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Drude weight in systems with open boundary conditions
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A many-electron conducting system undergoes free acceleration in response to a macroscopic field. The Drude
weight D—also called charge stiffness—measures the adiabatic (inverse) inertia of the electrons; the D formal
expression requires periodic boundary conditions. When instead a bounded sample is addressed within open
boundary conditions, no current flows and a constant (external) field only polarizes the sample: the Faraday
cage effect. Nonetheless, a low-frequency field induces forced oscillations: We show here that the low-frequency
linear response of the bounded system is dominated by the adiabatic inertia and allows an alternative evaluation
of D. Simulations on model one-dimensional systems demonstrate our main message.
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I. INTRODUCTION

Irrelevance of the boundary conditions in the thermody-
namic limit is a basic tenet of statistical mechanics and
condensed matter physics. Among the possible choices of
boundary conditions, two are prominent: Born–von-Kàrmàn
periodic boundary conditions (PBCs) and the so-called
“open” boundary conditions (OBCs). Insofar as an intensive
physical observable is computed from finite realizations of
a given system, the two choices yield somewhat different
results. Yet one postulates that the large-system limit yields
the same value for any intensive physical observable.

To be more specific, we will consider below the ground
state of a macroscopically homogeneous system of N elec-
trons and a neutralizing background of nuclei in a cubic box of
volume Ld (d is the dimension). The choice of PBCs vs OBCs
amounts to choosing two different Hilbert spaces for describ-
ing our system: Within PBCs the many-body wave function is
periodic with period L over each Cartesian coordinate of each
electron independently, while within OBCs it is required to
vanish whenever a coordinate is outside the box.

Some intensive physical observables are nonproblematic:
This is, e.g., the case of spectral properties. At finite size the
spectra are discrete within both OBCs and PBCs, and different
between themselves. In the large-system limit the two spectra
become continuous and coincide, yielding the same density
of states. Indeed, it is a standard exercise to verify this in the
special case of a free-electron gas, which can be worked out
analytically. Some other properties are more problematic, and
were understood relatively recently: In this class are electrical
polarization and orbital magnetization—they are trivial within
OBCs and highly nontrivial within PBCs; for a thorough anal-
ysis of both observables, see, e.g., Ref. [1].

*gabriele.bellomia@sissa.it
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The Drude weight D (also called charge stiffness) [2–6]
measures the effective density-to-mass ratio contributing to
dc electronic conductivity. A milestone paper by Kohn, for-
mulated within PBCs, provided in 1964 the most general
definition for D in any macroscopically homogeneous system,
including cases with disorder and electron-electron interac-
tions. Within OBCs, instead, D apparently does not exist,
given that a bounded sample does not support dc currents;
the apparent paradox was previously addressed in Ref. [7],
where it was indeed shown that an accurate treatment of the
thermodynamic limit allows retrieving the D value even from
OBC simulations. While Ref. [7] is rooted in lattice models
(with and without interaction, at very high temperatures),
here we adopt the framework of zero-temperature electronic
structure, by addressing noninteracting electrons in a periodic
potential (in a mean-field sense). Our variational simulations
highlight the relevance of the f -sum rule, whose accurate
fulfillment requires near completeness of the basis set, as the
key quantity to control the numerical error on our results.
Most important, our choice of the case study naturally yields
a clear physical interpretation. The effective density-to-mass
ratio of the many-electron system can be accurately probed in
two different ways: either via the response of an unbounded
system to a constant field, or via the response of a bounded
crystallite to a low-frequency oscillating field. In the former
case one probes free acceleration, and in the latter forced
oscillations.

In Sec. II we provide the main definitions and we parse the
f -sum rule; in Sec. III we display the D formal expressions
within band-structure theory. The Kubo formula for conduc-
tivity at the independent-particle level, within both PBCs and
OBCs, is presented in Sec. IV; the differences between the two
cases are thoroughly discussed. The Souza-Wilkens-Martin
sum rule [8], a very powerful tool to discriminate insulators
from metals, is presented in Sec. V. The results of our one-
dimensional (1D) simulations are presented and discussed in
Sec. VI; we address separately free electrons, band insulators,
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and the most relevant case of band metals, which perspic-
uously demonstrates our major claim. In Sec. VII we draw
some conclusions, and in the Appendix we analyze in some
detail the relationship between Kohn’s approach and Kubo
formulas.

