this treatment
in two different ways. First, rather than write the Hamiltonian
just in terms of δρL we will use ρL − ρR for the (deviation
from the mean of the) physical density. A second modification
is that we will allow for mean-field states where the composite
fermions are paired.

We start with the Hamiltonian

H = 1

2

∫
d2q

(2π )2
Ũ (q) : ρL

q ρL
−q : (43)

together with the gauge constraint

ρR
q |ψphys〉 = ρ(2π )2δ2(q) |ψphys〉 . (44)

The normal ordering in Eq. (43) is potentially important when
we use the expression Eq. (5) for ρL in terms of the composite
fermion operators. However, it is readily checked that

: ρL(q)ρL(−q) : −ρL(q)ρL(−q) = −
∫

d2k

(2π )2
c†

kck = −ρ.

(45)
As this is just a constant, we can remove the normal order-
ing from Eq. (43). We specialize to a δ-function repulsive
interaction, with the projected two-body potential Ũ (q) =
U (q)e−q2/2 = Ue−q2/2.

It is straightforward to insert Eq. (5) and do a Hartree-Fock
mean field of the resulting Hamiltonian, as was done by Read
[23]. Restricting to unpaired translation-invariant states, the
composite fermion acquires a dispersion. However, as ob-
served already in Ref. [23], this mean-field treatment has some
physically unsatisfactory features. To see this, note that the
dispersion in this mean field is given by

εk = 1

2
Ũ (0)

∫
d2k′

2π
〈c†

k′ck′ 〉 − 1

2

∫
d2k′

2π
Ũ (k − k′)〈c†

kck′ 〉.
(46)

The first is the Hartree term and the second is the Fock
term. Thus the dispersion comes entirely from the Fock
term. At first sight, this gives a sensible dispersion εk which
increases monotonically as k increases. However, the origin
of the dispersion through the Fock term is different from
the physical picture for how the composite fermion gets a
dispersion, namely, from the polarization energy due to its
dipole moment. This polarization energy should have been a
Hartree effect which, within this mean field, does not affect
the dispersion.

This problem appears in a much more severe form if we
we were to use the same formalism to treat a system of
fermions at ν = 1. Then, instead of composite fermions ck, we
would introduce composite bosons bk. Proceeding as above
would give a boson dispersion of the same general structure as
Eq. (46) except that the Fock term now comes with a positive
sign. This yields a problematic composite boson dispersion
that monotonically decreases with k. Indeed, in this problem
we simply expect to condense the composite boson at k = 0
so as to recover the obvious answer (of a fully filled Landau
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level with an integer quantum Hall effect). The inability of this
mean field to capture this physics suggests that it is not a good
physical starting point.

Here we will rectify these problems by modifying the
Hamiltonian (following Ref. [46]) by replacing δρL by ρL −
ρR. Within the physical Hilbert space, both these expressions
have the same matrix elements. However, as seen in the previ-
ous subsection, ρL − ρR has the right long wavelength dipole
moment and hence leads to a more physical Hartree-Fock
mean field Hamiltonian.

Thus, we work with the modified Hamiltonian:

H̃ = 1

2

∫
d2q

(2π )2
Ũ (q)

(
ρL

q − ρR
q

)(
ρL

−q − ρR
−q

)
. (47)

We begin by writing this in normal ordered form

H̃ =
∫

d2k

2π

∫
d2q

2π
2Ũ (q) sin2

(
k × q

2

)
c†

kck

+1

2

∫
d2q

(2π )2
Ũ (q) : (ρL

q − ρR
q )(ρL

−q − ρR
−q) :

=
∫

d2k

2π
(1 − e− k2

2 )Uc†
kck

+1

2

∫
d2q

(2π )2
Ũ (q) : (ρL

q − ρR
q )(ρL

−q − ρR
−q) : . (48)

The two terms in the last line of Eq. (48) have clear
physical meaning. The first term is a one-body term for the
bare self-energy of a single dipole. This is precisely the po-
larization energy of the dipole which should contribute to
the dispersion. Despite being interaction driven, it does not
depend on the occupation nk of other dipole states. The second
term can be thought of as a dipole-dipole interaction, which is
still a two-body term that needs a mean-field treatment.

The Hartree-Fock calculation procedure is standard. For
the quartic term in Eq. (48), we adopt the translation and
rotational symmetric mean-field ansatz,

〈c†
kck′ 〉 = δ(2)(k − k′)nk,

〈ckck′ 〉 = δ(2)(k + k′)d (k) = δ(k + k′)eilθk d (|k|),
(49)

where the pairing angular momentum l is an odd integer. The
effective mean-field Hamiltonian is reduced into a quadratic
form

HMF =
∫

d2k

2π
εkc†

kck + �kckc−k + �∗
kc†

−kc†
k. (50)

We begin by ignoring the possibility of pairing. The best
unpaired state has a filled circular Fermi surface (centered at
k = 0) of composite fermions with a Fermi momentum kF

determined in the usual way:

πk2
F

(2π )2
= ρ. (51)

We identify this state with (the mean-field description of) the
composite Fermi liquid. The composite fermion dispersion ε̃k ,
with occupation nk given by the Fermi sea, is

ε̃k = U
(

1 − e− k2

2

)
− 2Ue− k2

2

∫ kF

0

dk′

2π
k′e− k′2

2 (I0(kk′) − 1),

(52)

kF

kF

(a)

(b)

FIG. 1. Mean-field dispersion and partial wave components for
different angular momentum. Horizontal axis show k/kF . (a) Com-
posite fermion dispersion at mean-field level without pairing
included. The blue and orange curves denote contributions from nor-
mal ordering (marked as “single-dipole”) and from normal-ordered
term (marked as dipole-dipole), respectively. The green curve, their
sum, is the total dispersion. (b) Partial wave components for different
pairing channels, as in Eq. (54). The labels stand for corresponding
angular momentum l . At the Fermi surface of composite fermion,
only l = ±1 is attractive.

where Il (z) is the modified Bessel function. This modified
dispersion replaces the one above in Eq. (46). The first term
arises from the polarization energy of a single dipole and
the second term from the dipole-dipole interaction. In Fig. 1,
where the contributions from two terms are plotted separately,
we show that the self-energy term dominates over dipole-
dipole term for all k, which is sensible, since the interdipole
contribution only screens and weakens the intradipole inter-
action. It can be checked that ε̃k is a monotonically increasing
function of k. The composite fermion effective mass m∗ for
states near the Fermi surface is given (within the Hartree-Fock
approximation), as usual, by

KF

m∗ =
[
∂ε̃k

∂k

]
k=kF

. (53)

Numerically, we find the value of effective mass to be m∗ =
1.54
U0

.
If instead we had solved the problem of fermions at ν =

1 within the same framework using composite bosons, the
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coefficient of the first term in Eq. (52) is unaffected while the
second term has the opposite sign. As the first term dominates,
the composite boson dispersion has its minimum at k = 0 and
increases with increasing k. Thus this modified mean field
yields physically sensible answers for both bosons at ν = 1
and for fermions at ν = 1.

Returning to bosons at ν = 1, the ground-state energy of
the mea-field composite Fermi liquid is 0.2913UN , where N
is the Landau level degeneracy.

We now include the possibility of pairing of composite
fermions. We will assume that any pairing that is found is
weak in the sense that the pairing gap � is small compared
to the Fermi energy EF of the composite fermions. Note that
as the only energy scale in the problem is U , there can be no
parametric separation between � and EF . Nevertheless this
assumption is justified a posteriori as the solution we will find
will have small �

EF
.

First, we show that l = ±1 is the only possible pairing
channel by examining the partial wave components of the
pairing potential:

Vl (k) = U

2
e−k2

∫ 2π

0

dθ

2π

(
ei k2

2 sin θ − e−i k2

2 sin θ
)2

ek2 cos θ−ilθ

= −Ue−k2(
Il
(
2k2) − 1

)
. (54)

The behavior of Vl (k) is plotted in Fig. 1. At the Fermi surface,
only l = ±1 channels are attractive.

Now we carry out a numerical self-consistent calculation.
As shown in Fig. 2, we find a stable solution in the l = ±1
pairing channel, whose energy is 0.2908U , below that of the
composite Fermi liquid solution. Furthermore the pairing is
weak (�/EF 
 1) thereby justifying our approximations.

In numerical exact diagonalization calculations [26] of the
microscopic Hamiltonian for bosons at ν = 1 it is found that
the ground state is a gapped topologically ordered state that
can be thought of as a paired state of composite fermions
and not the composite Fermi liquid. It is interesting that
the mean-field treatment described here captures this prefer-
ence for a paired state. However, this mean-field treatment
also has an artifact, namely, the degeneracy between l = ±1
pairing channels. This is a direct consequence of identifying
the physical density operator with ρL − ρR, which makes
the interaction term symmetric [46] under a discrete antiu-
nitary operation that interchanges ρL and ρR. The constraint,
however, does not have this symmetry. Thus we expect that
fluctuations beyond the mean field will select between these
two possibilities. The two mean-field paired ground states
correspond to two topologically distinct states, both of which
has a charged edge mode propagating along the direction fixed
by the Landau level, and a neutral edge mode propagating in
parallel or antiparallel directions.

Though the paired state wins over the composite Fermi liq-
uid in the mean field, it is still interesting to consider the fate of
the composite Fermi liquid beyond mean field. The energetic
preference for the paired state may be altered by a different
microscopic interaction; furthermore, it is conceivable, as the
pairing is in any case weak, that there is a temperature window
in which the physics of the composite Fermi liquid is relevant
even if the true ground state is paired.

FIG. 2. The self-consistent Hatree-Fock mean-field solution
without single-particle potential V , and with l = +1 pairing chan-
nel turned on. (a) p + ip pairing order parameter. (b) Dispersion
of composite fermion induced by interaction. The horizontal dotted
line shows the chemical potential and the vertical dotted line marks
k = kF .

IV. FLUCTUATIONS ABOUT THE MEAN-FIELD
COMPOSITE FERMI LIQUID: NONCOMMUTATIVE

FIELD THEORY

In this section, we will go beyond the mean-field treatment
and incorporate fluctuations to obtain an effective action for
the composite Fermi liquid. The mean-field CFL state is not
invariant under the right gauge transformations generated by
ρR(q) (except in the trivial limit q = 0, which does not corre-
spond to a generator of a gauge transformation),

cmn → cmn′U R
n′n, (55)

where U R is an SU (N ) matrix. As the q = 0 UR rotations are
unbroken, the important fluctuations beyond mean field are
long wavelength rotations by UR. To capture these, we will
introduce a dynamical U (1) gauge field aμ that couples to the
right three currents of the c fermions. We will also include a
coupling to a background noncommutative gauge field Aμ that
corresponds to left gauge transformations generated by ρL,

cmn → U L
mm′cm′n, (56)

with U L another SU (N ) matrix.
We begin with the effective Hartree-Fock action for the

composite fermions. In what follows, we will replace the
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Hartree-Fock dispersion εk by a simpler quadratic dispersion,

ε̃k → k2

2m∗ , (57)

with the m∗ given in Eq. (53). As the low-energy physics is
dominated by states near the Fermi surface anyway, this re-
placement is innocuous: It only modifies the dispersion away
from the Fermi surface. The imaginary time Hartree-Fock
action may then be written

SHF =
∫

dτ
d2k

(2π )2
ck

dck

dτ
−

(
k2

2m∗

)
c†

kck. (58)

It is understood that the fermions are at a nonzero mean
density ρ. This could be implemented explicitly by including
a chemical potential term but we will not do so.

To proceed, we could try to continue to work in k space;
however, the action of the gauge fluctuations in k space is
complicated and mixes fermion operators at different mo-
menta. We could try going back to the matrix operators cmn

on which the gauge transformations act simply. However, then
the mean-field action looks complicated.3

These problems are nicely circumvented by passing to a
slightly abstract real space formulation in non-commutative
space without choosing any basis for the Landau level. To
that end, we define the composite fermion field c(R, τ ) as a
function of the noncommutative guiding center coordinate R,
and imaginary time τ :

c(R, τ ) =
∫

d2k

(2π )
1
2

eik·Rck,τ , (59)

c(R, τ ) =
∫

d2k

(2π )
1
2

e−ik·Rck,τ . (60)

As emphasized in Sec. II B, functions of R should be viewed
as operators that act within the space of single-particle LLL
states. In a basis {|m〉} for these single-particle LLL states, the
matrix elements of the (Grassmann-valued) function c(R, τ )
are

〈m|c(R, τ )|n〉 =
∫

d2k

(2π )
3
2

〈m|eik·R|n〉ck,τ . (61)

Thus we see that these matrix elements are precisely the
Grassmann fields cmn corresponding to the matrix-values
composite fermion operators we have been working with.

As explained in Sec. II B, such noncommutative fields can
be traded for fields c(x) defined in ordinary space x so long
as we modify products to star products. We will use this
formulation below.

In terms of these fields, the mean-field action becomes

SHF =
∫

dτd2x
(

c(x, τ ) ∗ dcx

dτ
+ 1

2m
∇c(x, τ ) ∗ ∇c(x, τ )

)
(62)

3The same is true if we choose explicit wave functions for the Lan-
dau orbitals, for instance, in the symmetric gauge to define fermion
operators [23] c(z, w̄) as a function of a holomorphic coordinate z
and an antiholomorphic coordinate w̄.

The right and left gauge transformations of Eqs. (55) and
(56) act on c(x, τ ) through

c(x, τ ) → U L(x, τ ) ∗ c(R, τ ) ∗ U R(x, τ ), (63)

with U L,R = eiθL,R (x,τ ); the exponential is defined through its
power series with all products being star products.

To obtain a gauge invariant effective action for the fluctua-
tions, we introduce a dynamical noncommutative U (1) gauge
field aμ(x, τ ) and a background U (1) gauge field Aμ(x, τ ).
Under the gauge transformation Eq. (63), these transform as

aμ → U †
R ∗ aμ ∗ UR + iU †

R ∗ ∂μUR, (64)

Aμ → UL ∗ Aμ ∗ U †
L + i∂μUL ∗ U †

L . (65)

We will assume that aμ and Aμ are both slowly varying
on the scale of the magnetic length. They thus respond to
long wavelength gauge transformations, which is what we are
interested in. The important components of the fermion fields
are, however, not at low momenta but rather at momenta close
to the Fermi surface.

We now recall the covariant derivatives introduced in
Eq. (21):

Dμc = ∂μc − ic ∗ aμ − iAμ ∗ c. (66)

Under the gauge transformations of Eq. (63), these deriva-
tives transform as

Dμc → U L(x, τ ) ∗ Dμc(x, τ ) ∗ U R(x, τ ). (67)

It will be useful below to also note the infinitesimal form
of these gauge transformations. Under an infinitesimal right
gauge transformation UR = 1 + iθR, we have

c → c + ic ∗ θR, (68)

aμ → aμ + ∂μθR + i(aμ ∗ θR − θR ∗ aμ), (69)

and under an infinitesimal left gauge transformation UL = 1 +
iθL, we have

c → c + iθL ∗ c, (70)

Aμ → Aμ + ∂μθL + i(θL ∗ Aμ − Aμ ∗ θL ). (71)

We can now construct an effective action that correctly
captures the effect of gauge fluctuations about the mean-field
state; we simply replace all the derivatives in Eq. (62) by
covariant derivatives to get Eq. (20):

S =
∫

d2xdτ c ∗ D0c + ia0ρ + 1

2m∗ DicDic. (72)

Thus, the formulation as a noncommutative field theory read-
ily allows us to identify and to formulate a theory of the
important fluctuations beyond mean field. The fermions are at
the nonzero density ρ. As promised, this is a theory of a Fermi
surface coupled to a U (1) gauge field without a Chern-Simons
term; however, the theory is defined in noncommutative space.

V. APPROXIMATION AS A COMMUTATIVE
FIELD THEORY

The noncommutative effective field theory is the natural
result of describing the composite Fermi liquid in the LLL. It
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is hard to directly compare it to other proposed field theories
for this composite Fermi liquid which are defined in commu-
tative space (corresponding to the absence of Landau-level
projection). However, the noncommutativity of space occurs
at the scale of the magnetic length lB, and we might suppose
that for fluctuations at a wavelength much bigger than lB
there is an approximate commutative effective field theory.
Interestingly, precisely such an approximate mapping between
noncommutative and commutative gauge theories was discov-
ered in a well-known paper by Seiberg and Witten [29]. Here
we extend the Seiberg-Witten map to include fermion fields
and apply it to the field theory of the composite Fermi liquid.
This will enable us to obtain an approximate commutative
field theory for long-wavelength fluctuations of the composite
Fermi liquid.