II. PHENOMENOLOGY

The conductivity tensor σαβ (ω) yields the current density
linearly induced by a macroscopic electric field at frequency
ω (greek subscripts are Cartesian indices); for the sake of sim-
plicity we assume time-reversal symmetry, in which case the
transverse conductivity vanishes and σαβ (ω) is a symmetric
tensor.

In a metal, in the absence of dissipation, the electrons in a
dc field undergo free acceleration and σαβ (ω) is divergent for
ω = 0. The most general form for longitudinal conductivity
is [4–6]

σαβ (ω) = Dαβ

[
δ(ω) + i

πω

]
+ σ

(regular)
αβ (ω), (1)

where the constant Dαβ goes under the name of Drude weight
(or charge stiffness) and accounts for the inertia of the many-
electron system in the adiabatic limit [5,9]. The Drude weight
can also be defined as [2]

Dαβ = π lim
ω→0

ω Im σαβ (ω). (2)

Longitudinal conductivity obeys the the f -sum rule,

∫ ∞

0
dω Re σαβ (ω) = Dαβ

2
+

∫ ∞

0
dω Re σ

(regular)
αβ (ω)

= ω2
p

8
δαβ = πe2n

2m
δαβ, (3)

where n = N/Ld is the electron density and ωp is the plasma
frequency. For free electrons σ

(regular)
αβ (ω) vanishes and Dαβ

assumes the same value as in classical physics [10,11], i.e.,
Dαβ = Dfree δαβ , with Dfree = πe2n/m. Given Eq. (3), switch-
ing the periodic potential on has the effect of transferring some
spectral weight from the Drude peak into the regular term; for
band insulators the Drude peak vanishes and Re σ

(regular)
αβ (ω) is

zero for ω < εgap/h̄. In the special case of a band metal con-
sidered here, σ

(regular)
αβ (ω) is a linear-response property which

accounts for interband transitions, and is nonvanishing only at
frequencies higher than a finite threshold; in the more general
case of a noncrystalline many-electron system this selection
rule breaks down and σ

(regular)
αβ (0) may be nonzero [5].

III. DRUDE WEIGHT

When applied to a band metal with doubly occupied
orbitals, within PBCs, Kohn’s general expression [2,3,5] be-
comes the Fermi-volume integral [6]

Dαβ = 2πe2
∑

j

∫
BZ

dk
(2π )d

θ (μ − ε jk )m−1
j,αβ (k), (4)

where BZ is the Brillouin zone, μ is the Fermi level, and the
effective inverse mass tensor of band j is

m−1
j,αβ (k) = 1

h̄2

∂2ε jk

∂kα∂kβ

. (5)

For insulators, the integral in Eq. (4) trivially vanishes; for
metals, the contribution of the core bands to Dαβ vanishes as
well. Dαβ can be equivalently expressed as a Fermi-surface
integral, by means of an integration by parts; it acquires then
the meaning of an “intraband” term [6]

Dαβ = −2πe2
∑

j

∫
BZ

dk
(2π )d

f ′(ε jk )v jα (k)v jβ (k), (6)

where v jα (k) = ∂kα
ε jk/h̄ and at zero temperature the Fermi

occupation function is f (ε) = θ (μ − ε). Equation (6) is in
explicit agreement with the spirit of Landau’s Fermi-liquid
theory, which holds that charge transport in metals involves
only quasiparticles with energies within kBT of the Fermi
level; Eq. (6) is in fact at the root of the semiclassical theory
of transport [12].

Notice that so far we have not explicitly invoked the
Kubo formulas for conductivity; this is a virtue of Kohn’s
approach, where they remain implicit. The above results
can be equivalently formulated via Kubo formulas at q = 0
(not q → 0) [13]; furthermore, the scalar potential of a
constant field is incompatible with PBCs [14], where it is
mandatory to adopt the vector-potential gauge instead [4,5,9].
Some more details about the relationship between Kohn’s
formula, Eq. (4), and the equivalent sum-over-states Kubo
formula for D are given in the Appendix; the many-body
analog can be found in Ref. [9].