A. The Seiberg-Witten map

The Seiberg-Witten map is usually presented as an expan-
sion of the noncommutative fields and gauge-transformation
parameters in powers of the noncommutativity parameter 	 =
−l2

B. The coefficients in this expansion are expressed in terms
of commutative fields and corresponding gauge transforma-
tion parameters. We will follow this presentation here.

We formally seek a map from noncommutative fields and
gauge-transformation parameters (aμ, Aμ, c, θR, θL ) to com-
mutative fields and gauge-transformation parameters denoted
(̂aμ, Âμ,ψ, θ̂R, θ̂L ) of the form

aμ = aμ (̂aν ),

Aμ = Aμ(Âν ),

c = c(ψ, âμ, Âμ), (73)

θR = θR (̂aμ, θ̂R),

θL = θL(Âμ, θ̂L ).

We require that the hatted fields satisfy the standard commu-
tative gauge transformations:

âμ → âμ + ∂μθ̂R,

Âμ → Âμ + ∂μθ̂L, (74)

ψ → ψ + iψ (̂θL + θ̂R).

It is a priori not clear that such a map will exist but we will find
it explicitly to linear order in 	. Furthermore, the map will
determine the noncommutative fields at a space-time point in
terms of the commutative fields (and their derivatives) at the
same point. Finally note that the Seiberg-Witten map relates
the gauge-transformation parameters in a manner that depends
on the gauge-field configurations.

The assumption that the map is analytic around 	 = 0
allows us to write it down as

A(Â) = Â + �A(Â), a(̂a) = â + �a(̂a),

θL (̂θL, Â) = θ̂L + �θL (̂θL, Â),

θR (̂θR, â) = θ̂R + �θR (̂θR, â),

c(ψ, Â, â) = ψ + �ψ (ψ, Â, â). (75)

Here �A, �a, �θR, �θL, and �c are all of o(	).

To determine the map, we start with two sets of fields in
commutative space (Â, â, ψ ) and (Â′, â′, ψ ′), which differ by
a standard infinitesimal gauge transform in Eq. (74). The map,
if it exists, should send them, respectively, to two sets of fields
in noncommutative space (A, a, c) and (A′, a′, ψ ), which by
assumption are also connected through a gauge transform
in noncommutative space as described by Eqs. (68)–(71).
Moreover, the two gauge-transformation parameters for the
commutative fields and their noncommutative counterparts
are related by the second line of Eq. (75). The constraints are
written as

Aμ(Â + ∂θ̂L ) − Aμ(Â) = ∂μθL (̂θL, Â) + i
[
θL (̂θL, Â), Aμ(Â)

]
∗,

aμ (̂a + ∂θ̂R) − aμ (̂a) = ∂μθR (̂θR, â) + i
[
aμ (̂a), θR (̂θR, â)

]
∗,

c
(
ψ + iψ (̂θL + θ̂R), Â + ∂θ̂L, â + ∂θ̂R

) − c
(
ψ, Â, â

)
= i

(
θL (̂θL, Â) ∗ c(ψ, Â, â) + c(ψ, Â, â) ∗ θR (̂θR, â)

)
,

(76)

where we have used a shorthand notation [A, B]∗ = A ∗ B −
B ∗ A. Now, Eq. (76) can be expanded using Eq. (75). By
comparing terms up to first order in θL, θR and 	, one can
show the map is

�Aμ(Â) = −	

2
ενρ Âν (∂ρÂμ + F̂ρμ),

�aμ (̂a) = +	

2
ενρ âν (∂ρ âμ + f̂ρμ),

�θL (̂θL, Â) = −	

2
εμνÂμ∂νθ̂L, (77)

�θR (̂θR, â) = +	

2
εμν âμ∂νθ̂R,

�ψ (ψ, Â, â) = +	

2
εμν

[
(̂aμ − Âμ)∂νψ − îaμÂνψ

]
,

where ε12 = −ε21 = 1 and εμν = 0 for all other en-
tries. F̂μν = ∂μÂν − ∂ν Âμ, f̂μν = ∂μâν − ∂ν âμ are the field
strengths.

B. Emergence of HLR theory

Using the Seiberg-Witten map, we can rewrite the noncom-
mutative Lagrangian in Eq. (72) in terms of the fields defined
in commutative space to obtain a Lagrangian, formally to
linear order in 	. Let us write the resulting Lagrangian as

L = L0 + L1, (78)

where L0 is formally of order 	0 and L1 is formally of order
	.

We then have

L0 = ψ̄∂0ψ − i(̂a0 + Â0)ψ̄ψ + îa0ρ

+ 1

2m∗
∣∣(∂i − i(̂ai + Âi )

)
ψ

∣∣2
. (79)

L1 has contributions coming from several pieces of the non-
commutative Lagrangian. We begin with the term ia0ρ. Using
the Seiberg-Witten map we see that the o(	) piece from
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this is

i
ρ	

2
εαβ âα (∂β â0 + f̂β0). (80)

It is readily seen to be the Chern-Simons term (after an inte-
gration by parts):

i
ρ	

2
εαβγ âα∂β âγ . (81)

Note that as 	 = −l2
B and ρ = 1

2π l2
B
, the coefficient of the

Chern-Simons term is precisely 4 − 1
4π

.
Next consider the contribution at o(	) from the term in-

volving the covariant derivative. We split this into two parts
coming from the two terms in the Seiberg-Witten map for the
fermion fields:

�ψ (ψ, Â, â) = �(1)ψ + �(2)(ψ ),

�(1)ψ = +	

2
εμν (̂aμ − Âμ)∂νψ,

�(2)ψ = −i
	

2
ενμâμÂνψ. (82)

Thus we write

c̄ ∗ D0c = ψ̄D̂0ψ + Lτ,1 + Lτ,2, (83)

where the Lτ,2 term comes from �ψ (2) and Lτ,1 represents the
remaining contributions. We also define D̂μ = ∂μ − i(̂aμ +
Âμ) as the standard covariant derivative for the commutative
fields. We then have

Lτ,1 = −	

2
εαβ

{
∂0 (̂aβ − Âβ )ψ̄∂αψ + ∂β (̂a0 − Â0)(∂αψ̄ψ )

+ (̂aβ − Âβ )
(
∂α (ψ̄∂0ψ ) − i(̂a0 + Â0)∂α (ψ̄ψ )

)
+ [

îaα (∂β â0 + f̂β0) − iÂα (∂β Â0 + F̂β0)
]
ψ̄ψ

}
. (84)

These terms can be simplified, as we now explain. To that
end, we consider the equation of motion obtained from L0 by
varying the dynamical gauge fields. This gives

jμ = δL
δaμ

= 0. (85)

The spatial components yield the equation

ψ̄
(
D̂iψ

) −
(

D̂iψ
)
ψ = 0. (86)

It follows that

ψ̄ ∂iψ = 1
2∂i(ψ̄ψ ) + i(̂ai + Âi )ψ̄ψ, (87)

∂iψ̄ ψ = 1
2∂i(ψ̄ψ ) − i(̂ai + Âi )ψ̄ψ. (88)

4Note that we have obtained a coefficient of o(1) from a term that is
formally of order 	. This is because we are at a density of composite
fermions that is order 1

|	| . We will return to this point at the end of
this section.