IV. KUBO FORMULA

The Kubo formulas can be cast in several equivalent ways;
here, it is expedient to adopt the form [6]

σαβ (ω) = 2ie2h̄

Ld

∑
mn

(
fn − fm

εm − εn

) 〈n|vα|m〉〈m|vβ |n〉
h̄(ω + iη) + εn − εm

, (7)

where the velocity is v = i[H, r]/h̄, the positive infinitesimal
η enforces causality, and fn = 1/(eβεn + 1) is the Fermi occu-
pation factor.

The previous Eqs. (4)–(7) by definition address solely non-
interacting electrons, where pairing and superconductivity are
ruled out. It is worth noticing that the corresponding Kubo
formulas for interacting electrons may comprise an extra term,
accounting for superconducting (also known as Meissner)
weight [4,5,9].

The independent-electron expression of Eq. (7) holds both
within OBCs and PBCs. When a bounded crystallite (cut from
a bulk metal) is addressed within OBCs, Eq. (7) does not
account for a Drude peak at finite size; it also follows that the
ω > 0 region of the spectrum saturates the f -sum rule [15].

When instead PBCs are adopted, the index n must be
identified with the band and Bloch index jk. Owing to the
Bloch theorem, it is possible to perform the thermodynamic
limit first—from discrete to continuous k—where the diago-
nal elements 〈n|v|n〉 are identified with v j (k) = ∂kε jk/h̄, and
the factor ( fn − fm)/(εm − εn) with − f ′(ε jk ). In this case the
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T → 0 limit of Eq. (7) yields—besides the interband (regular)
term—the additional intraband (Drude) term

σ
(intra)
αβ (ω) = −2e2

Ld

i

ω + iη

∑
jk

f ′(ε jk )v jα (k)v jβ (k), (8)

where the k sum is actually an integral,

1

Ld

∑
jk

→
∑

j

∫
BZ

dk
(2π )d

. (9)

Therefore Eq. (8) clearly coincides with Eq. (6); adding this
term to the regular one, the f -sum rule is retrieved.

Matters are different if one performs the T → 0 limit first,
as we are going to do here in order to compare PBC and OBC
expressions on the same ground at finite size: In both cases all
levels are discrete. Equation (7) yields, for an isotropic system
and at ω > 0,

Re σ (ω) = 2πe2

h̄Ld

∑
εn�μ

∑
εm>μ

|〈n|vx|m〉|2
ωnm

δ(ω − ωnm), (10)

where ωnm = (εm − εn)/h̄. Equation (10) obeys the f -sum
rule in the OBC case, but instead does not saturate it in the
PBC metallic case [15]: In fact, Eq. (10) in the thermodynamic
limit yields the regular term σ

(regular)
αβ (ω) only, and the f -sum

rule is satisfied only if the D value, evaluated from Kohn’s
formula, is added [4]. We stress that the matrix elements and
the selection rules are quite different in the PBCs vs OBCs
cases. In the special case of free electrons the PBC orbitals
are plane waves and all matrix elements in Eq. (10) vanish
because of an obvious selection rule.

At any finite size all poles in Eq. (10) occur at positive en-
ergies, within both PBCs and OBCs. There is an outstanding
difference, though: The PBC poles are gapped, while a subset
of the OBC poles converge to zero frequency. The selection
rules forbid intraband PBC contributions to Eq. (10), while
instead within OBCs the intraband transitions originate low-
frequency poles, which contribute with extra spectral weight
to the f -sum rule. In agreement with the previous findings of
Ref. [7], the most relevant of the low-energy poles coalesce,
for L → ∞, into a single pole at ω = 0, whose residue yields
D. In the following, we are going to study this process in detail
for a few one-dimensional test cases.

V. SOUZA-WILKENS-MARTIN SUM RULE

Souza, Wilkens, and Martin (hereafter referred to as SWM)
[8] proposed in 2000 to characterize the metallic/insulating
behavior of a material by means of the integral (for isotropic
systems)

I (SWM) =
∫ ∞

0

dω

ω
Re σ (ω), (11)

which diverges for all metals and converges for all insulators.
We adopt here the SWM approach, but we stress that—at
finite size—its PBC features are quite different from the
OBC ones.