We use this to reduce the first line of Lτ,1 in Eq. (84) to

−	

2
εαβ

[(
∂0 (̂aβ − Âβ ) + ∂β (̂a0 − Â0)

)1

2
∂α (ψ̄ψ )

−i(̂aα + Âα )
(
∂β (̂a0 − Â0) − ∂0 (̂aβ − Âβ )

)
ψ̄ψ

]
(89)

or more compactly as

	

2
εαβ

[
1

2
∂0∂α (̂aβ − Âβ )ψ̄ψ + i(̂aα + Âα )

× (
∂β (̂a0 − Â0) − ∂0 (̂aβ − Âβ )

)
ψ̄ψ

]
. (90)

The second line of Eq. (84) can be written

− 	

2
εαβ[(̂aβ − Âβ )∂α (ψ̄D̂0ψ )

+ i(̂aβ − Âβ )∂α (̂a0 + Â0)ψ̄ψ]. (91)

We may now sum together the first, second, and third lines
of Eq. (84). Expanding out the resulting products of gauge
fields, and using the antisymmetry of εαβ , we find that the
third line is exactly canceled by contributions from the other
two lines. The remaining terms lead to

Lτ,1 = −	

2
εαβ

( − 1
2∂0∂α (̂aβ − Âβ )ψ̄ψ

+ (̂aβ − Âβ )∂α (ψ̄D̂0ψ ) + i∂0 (̂aαÂβ )ψ̄ψ
)
. (92)

The last term is not gauge invariant under combined gauge
transformations of â and Â. However, we show in Appendix B
that it is exactly canceled by Lτ,2. Thus we have

Lτ,1 + Lτ,2 = 	

2
εαβ

(
1
2∂0∂α (̂aβ − Âβ )ψ̄ψ

− (̂aβ − Âβ )∂α (ψ̄D̂0ψ )
)
. (93)

In the corresponding action, we integrate the last term by parts
(and throw away total derivative terms) to obtain

Lτ,1 + Lτ,2 = 	

2
εαβ

(
1
2∂0∂α (̂aβ − Âβ )ψ̄ψ

+ ∂α (̂aβ − Âβ )ψ̄D̂0ψ
)
. (94)

The spatial gradient term can be similarly handled. Details
may be found in Appendix B. We show there that the leading
order in 	 term is

Lx = −	

2
εαβ∂α (̂aβ − Âβ )

1

2m∗ |D̂iψ |2. (95)

Combining all these contributions, we thus obtain (to linear
order in 	) the effective commutative Lagrangian:

L = LHLR + Lcorr

LHLR = ψ̄∂0ψ − i(̂a0 + Â0)ψ̄ψ + îa0ρ

+ 1

2m∗ |(∂i − i(̂ai + Âi )
)
ψ |2 − i

1

4π
εαβγ âα∂β âγ ,

Lcorr = 	

2
εαβ

(
− 1

2
∂α (̂aβ − Âβ )∂0(ψ̄ψ )

+ ∂α (̂aβ − Âβ )(ψ̄D̂0ψ − 1

2m∗ |D̂iψ |2)

)
. (96)
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Remarkably, the first term LHLR this is precisely the HLR
action for the composite Fermi liquid, while the second term
Lcorr is a subleading correction. To make this identification,
first note that Â represents an additional probe gauge field on
top of the basic magnetic field B that defines the Landau level.
If we introduce a vector potential Aμ = (0, Ax, Ay) such that

∇ × A = B, (97)

then the total external gauge field is

Atot,μ = Âμ + Aμ. (98)

We then have

LHLR = L[ψ, â − A + Atot] + îa0ρ − i
1

4π
εαβγ âα∂β âγ . (99)

We similarly define a new dynamical gauge field atot through

atot,μ = âμ − Aμ. (100)

We then get

LHLR = L[ψ, atot + Atot] + iatot,0ρ

− i

4π
εαβγ (atot,α + Aα )∂β (atot,γ + Aγ ). (101)

Expanding out the Chern-Simons term and using Atot,0 = 0,
ρ = B

2π
, we get the Lagrangian

LHLR = L[ψ, atot + Atot] − i

4π
εαβγ atot,α∂βatot,γ , (102)

which is the standard form of HLR. However, the HLR
Lagrangian is usually derived through the flux attachment
procedure without invoking the projection to the LLL. The
composite fermion mass appearing in the usual HLR action is
the bare electron mass. Here we have derived the HLR action
within the LLL. It appears as an approximation to the more
microscopically correct noncommutative field theory Eq. (20).
The composite fermion mass that appears in the HLR action
thus obtained is determined by the interactions.

Let us now examine the terms in Lcorr. In the absence of
the probe background gauge field (Â = 0), the first term is
a coupling between the internal electric field and the density
gradient. This is small so long as we limit ourselves to long
wavelength density fluctuations. The second term involves
corrections, of order δρl2

B 
 1, to terms already present in
LHLR. Here δρ is the fluctuation of the density in real space.
(We used the relationship εi j∂îa j = 2πδρ implied by LHLR).
Thus this is small, with the further assumption that we limit
ourselves to small amplitude fluctuations of the density.

Thus the HLR Lagrangian emerges as an approximate
description of the full noncommutative field theory for long-
wavelength, low-amplitude gauge fluctuations. The crucial
Chern-Simons term arises with a properly quantized coeffi-
cient − 1

4π
. Does the presence of a mean density of order 1

|	|
invalidate the expansion in powers of 	? The mean density
sets the Fermi momentum kF ∼ 1√|	| . Clearly, we can not
assume that the fermions are at long wavelength though the
important gauge fluctuations are at long wavelength. It is thus
reassuring that the smallness of the correction terms in Lcorr

only invoked the long-wavelength, low-amplitude limit for
the gauge fluctuations. This then is a justification of the use

of HLR theory for many physical properties (e.g., the com-
pressibility or transport in the presence of a smooth impurity
potential) even when restricted to the LLL. If, however, we are
interested in universal short-distance properties, such as 2KF

singularities in density correlations, it may be safer to go back
to the full noncommutative field theory.

Another consequence of the emergence of the Chern-
Simons term with an o(1) coefficient is that we must
re-examine Eq. (86) for the current that we used to obtain
the o(	) correction to the action. The Chern-Simons term
will lead to an extra Hall current contribution to this equation
which will lead to an additional correction to the HLR action.
We do this in the Appendix and show that this extra correction
is of the form

− 	

4π
m∗(( f̂01 − F̂01) f̂01 + ( f̂02 − F̂02) f̂02

)
. (103)

This is an innocuous correction for long-wavelength gauge
fluctuations.

Can we understand why at the end of the day we only
obtain a self Chern-Simons term for â? In particular, based on
the interpretation of the composite fermion as a vortex, one
might have expected a mutual Chern-Simons term of the form

i
2π

Â ∧ dâ which is not found in our derivation. To understand
this, we note that the noncommutative Lagrangian, apart from
the term −ia0ρ that comes from Lagrangian multiplier for the
gauge constraint Eq. (7), has a symmetry Â ↔ â,	 → −	.
This symmetry of part of the Lagrangian precludes any mu-
tual Chern-Simons term between â and Â. The term −ia0ρ

contributes only an internal Chern-Simons term ∼a ∧ da.
A few qualitative (and somewhat heuristic) remarks on

the results of this section may be useful. A well-known way
to understand the usual HLR construction (without the LLL
restriction) for bosons at ν = 1 is in terms of a traditional
parton representation where we write the microscopic boson
operator b as a product of two fermions:

b = ψ f . (104)

This comes with a U (1) gauge constraint ψ†ψ = f † f . This
introduces a U (1) gauge field. Further the total number of f
(or ψ particles) equals the total number of bosons. We assume
that the ψ fermions carry the global U (1) charge of the boson
and see the external magnetic field. The f fermions then are
neutral under the global U (1). In a mean-field description of
the composite Fermi liquid, there is a mean internal gauge
flux that cancels the external gauge flux. Then the ψ fermions
see net effective zero magnetic field and form a Fermi surface
while the f fermions are in an integer quantum Hall state with
σxy = 1. Integrating out the f fermions, we get the standard
HLR action with a Chern-Simons term for the fluctuations of
the internal gauge field. Now, the c fermions occuring in the
Pasquier-Haldane-Read formulation may roughly be thought
of as the LLL version of the ψ fermions in the standard parton
construction. The constraint that the right density does not
fluctuate may be represented formally by introducing a filled
Landau level of f fermions and writing

ρR
nn′ = f †

n fn′ , (105)

where fn destroys an f fermion in the Landau orbital n. It is
natural then that the contribution of the background density
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(which technically is the origin of the Chern-Simons term)
gives a Chern-Simons term.