In a band metal I (SWM) diverges within PBCs because
of the δ-like Drude peak, which exists even at finite size;
equivalently, it diverges because a dc field induces free ac-

celeration (again, even at finite size). Within OBCs, instead,
all of the poles of σ (ω) occur at nonzero frequency; I (SWM)

is finite at any size, and diverges in the large-system limit.
Our simulations will show that such a divergence is due to
the low-frequency poles which are the fingerprint of D within
OBCs: The system cannot undergo free acceleration, but when
the size is increased, the forced oscillations decrease in energy
and couple to the field with nonvanishing oscillator strength.

In a band insulator I (SWM) is finite both within PBCs and
OBCs, while we expect the integrated values to converge
towards the same large-system limit. From Eq. (10) we get
the sum

I (SWM) = 2πe2

h̄Ld

∑
εn�μ

∑
εm>μ

|〈n|vx|m〉|2
ω2

nm

; (12)

when evaluated within PBCs vs OBCs its terms differ in en-
ergies, matrix elements, and selection rules. The lowest PBC
transition energy is gapped, while no selection rule forbids
low-energy transitions within OBCs: This fact is at the root
of the divergence of the OBC SWM integral, Eq. (12), in the
metallic case.

By exploiting completeness, I (SWM) can be transformed
into a ground-state property: Therefore the organization
of the electrons in the ground state—and not a spectral
gap—discriminates in general between insulators and metals
[2,8,16–18]. Such behavior has been understood so far in
terms of the mean-square quantum fluctuation of the polariza-
tion within OBCs; here we provide a different interpretation
in terms of the Drude weight.

VI. SIMULATIONS

From now on we address D in units of πe2n/(2m) = ω2
p/8,

such that the f -sum rule yields 1. Therefore Dfree/2 = 1 for
free electrons, and D/2 < 1 for a generic metal; the conduc-
tivity will be displayed in units of ωp/2 throughout.

A. Free electrons

As said above, the free-electron case in PBCs is trivial:
σ (regular)(ω) ≡ 0 and all of the spectral weight goes into the
δ(ω) term. In the OBC case we have computed Eq. (10) using
the (analytical) eigenvalues and eigenfunctions of a 1D infi-
nite potential well of length L, at a linear density n = N/L =
0.2 bohr−1, where the orbitals are doubly occupied; the series
has been truncated by means of a cutoff in the included ex-
citation energies. The result is shown in Fig. 1 for N = 162
and a cutoff of 1.4 Ha; the δ singularities have been plotted,
as customarily, as narrow Gaussians. The figure perspicuously
show that the poles of Eq. (10) accumulate at very low energy;
the value of σ (0) does not carry any physical meaning, since it
depends on the (arbitrary) Gaussian smearing. We emphasize
instead the accurate integrated (smearing-independent) value
of σ (ω): The f -sum rule is satisfied here at 99.99% of the
exact value.

From Fig. 1 it is seen that the poles carrying non-negligible
residues occur at frequencies lower than about 0.15 Ha; this
value is clearly size dependent, since the spacing of the levels
goes as 1/L. One would expect that all poles converge towards
zero in the large-L limit, but the situation, illustrated in Fig. 2,
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FIG. 1. Free-electron conductivity in units of ωp/2 for the infi-
nite one-dimensional potential well for n = N/L = 0.2 bohr−1 and
N = 162. The cutoff is also shown (vertical dashed line).

is much less trivial. At any given cutoff, there are several
families of poles, whose number increases with size. Within
a given family the frequency follows a 1/L law, as shown in
Fig. 2 (top panel); the cutoff has been lowered with respect to
Fig. 1 for the sake of clarity. We also find (Fig. 2, bottom) that
the pole residues are essentially L independent and that they
are exponentially vanishing with the family index; therefore
only a small number of low-frequency poles carry significant
residues. The message of both panels altogether is therefore
that, despite a complex pole pattern, the spectral weight is
confined in a frequency region proportional to 1/L.

B. Periodic potential

Next, we switch on a potential in the form of a periodic
array of Gaussians,

U (x) =
∞∑

m=−∞
V (x − ma), V (x) = V0 e−x2/b2

; (13)

we set a = 5 and b = 1 bohr. We get a model metal with
1 electron/cell and a model insulator with 2 electrons/cell;
in the former case the density is the same as for the free-
electron case, discussed above. The eigenproblem is solved
here numerically by representing the solutions on a basis of
700 free-electron states: plane waves for the PBC ring and
stationary sine waves for the OBC infinite potential well.
By choosing V0 = 0.8 Ha the first gap in the spectrum is
εgap = 0.35 Ha. The excitations in the Kubo formulas are
again included up to a given energy cutoff: 2.2 Ha for both
fillings.