Finally, we briefly comment on the relationship to the
ideas of Ref. [28] on the emergent Berry phase of composite
fermions in the LLL. That paper proposed that as the LLL
limit was taken, the composite fermions of the HLR theory
will develop a Fermi-surface Berry phase of −2π (for bosons
at ν = 1). This Berry phase will then give an anomalous Hall
effect for the internal gauge field that exactly cancels the
Chern-Simons term of the original HLR theory. This then
was suggested to be a way to reconcile the two effective
Lagrangians discussed in Appendix A. The detailed analy-
sis presented here partially supports this proposal but also
shows its limitation. The correct effective noncommutative
field theory in the LLL has no Chern-Simons term, but the
right density operator expressed in terms of the composite
fermions has a form factor e− i

2 k×q. Considering this for small
|q|, we can think of this form factor as describing a Berry
connection A(k) in momentum space:

A(k) = − 1
2 ẑ × k. (106)

The corresponding Berry curvature is

B = −1. (107)

Thus we could say that the Chern-Simons term of the HLR
theory has been accommodated instead by an anomalous Hall
effect that will result from the form factor associated with
the composite fermion density in the LLL theory. However,
the full structure that results in the LLL is the noncommu-
tative field theory and not the commutative effective-field
theory of Eq. (A1). In the commutative approximation to
the full noncommutative field theory, the density operator
has no nontrivial form factor (and hence no Berry phase).
The Seiberg-Witten map trades the theory of fermions with a
gauge field coupling to densities with a nontrivial form factor
to a theory of different fermions with a gauge field coupling to
densities without such a form factor but with a Chern-Simons
term.

VI. DOPING THE COMPOSITE FERMI LIQUID:
THE JAIN STATES

Apart from their intrinsic interest, composite Fermi liquids
also play a crucial role as parent states of the Jain series
of gapped quantum Hall states at nearby fillings. For the
bosonic composite Fermi liquid at ν = 1, the nearby Jain
states occur at a filling p

p+1 with p a large integer of either
sign. Topological aspects of the Jain states are described by
multicomponent abelian Chern-Simons gauge theories. These
topological quantum field theories of course do not capture
dynamical aspects of the state, for instance, the quasiparticle
gaps or details of the magnetoroton mode, etc. However, for
large |p|, both topological and some dynamical properties are
universally determined by properties of the composite Fermi
liquid at ν = 1. Thus, armed as we are, with a LLL theory of
the composite Fermi liquid we can obtain a LLL description
of the large |p| Jain states. This is not straightforward directly
in the original Pasquier-Haldane-Read framework: Moving
away from ν = 1 requires using rectangular matrices cmn

which leads to technical complications. However, the effective

field theory description readily allows us to dope away from
ν = 1.

To that end, it is simplest to just use the approximate map-
ping to the commutative theory described in the last section.
If we initially ignore the extra Lcorr term, then there is no
difference with the usual HLR theory. Moving away from
ν = 1 by changing the external magnetic field at fixed boson
density, we have

εi j∂iÂ j = δB. (108)

The internal magnetic field b̂ = εi j∂îa j has an average value

〈b〉 = 2π
(〈ψ̄ψ〉 − ρ

) = 0. (109)

As usual, the net average magnetic field seen by the composite
fermions is

B∗ = δB + 〈̂b〉 = δB. (110)

Jain states form when the composite fermions fill p Landau
levels which happens when ρ = pδB

2π
= p(Btot−B)

2π
, which gives

a filling
2πρ

Btot
= p

p+1 .
Next consider the Lcorr term. The potentially important

effect comes from the second term. Replacing b̂ − δB by its
average −δB, we find the approximate Lagrangian:

L =
(

1 + 	δB

2

)
ψ̄D̂0ψ + îa0ρ

+ 1

2m∗

(
1 − 	δB

2

)
|D̂iψ |2 − i

1

4π
εαβγ âα∂β âγ . (111)

We can now redefine the ψ field (and using |	δB| = | δB
B | 
 1

to set the coefficient of the time derivative to 1):

ψ̃ ≈
(

1 + 	δB

4

)
ψ. (112)

The Lagrangian then becomes

L̃ = ¯̃ψD̂0ψ̃ + îa0ρ + 1

2m̃∗ |D̂iψ̃ |2 − i
1

4π
εαβγ âα∂β âγ .

(113)

Thus the effect of Lcorr is to change the bare mass m∗ to m̃∗
given by

m̃∗ = m∗
(

1 − δB

B

)
. (114)

The Landau-level spacing of the composite fermions δB
m̃∗ gives

a rough estimate of the gap of the Jain state.5 Using the
mean-field estimate for m∗ from Eq. (53), we thus get an
approximate gap for the large |p| Jain states:

� ≈ 0.65U0|δB|
(

1 + δB

B

)
. (115)

5This will be renormalized by gauge fluctuations which lead for
small δB to a singular correction to the effective mass. So the effec-
tive mass given in Eq. (114) may be expected to capture the correct
gap in a window of small but not too small |δB|.

205126-13



ZHIHUAN DONG AND T. SENTHIL PHYSICAL REVIEW B 102, 205126 (2020)

In the future, it should be interesting to correctly obtain
the coupling of the Jain states to geometry (and calculate the
shift/Hall viscosity) within this framework.

VII. SPINFUL BOSONS IN LLL AT TOTAL FILLING νT = 1

In this section, we generalize our results to a system of two-
component bosons with global U (2) symmetry in a magnetic
field at a total filling factor νT = 1. The physical Hilbert space
is spanned by states fully symmetric under exchange of two
particles:

|(m1, σ1), ..., (mn, σn)〉 , (116)

where mi label orbitals (in some basis) in the LLL, and σi

is the SU (2) spin of the ith particle. There is a total density
operator ρL

q that satisfies the GMP algebra. In addition, there
is a spin density operator SL,α (q) (α = 1, 2, 3) that satisfies
the following commutation relations:

[
SL,α

q , ρL
q′
] = 2i sin

(
q × q′

2

)
SL,α

q+q′ ,

[
SL,α

q , SL,β

q′
] = 2iεαβγ cos

(
q × q′

2

)
SL,γ

q+q′

+ 2iδαβ sin

(
q × q′

2

)
ρL

q+q′ . (117)

We will consider a Hamiltonian

H = 1

2

∫
d2q

(2π )2
U (q)ρL

q ρL
−q. (118)

The treatment can be readily generalized to a more general
U (2) symmetric Hamiltonian that includes, for example, an
interaction between the spin densities.

This system has been studied numerically in Refs. [43,44]
for a contact interaction and there is evidence for a spin-
unpolarized composite Fermi liquid. Below we will provide
an analytic microscopic theory.6

A. Pasquier-Haldane construction

The Pasquier-Haldane construction introduced in Sec. III A
can be naturally generalized to include spin by introducing
spinful composite fermion cσ,mn that satisfy anticommutation
relations:

{cσ,mn, c†
n′m′,σ ′ } = δσ,σ ′δmm′δnn′ . (119)

Many-body states in the physical Hilbert space are then rep-
resented by

|(m1, σ1), ..., (mn, σn)〉 = εn1,...,nN c†
n1;σ1,m1

...c†
nN mN ,σN

|0〉 .

(120)

The antisymmetrization over internal indices ni means that
physical states are singlets under the SU (N ) right transfor-
mations generated by ρR

nn′ − δnn′ where ρR
nn′ |ψ〉 = δnn′ |ψ〉,

6It is also easy to treat N-component bosons with global U (N )
symmetry at a total filling νT = 1 for general N but we will not do
so here.

where the right density is now

ρR
nn′ =

∑
mσ

c†
nm,σ cσ,mn′ . (121)

Thus we have the constraint

ρR
nn′ |ψphys〉 = δnn′ |ψphys〉 . (122)

We can now go to momentum space using the plane-wave
operators eiq·R. It is readily checked that the ρL

q , SL,α
q satisfy

the commutation algebra of Eqs. (117). Furthermore, just as
before, the right density operator ρR satisfies the GMP algebra
but with the opposite sign from ρL. The ρR also commute with
ρL, SL,α .

We note that we can define a right spin density operator

SR,α
nn′ = 1

2

∑
ss′m

c†
nm,sσ

α
ss′cs,mn′ (123)

which also has vanishing matrix elements between physical
states. To show this, consider a matrix element of the commu-
tator of right spin density and right density. By virtue of the
gauge constraint Eq. (38),

〈ψ1| [SR,α
q , ρR

q′ ] |ψ2〉 = 0 for ∀q′ �= 0, (124)

where |ψ1〉 , |ψ2〉 are physical states that satisfy ρR
q |ψ1,2〉 = 0

for ∀q �= 0. It follows therefore from the commutation algebra
in Eq. (117) that

〈ψ1| SR,α
q |ψ2〉 = 0 for ∀ψ1, ψ2, q �= 0. (125)

However, unlike δρR, the operator SR,α (for q �= 0) does not
simply annihilate physical states. Rather it takes physical
states to unphysical states. We illustrate this with an explicit
example in Appendix D. So, the right spin density is not a
generator for gauge fluctuations and the gauge structure of our
spinful composite fermion construction is still SU (N ).

B. Hartree-Fock theory

We can now proceed completely similarly to our previous
discussion. The Hamiltonian is expressed in terms of the c
fermions, and the resulting four-fermion term can be solved
within a Hartree-Fock approximation. We first describe a
spin-unpolarized composite Fermi liquid solution (no pairing
terms) with

〈c†
kscks′ 〉 = nkδ

(2)(k − k′)δss′ , (126)

with nk = 1 for k inside a circular Fermi surface of radius
kF , and zero otherwise. The Fermi momentum ks

F is the one
appropriate for spinful fermions, i.e., it satisfies

2π (ks
F )2

(2π )2
= ρ. (127)

We then get the dispersion for the spinful composite fermion:

ε̃k = U (1 − e− k2

2 ) − 2Ue− k2

2

∫ ks
F

0
dk′ k′e− k′2

2 (I0(kk′) − 1).

(128)

The dispersion incorporates two terms as described in the
spinless case before. The first term is the intradipole interac-
tion, which is unchanged compared to Eq. (52). The second
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kF

kF

(a)

(b)

FIG. 3. Mean-field dispersion and partial wave components
for different angular momentum. Horizontal axis shows k/kF .
(a) Composite fermion dispersion at mean-field level without pairing
included. The dashed curves in blue and orange denote contributions
from the single-dipole and from the dipole-dipole terms, respec-
tively. The green curve is their sum, and hence the total dispersion.
(b) Partial wave components for even parity pairing channels, as in
Eq. (54). The labels stand for corresponding angular momentum l .
At the Fermi surface of spinful composite fermion, s-wave channel
is attractive.

term is an interdipole interaction, which is different from that
of Eq. (52) due to the different Fermi surface structure. We
plot the mean-field dispersion in Fig. 3. We note that the
dipole-dipole term is significantly weaker than that of spinless
case, since the reduced size of the Fermi surfaces lead to
smaller dipole moments, which provide weaker screening.

Next we include the possibility of pairing to discuss the
stability of the composite Fermi liquid. Note that compared to
the spinless problem, the spin degrees of freedom allows for
both even and odd angular momentum pairing.

For spin-triplet Cooper pairing, which has odd angular
momentum, the pairing interaction is exactly the same as
Fig. 1(b). In this case, the pairing in l = ±1 channel is no
longer attractive at the reduced Fermi surface ks

F = kF /
√

2.
For spin-singlet (even angular momentum) pairing, the pairing
potential is shown in Fig. 3. We find the s-wave channel
attractive. The attractive potential at the Fermi surface is
around 25% weaker than that of the p-wave attraction for
the spinless case. Thus, at the mean-field level the composite

Fermi liquid will be unstable to pairing, and a topologically
ordered ground state will result. Solving the Hartree-Fock
equations numerically, when only triplet pairing channel is
turned on, no pairing is observed. Allowing singlet pairing, the
self-consistent mean-field calculation converge to the s-wave
pairing state, with an energy gap �E

UN = 6 × 10−6, an order of
magnitude smaller than that of spinless case. This is consistent
with our analytical results.

However, upon including fluctuations, the weaker pairing
in the spinful problem may not be able to compete against the
Amperean repulsion coming from the current-current interac-
tion. In any case, we expect that the pairing is likely a weaker
instability than in the spinless case. This is qualitatively con-
sistent with what is seen in the numerics, where the CFL state
seems to exist in the spinful model for currently accessible
system sizes while the spinless case is in a paired state.

C. Effective field theory

Now we include fluctuations beyond Hartree-Fock to write
down a low-energy effective field theory for the spinful com-
posite Fermi liquid, completely parallel to what was done
in Sec. IV. The Hartree-Fock composite Fermi liquid state
breaks the right gauge transformations generated by ρR

vq for
q �= 0,

cσ,mn → cσ,mn′U R
n′n, (129)

where U R is an SU (N ) matrix. Meanwhile, we also include
left gauge transformations generated by left density ρL:

The important fluctuations, therefore, are gauge fluctu-
ations at small |q|. As before, we will include also a
background gauge field that couples to left SU (N ) rotations,

cσ,mn → U L
mm′cσ,m′n, (130)

with U L another SU (N ) matrix. In principle, we could also
include a background gauge field that couples to spin [or more
precisely a U (2) background gauge field that couples to both
charge and spin] but we will not do so here. As before, these
gauge fluctuations are readily incorporated in a path integral
framework in terms of the noncommutative operator-valued
fields,

cs(R, τ ) =
∫

d2k

(2π )
3
2

eik·Rcks(τ ), (131)

or their corresponding ordinary fields cs(x, τ ) which are mul-
tiplied by the star product. Following the development in
Sec. IV, we find the noncommutative effective-field theory,

S =
∫

d2xdτ cs ∗ D0cs − ia0ρ + 1

2m∗ |Dics|2, (132)

where the spin index s is summed over.
Finally, our discussion on the Seiberg-Witten map still

applies to this spinful case, only with a modification to include
spin indices of composite fermion fields. Namely, we only
substitute the last line of Eq. (77) with

�ψσ (ψσ , Â, â) = 	

2
εμν

[
(̂aμ − Âμ)∂νψσ − îaμÂνψσ

]
. (133)

We then find that the noncommutative theory is mapped to
a HLR theory for the spinful composite Fermi liquid (with
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subleading correction terms similar to Sec. V B):

L = ψ̄σ ∂0ψσ − i(̂a0 + Â0)ψ̄σψσ + îa0ρ

+ 1

2m∗
∣∣(∂i − i(̂ai + Âi )

)
ψσ

∣∣2 − i
1

4π
εαβγ âα∂β âγ .

(134)

VIII. DISCUSSION

The noncommutative field theory formulation of the
bosonic composite Fermi liquid within the LLL developed
in this paper raises a number of other questions. The most
important one is whether for fermions at ν = 1

2 in the LLL
there is a similar formulation. Such a field theory will presum-
ably automatically incorporate particle-hole symmetry and
will reduce to the commutative field theory of the Dirac
composite fermion (Ref. [11] or the more refined version in
Ref. [17]). Unfortunately, a direct extension of the Pasquier-
Haldane-Read representation (using, for instance, three-index
fermionic partons (see the thesis [47]) is complicated and has
not thus far led to progress [48].

Other problems that could be treated within the Pasquier-
Haldane-Read formalism include mutlicomponent fermions
or bosons in Landau levels at total integer filling. These have
been of interest in various contexts. A further generalization is
to introduce some dispersion to broaden the Landau level into
a Chern band and study the competition between correlations
and bandwidth. For bosons at ν = 1, we will describe this
competition and the evolution of the ground state elsewhere
[49].

ACKNOWLEDGMENTS

We particularly thank Hoi-Chun (Adrian) Po and Ya-Hui
Zhang for many stimulating discussions. Thanks are also due
to Nick Read and Chong Wang for sharing their insights on
many matters pertinent to this paper, and to Hong Liu for
discussions on noncommutative field theory. This work was
supported by NSF Grant No. DMR-1911666, and partially
through a Simons Investigator Award from the Simons Foun-
dation to Senthil Todadri. This work was also partly supported
by the Simons Collaboration on Ultra-Quantum Matter, which
is a grant from the Simons Foundation (Grant No. 651440,
T.S.). Part of this work was performed during a visit of T.S. at
the Aspen Center for Physics, which is supported by National
Science Foundation Grant No. PHY-1607611.

APPENDIX A: FIELD THEORIES FOR THE BOSONIC
COMPOSITE FERMI LIQUID

In this Appendix, we present the field theory suggested in
Ref. [23] and further discussed in Refs. [27,28]. In this theory,
the composite fermion field may be given an interpretation
as a (fermionized) vortex of the physical bosons. Thus, we
will refer to this as the vortex composite Fermi liquid (VCFL)
and will denote the corresponding composite fermion field ψv .
The Lagrangian takes the form

LVCFL = ψ̄v (∂τ − ia0)ψv + 1

2m∗ |(∂i − iai )ψv|2

+ i

2π
εμνλAμ∂νaλ − i

4π
εμνλAμ∂νAλ. (A1)

Here a is the dynamical U (1) gauge field and Aμ is the back-
ground U (1) gauge field.