C. Model insulator

We start with showing the results of the (almost trivial)
insulating case. With V0 = 0.8 Ha and a cutoff of 2.2 Ha
we are very close to completeness: The f sum is fulfilled
at 99.93% and 99.99% within OBCs and PBCs, respectively.
The conductivity plots evaluated from Eq. (10) in the two

FIG. 2. L dependence of the poles in Eq. (10), at a low cutoff
εcut = 0.01 Ha. The top panel shows the pole frequencies: The num-
ber of poles increases with L, and there are families of poles, each
family following a 1/L law. The bottom panel shows the correspond-
ing residues in units of πe2n/(2m) = ω2

p/8, exponentially vanishing
with the family index.

cases are basically undistinguishable (Fig. 3); the SWM in-
tegrals, Eq. (12), differ by 0.3%.

D. Model metal

We start showing in Fig. 4 the value of D as a function
of the periodic potential strength V0, computed within PBCs,
i.e., with the 1D version of Eq. (6). Starting from the free-
electron V0 = 0 case, D decreases and converges to zero in the
flat-band limit. All of the following simulations are performed
at V0 = 0.8, such that the spectral weights of the Drude and
regular conductivities are comparable, with D/2 = 0.57.

Even in the metallic case we are close to completeness
with a cutoff of 2.2 Ha: The f -sum rule is fulfilled at 99.97%
and 99.70% within OBCs and PBCs, respectively. The
conductivity plots evaluated from Eq. (10) in the two cases
are shown in Fig. 5. As explained above, Eq. (10) within
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FIG. 3. Conductivity of the model insulator in units of ωp/2, after Eq. (10). The gap is εgap = 0.35 Ha; the energy cutoff is shown as a
vertical dashed line. Left panel: OBCs; right panel: PBCs.

PBCs yields the regular (interband) term σ (regular)(ω) only;
the Drude (intraband) term must be evaluated separately from
Eq. (6).

Within OBCs, σ (ω), evaluated from Eq. (10), saturates
the f sum. It shows two well-separated contributions, which
clearly originate from the intraband (low-frequency) and in-
terband (high-frequency) transitions. The spectral weight of
the intraband transitions is accounted for, within PBCs, by
the δ(ω) Drude term. The same spectral weight is retrieved,
within OBCs, in the low-frequency poles. Previous consid-
erations, based on the results in Fig. 2, also show that such
spectral weight accumulates at ω = 0 in the large-system
limit. The low-frequency peak in the OBC conductivity is
indeed the main focus of the present work; we are going to
closely investigate it in the following.

To start with, it is expedient to compare Fig. 5 (left panel)
to the free-electron case at the same density, Fig. 1. We clearly

FIG. 4. Drude weight as a function of the periodic potential
strength V0.

see that the effect of switching the periodic potential on is
essentially a rescaling of the Drude peak: Part of its spectral
weight is transferred to the regular-conductivity term.

In the flat region between the two OBC contributions the
conductivity σ (ω) is (exponentially) vanishing. By choosing
ω̄ in the middle of this region, we partition the OBC f sum as

∫ ∞

0
dω Re σ (ω) = D̃

2
+

∫ ∞

ω̄

dω Re σ (ω), (14)

D̃

2
= 2πe2

h̄Ld

∑
εn�μ

∑
εm>μ

∑
ωnm<ω̄

|〈n|v|m〉|2
ωnm

. (15)

The value of D̃ obtained from Eq. (15) differs from the
PBC D value, as from Eq. (6), by 0.3%. This major finding
proves that—although a bounded sample does not support a
dc current—the forced oscillations at low energy provide the
quantitative value of D, which in turn is a measure of the
(inverse) inertia of the many-electron system.

Finally, we address the SWM sum rule in the metallic case.
Upon general grounds we expect that I (SWM), evaluated from
Eq. (12) within OBCs, diverges linearly with the system size
[17,18]. Figure 6 (top panel) confirms this behavior. Within
PBCs, Eq. (11) is clearly nondivergent when evaluated us-
ing the interband term σ (regular)(ω) only in Eq. (11): This is
shown in the bottom panel of Fig. 6. As explained elsewhere
[8,16,17], this is a geometrical property of the electronic
ground state.

VII. CONCLUSIONS

The real part of conductivity in bounded metallic sys-
tems within OBCs exhibits a qualitatively different behavior
from that of analogous systems within PBCs [7,15]. Such
a difference stems from the response of the many-electron
system to a dc field, which in metals induces free acceleration
within PBCs but not within OBCs. Here, we have thoroughly
investigated the issue at the independent-electron level. The
adiabatic inverse inertia of the electrons is measured by the
Drude weight D, which has a well-known PBC expression
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FIG. 5. Conductivity of the model metal in units of ωp/2; the cutoff is shown as a vertical dashed line. Left panel: OBCs; right panel:
PBCs. Both plots are computed after Eq. (10). The regular parts (and only the regular parts) almost coincide. Within PBCs, Eq. (10) by itself
does not account for the Drude peak.

(even beyond independent electrons [2]), while instead it is
formally zero within OBCs.

Upon general grounds, one expects that both kinds of
boundary conditions should produce a given intensive observ-
able in the thermodynamic limit. The apparent paradox has
been previously solved in Ref. [7] in terms of lattice models
at very high temperatures, which reduce the finite-size effects;
here instead we address band insulators and band metals in
the conventional framework of zero-temperature electronic

FIG. 6. Souza-Wilkens-Martin sum I (SWM) as a function of the
system size, computed from Eq. (12). In the OBCs case we show
the separate contributions from the intraband (D-like) and interband
(R-like) transitions; the former term diverges linearly with the system
size, thus indicating a metallic state. In the PBC case Eq. (10) ac-
counts for the interband contributions only: I (SWM) does not diverge.

structure. Within PBCs the Drude weight at zero temperature
originates from the adiabatic term in the Kubo formula (as
shown in the Appendix); within OBCs it originates instead
from the low-frequency sector of the nonzero-frequency Kubo
formula. We have shown that the root of the difference is in
the different selection rules for the intraband transitions.

Our 1D simulations—with a model periodic potential—
show how to actually evaluate D to very high accuracy from
the OBC Kubo formula for conductivity; the role of the f -sum
rule and of basis-set completeness is shown to be essential
in order to control the numerical error. Remarkably, our ap-
proach calls for a perspicuous physical interpretation: An
oscillating low-frequency field induces—in a bounded metal-
lic crystallite—forced oscillations, which are dominated by
the many-electron inertia. The response carries therefore the
same essential information as the response to a constant field
within PBCs (i.e., free acceleration).

The SWM sum rule provides, via a kind of fluctuation-
dissipation theorem, a geometrical property of the electronic
ground state which discriminates between insulators and met-
als [8,16–18]. This property has been ascribed so far to
the mean-square quantum fluctuations of dc polarization,
which are qualitatively different in insulators versus metals
for bounded samples within OBCs. Here, we have provided
a complementary interpretation based on the OBC Drude
weight.

In conclusion, D can be evaluated in two different ways:
either by probing the free acceleration induced by a dc field
(within PBCs), or probing the forced oscillations induced by
a low-frequency field (within OBCs). We conjecture that such
a general principle applies in general to any metallic many-
electron system, well beyond the simple models thoroughly
addressed in this work.
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APPENDIX: RELATING KOHN’S APPROACH
TO THE KUBO FORMULA

According to Kohn [2], the adiabatic limit requires per-
forming the derivatives at a finite size, and the thermodynamic
limit afterwards [5]. We therefore cast the current density in a
band metal at double occupancy as

j = − 2e

Ld

∑
jk

f jk v jk, v jk = 1

h̄

∂ε jk

∂k
, (A1)

where the k-point set is discrete, and the T = 0 occupancies
are f jk = θ (μ − ε jk ); the dc conductivity is

σ
(D)
αβ = ∂ jα

∂Eβ

= − 2e

h̄Ld

∑
jk

f jk
∂2εk

∂kα∂Eβ

. (A2)

As explained in the main text, it is mandatory to adopt the
vector-potential gauge, ergo

σ
(D)
αβ (ω) = − 2e

h̄Ld

dA(ω)

dE (ω)

∑
jk

f jk
∂2ε jk

∂kα∂Aβ

, (A3)

where only the response of the many-electron system to a
static vector potential A is considered [5]; therefore Eq. (A3)
yields solely the adiabatic contribution to conductivity (the
Drude term).