Though this form of the action was not explicitly writ-
ten down in Ref. [23], the comments in Sec. II D of that
paper suggested that this effective theory might describe the
microscopic results in the bulk of the paper. This effective
Lagrangian should be contrasted with that for the HLR theory:

LHLR = ψ̄ (∂τ − i(a0 + A0))ψ + 1

2m∗ |(∂i − i(ai + Ai ))ψ |2

− i

4π
εμνλaμ∂νaλ. (A2)

In the microscopic derivation of HLR, m∗ is just the bare
boson mass but if this Lagrangian emerges in a LLL theory
we should regard m∗ as a renormalized effective mass.

Both LHLR and LVCFL describe (possibly distinct) compos-
ite Fermi liquid phases of bosons at ν = 1. In both theories,
all local operators are bosonic; in particular, the operator with
charge-1 under the background UA(1) gauge transformation
is bosonic. The physical properties (deduced within, for in-
stance, the random phase approximation) of both theories are
similar and describe metallic compressible phases. Neverthe-
less, the two Lagrangians are different and it is not clear
whether they describe the same infrared fixed point or not.
Furthermore, it has also not been clear which, if any, of these
two arises within a microscopic LLL treatment.

If we dispense with the LLL requirement, we can under-
stand how to obtain either of these two theories. The HLR La-
grangian can of course be obtained by a flux attachment trans-
formation of the original boson to composite fermion vari-
ables. The VCFL theory can be obtained as follows [27]. First,
perform a standard charge-vortex duality transformation of
the boson system to pass to a theory in terms of (bosonic) vor-
tices coupled to a dynamical U (1) gauge field. At boson filling
ν = 1, the vortices are at finite density and themselves see
the boson density as an effective magnetic field; the vortices
are then at a filling νvortex = −1. If we now do a flux attach-
ment transformation to fermionize these vortices, we arrive at
Eq. (A1) (up to corrections involving higher derivative terms).

A different possible relationship between the HLR the-
ory and Eq. (A1) was described in Ref. [28]. These authors
proposed that in the LLL limit the HLR composite fermions
acquire a Fermi surface Berry phase −2π . Upon restrict-
ing to the vicinity of the Fermi surface, we should include
an anomalous Hall effect contribution to the dynamics
of the combined gauge field a + A. This then precisely
yields the vortex composite Fermi liquid Lagrangian restricted
to the modes near the Fermi surface.

APPENDIX B: DETAILS OF THE SEIBERG-WITTEN MAP

Here we provide some detail that was left out in the main
text on the approximate mapping of the noncommutative
effective-field theory to the commutative one. We will only
discuss the spinless case.

The correction to covariant time derivative term is

Lτ
1 = c̄D0c − ψ̄D̂0ψ

= ψ̄D̂0�ψ + �ψ̄D̂0ψ − i(�a0 + �A0)ψ̄ψ

− iψ̄
[
(ψ ∗ â0 − â0ψ ) + (Â0 ∗ ψ − ψÂ0)

]
, (B1)
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where D̂μψ = (∂μ − îaμ − iÂμ)ψ . The first two terms in Eq. (B1) give

Lτ
1a = 	

2
εαβ{(̂aα − Âα )

[
ψ̄D̂0(∂βψ ) + (∂βψ̄ )D̂0ψ

] − (îaαÂβψ̄D̂0ψ + H.c.)∂0 (̂aα − Âα )ψ̄∂βψ − i∂0 (̂aαÂβ )ψ̄ψ}, (B2)

where the last two terms come from ∂0 acting on �ψ in the first term of Eq. (B1). We separate out the gauge invariant part by
organizing the term (B2) into

Lτ
1a = 	

2
εαβ{(̂aα − Âα )∂β (ψ̄D̂0ψ ) + i(̂aα − Âα )∂β (̂a0 + Â0)(ψ̄ψ )∂0 (̂aα − Âα )(ψ̄∂βψ ) − i∂0 (̂aαÂβ )ψ̄ψ}. (B3)

The first term is readily seen to be gauge invariant after integration by parts. The third term in Eq. (B1) becomes

Lτ
1b = 	

2
εαβ

[−îaα (∂β â0 + f̂β0) + iÂα (∂β Â0 + F̂β0)
]
ψ̄ψ. (B4)

The last term in Eq. (B1) is

Lτ
1c = 	

2
εαβ (ψ̄∂αψ )∂β (̂a0 − Â0). (B5)

Now we sum up Eqs. (B3)–(B5) and get

Lτ
1 = 	

2
εαβ{(̂aα − Âα )∂β (ψ̄D̂0ψ ) + i(̂aα − Âα )∂β (̂a0 + Â0)ψ̄ψ + ∂0 (̂aα − Âα )(ψ̄∂βψ ) − (ψ̄∂βψ )∂α (̂a0 − Â0)

− [îaα (∂β â0 + f̂β0) − iÂα (∂β Â0 + F̂β0)]ψ̄ψ}. (B6)

Again we separate gauge invariant terms in the third line of Eq. (B6):

Lτ
1 = 	

2
εαβ{(̂aα − Âα )∂β (ψ̄D̂0ψ ) + i(̂aα − Âα )∂β (̂a0 + Â0)ψ̄ψ − i

[
∂α (̂a0 − Â0) − ∂0 (̂aα − Âα )

]
(̂aβ + Âβ )ψ̄ψ

− [
∂α (̂a0 − Â0) − ∂0 (̂aα − Âα )

]
(ψ̄D̂βψ ) − i[̂aα (∂β â0 + f̂β0) − Âα (∂β Â0 + F̂β0)]ψ̄ψ − i∂0 (̂aαÂβ )ψ̄ψ}. (B7)

After a step of integration by parts for the first two terms in Eq. (B7), one can organize the terms into the following form, which
is almost symmetric:

Lτ
1 = 	

2
εαβ{−∂β (̂aα − Âα )(ψ̄D̂0ψ ) − ∂α (̂a0 − Â0)(ψ̄D̂βψ ) − ∂0 (̂aβ − Âβ )(ψ̄D̂αψ )

+ i
[−∂β (̂aα − Âα )(̂a0 + Â0) − ∂α (̂a0 − Â0)(̂aβ + Âβ ) + ∂0 (̂aα − Âα )(̂aβ + Âβ )

]
ψ̄ψ

+ i
[−âα (∂β â0 + f̂β0) + Âα (∂β Â0 + F̂β0) + ∂β

(
(̂aα − Âα )(̂a0 + Â0)

) − ∂0 (̂aαÂβ )
]
ψ̄ψ}. (B8)

The first line of Eq. (B8) is gauge invariant. The second line becomes

i	

2
εμνρ (̂aμ + Âμ)∂ν (̂aρ − Âρ )ψ̄ψ = i	

2
εμνρ (̂aμ∂ν âρ − Âμ∂νÂρ − âμ∂νÂρ + Âμ∂ν âρ )ψ̄ψ

= i	

2
εμνρ

[̂
aμ∂ν âρ − Âμ∂ν Âρ + ∂ν (̂aρ Âμ)

]
ψ̄ψ.

(B9)

The third line of Eq. (B8) becomes

i	

2
εμνρ (−âμ∂ν âρ + Âμ∂νÂρ )ψ̄ψ + i	

2
εαβ

[ − ∂β (̂aα â0) + ∂β (ÂαÂ0) + ∂β

(
(̂aα − Âα )(̂a0 + Â0)

) − ∂0 (̂aαÂβ )
]
ψ̄ψ

= i	

2
εμνρ (−âμ∂ν âρ + Âμ∂ν Âρ )ψ̄ψ + i	

2
εαβ

[
∂β (̂aαÂ0 − Âα â0) − ∂0 (̂aαÂβ )

]
ψ̄ψ

= i	

2
εμνρ (−âμ∂ν âρ + Âμ∂ν Âρ )ψ̄ψ − i	

2
εμνρ∂μ (̂aνÂρ )ψ̄ψ. (B10)

Equations (B9) and (B10) cancel exactly. The remaining correction to the covariant time derivative is

Lτ
1 = 	

2
εαβ∂α (̂aβ − Âβ )(ψ̄D̂0ψ ) + 	

4
∂0( f̂12 − F̂12)ψ̄ψ. (B11)

Next we turn to the part of the action in Eq. (72) involving the spatial covariant derivatives. To first order in the noncommu-
tativity parameter 	, we get

Ls
1 = 1

2m∗
(|Dαc|2 − |D̂αψ |2) ∼ 1

2m∗ (D̂αψ )∗{D̂α�ψ − i(�aα + �Aα )ψ − i

2
[ψ, âα − Âα]∗} + H.c. (B12)
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Using Seiberg-Witten map in Eq. (77), the first term in
Eq. (B12) becomes

Ls
1a = 1

2m∗ (D̂αψ )∗D̂α�ψ + h.c.