Given that E(ω) = iωA(ω)/c, causal inversion yields

dA(ω)

dE (ω)
= −c

[
πδ(ω) + i

ω

]
. (A4)

The perturbed band Hamiltonian is

Hk = e−ik·rHeik·r = 1

2m

(
p + h̄k + e

c
A

)2
+ V (r); (A5)

we thus exploit

∂

∂A
= e

h̄c

∂

∂k
, (A6)

in order to retrieve

σ
(D)
αβ (ω) = 2πe2

h̄2Ld

[
δ(ω) + i

πω

]∑
jk

f jk
∂2ε jk

∂kα∂kβ

, (A7)

which is indeed—exploiting Eq. (9)—Kohn’s Drude term
in the case of a band metal. The physical interpretation
of σ

(D)
αβ (ω) is worth stressing: Dαβ itself yields the current

linearly induced by A (times a trivial factor), while the ω-
dependent factor is the derivative of A with respect to E [5].

In the present context the Kubo formula for σ
(D)
αβ (ω) obtains

straightforwardly from time-independent perturbation theory:
It is enough to adopt the well-known effective-mass theorem
[19] in order to get the sum-over-states expression for Dαβ .
Below we get some further insight by arriving at the same
expression via an alternative path.

The periodic orbitals |u jk〉 = e−ik·r|ψ jk〉 are eigenstates of
Hk, hence the identity 〈u jk|(Hk − ε jk )|u jk〉 ≡ 0 holds. Taking
two derivatives, one arrives at

m−1
j,αβ (k) = 1

m
δαβ − 2

h̄2 Re〈∂kα
u jk|(Hk − ε jk )|∂kβ

u jk〉, (A8)

where in the presence of time-reversal symmetry the matrix
element is actually real;

Dαβ = πe2 n

m
δαβ − 4πe2

h̄2Ld

∑
jk

f jk

×〈∂kα
u jk|(Hk − εk )|∂kβ

u jk〉; (A9)

therein the first term on the right-hand side is the free-electron
Drude weight, while the second one is a “geometrical” cor-
rection [20], accounting for the fact that the periodic potential
hinders the acceleration of the free electrons. In a flat potential
the |u jk〉 are k independent, ergo the correction vanishes.

We evaluate the k derivatives via perturbation theory,

|∂kβ
u jk〉 =

∑
j′ �= j

|u j′k〉
〈u j′k|∂kβ

Hk|u jk〉
ε jk − ε j′k

= h̄
∑
j′ �= j

|u j′k〉
〈u j′k|vkβ

|u jk〉
ε jk − ε j′k

, (A10)

〈∂kα
u jk|(Hk − ε jk )|∂kβ

u jk〉 = h̄2
∑
j′ �= j

〈u jk|vkα
|u j′k〉〈u j′k|vkβ

|u jk〉
ε j′k − ε jk

. (A11)

Replacing into Eq. (A9), and taking the thermodynamic limit as per Eq. (9), one finally arrives at the sought for Kubo formula
for Dαβ ,

Dαβ = πe2 n

m
δαβ − 4πe2

∑
j′ �= j

∫
BZ

dk
(2π )d

f (ε jk )
〈u jk|vkα

|u j′k〉〈u j′k|vkβ
|u jk〉

ε j′k − ε jk
; (A12)

a trivial transformation yields the more symmetric form,

Dαβ = πe2 n

m
δαβ − 2πe2

∑
j′ �= j

∫
BZ

dk
(2π )d

f (ε jk ) − f (ε j′k )

ε j′k − ε jk
〈u jk|vkα

|u j′k〉〈u j′k|vkβ
|u jk〉. (A13)

Finally, it is worth noticing that the f -sum rule, Eq. (3), implies
∫ ∞

0
dω Re σ

(regular)
αβ (ω) = πe2

∑
j′ �= j

∫
BZ

dk
(2π )d

f (ε jk ) − f (ε j′k )

ε j′k − ε jk
〈u jk|vkα

|u j′k〉〈u j′k|vkβ
|u jk〉. (A14)
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