= 1

2m∗ (D̂αψ )∗
	

2
εβγ D̂α

[
(̂aβ−Âβ )∂γ ψ−îaβ Âγ ψ

] + H.c.

= 1

2m∗ (D̂αψ )∗
	

2
εβγ {(̂aβ − Âβ )∂γ (D̂αψ )

+∂α (̂aβ − Âβ )∂γ ψ + i(̂aβ − Âβ )∂γ (̂aα + Âα )ψ

−îaβ Âγ D̂αψ − i∂α (̂aβ Âγ )ψ} + H.c. (B13)

The second term in Eq. (B12) is

Ls
1b = − 1

2m∗ (D̂αψ )∗i(�aα + �Aα )ψ + H.c., (B14)

where �Âα,�âα are Hermitian, which will become important
later. The last term in Eq. (B12) gives

Ls
1c = − 1

2m∗ (D̂αψ )∗
i

2
[ψ, âα − Âα]∗ + H.c.

= 1

2m∗ (D̂αψ )∗
	

2
εβγ ∂γ (̂aα − Âα )∂βψ + H.c.

(B15)

Equation (C2) guarantees that (D̂αψ )∗ψ = 1
2∂α (ψ̄ψ ) is

real. So Ls
1b and the third and fourth terms of Eq. (B13)

are purely imaginary and get canceled by their Hermitian
conjugate. Now summing up Eqs. (B13)–(B15), we are left
with

Ls
1 = 1

2m∗ (D̂αψ )∗
	

2
εβγ

{
(̂aβ − Âβ )∂γ (D̂αψ )

+ ∂α (̂aβ − Âβ )∂γ ψ + ∂γ (̂aα − Âα )∂βψ

− i∂α (̂aβ Âγ )ψ
} + H.c. (B16)

Thanks to Eq. (86), the last term of Eq. (B16) gets canceled
by its Hermitian conjugate. Upon integration by part, the first
term of Eq. (B16) (+H.c.) becomes

Ls
1a′ = 1

2m∗
	

2
εβγ (̂aβ − Âβ )∂γ

[
(D̂αψ )∗(D̂αψ )

]
= 1

2m∗
	

2
εβγ ∂β (̂aγ − Âγ )|D̂αψ |2

= 1

2m∗
	

2
( f̂12 − F̂12)|D̂αψ |2

(B17)

and the other term is

Ls
1b′ = − 1

2m∗ (D̂αψ )∗
	

2
εβγ [∂α (̂aγ − Âγ )

− ∂γ (̂aα − Âα )]∂βψ + H.c.

= − 1

2m∗ (D̂αψ )∗
	

2
εβγ [∂α (̂aγ − Âγ )

− ∂γ (̂aα − Âα )]D̂βψ + H.c.

= − 1

2m∗
	

2
εβγ

(
f̂αγ − F̂αγ

)
(D̂αψ )∗D̂βψ + H.c.,

(B18)

where in the second line we have added a vanishing term
∼(D̂αψ )∗i(̂a + Â)ψ + H.c. to get the covariant derivative. It
is easy to check that

εβγ

(
f̂αγ − F̂αγ

) = (
f̂12 − F̂12

)
δαβ. (B19)

Consequently,

Ls
1 = − 1

2m∗
	

2
( f̂12 − F̂12)|D̂αψ |2. (B20)

APPENDIX C: CORRECTIONS FROM THE
HALL CURRENT

In Eq. (86), it’s assumed that the current is vanishing.
However, strictly speaking, as we discussed in the main text,
we should include an additional Hall current coming from the
Chern-Simons term in the HLR action Eq. (96). To be precise,
the current is

Jα = δL
δ̂aα

= i

2m∗
(
ψ̄Dαψ − (Dαψ )ψ

)
= −i	ρεαμν∂μaν, (C1)

which is the Hall response to the internal gauge field. There-
fore,

ψ̄ D̂αψ = 1

2
∂α (ψ̄ψ ) − m∗	ρεαμν∂μaν, (C2)

(D̂αψ ) ψ = 1

2
∂α (ψ̄ψ ) + m∗	ρεαγ δ∂γ aδ. (C3)

As a consequence, the correction to covariant time derivative
term now becomes

Lτ
1 = 	

2
εμνρ∂μ (̂aν − Âν )(ψ̄D̂ρψ )

= 	

2
εαβ0∂α (̂aβ − Âβ )(ψ̄D̂0ψ ) + 	

2
εμνα

∂μ (̂aν − Âν )

(
1

2
∂α (ψ̄ψ ) − m∗	ρεαρσ ∂ρaσ

)

= 	

2
εαβ∂α (̂aβ − Âβ )(ψ̄D̂0ψ ) + 	

4
εαβ∂0∂α (̂aβ − Âβ )

−	2

2
m∗ρεαμν∂μ (̂aν − Âν )εαρσ ∂ρaσ . (C4)

The additional term is as stated in Eq. (103),

−	2

2
m∗ρ(( f̂01 − F̂01) f̂01 + ( f̂02 − F̂02) f̂02), (C5)

which formally is of second order in 	. However, as ρ =
1

2π |	| , it really is of order 	. For the spatial covariant deriva-
tive terms, no correction shows up at this order since in
Appendix B, we have only used the fact that ψ̄Dαψ is real,
which is still the case. Note that Eq. (103) is not the full
correction for the action to o(	2) since we have only kept
o(	) terms in Seiberg-Witten map as well as later in the
expansion of the action. It is, however, the only term of order
	2ρ.
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APPENDIX D: RIGHT SPIN DENSITY

In this Appendix, we show that the right spin density de-
fined in Eq. (123) does not annihilate all physical states. We
write the generalized density operator as

ρR,α
nn′ =

∑
m,ss′

c†
n,msσ

α
s,s′cs′m,n′ , (D1)

where σα = (1, �x/2, �y/2, �z/2), and �i are the Pauli ma-
trices. Then α = 0 corresponds to the right density operator
and α = 1, 2, 3 correspond to the right spin-density operators
defined in the main text. The physical Hilbert space is spanned
by states

|ψphys,mi,si〉 = εn1n2...nN c†
n1,m1s1

c†
n2,m2s2

...c†
nN ,mN sN

|0〉 . (D2)

Applying right density on a physical state, we get

ρR,α
nn′ |ψphys,mi,si〉

= εn1n2...nN c†
n,msσ

α
s,s′cs′m,n′c†

n1,m1s1
c†

n2,m2s2
...c†

nN ,mN sN
|0〉

=
∑

j

(−1)( j−1)εn1n2...nN δn′n j δs′s j δm,mj c
†
n,msσ

α
s,s′

∏
i �= j

c†
ni,misi

|0〉

=
∑

j

(−1)( j−1)εn1n2...nN δn′n j σ
α
s,s j

c†
n,mj s

∏
i �= j

c†
ni,misi

|0〉 , (D3)

where repeated indices are summed over.

It is sufficient to illustrate our point by considering a finite
system and explicitly showing that the right spin-density oper-
ator takes a physical state to an nonphysical state. To that end,
consider N = 2, i.e., a system with just two single-particle
orbitals. The many-body Hilbert space is spanned by states
with two c-fermions filling eight basis states. Consider the
state

|ψphys,1↑2↓〉 = b†
1↑b†

2↓ |0〉 = (c†
1,1↑c†

2,2↓ − c†
2,1↑c†

1,2↓) |0〉
(D4)

where |0〉 is the vacuum state of composite fermion. This
state is in the physical Hilbert space since the internal index
is antisymmetrized. Applying the right spin operator Sz

12, one
gets

Sz
12 |ψphys,1↑2↓〉 = −2c†

11↑c†
12↓ |0〉 , (D5)

which is a nonphysical state that does not get annihilated by
right density ρR

nn′ .
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