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Phases of two-dimensional spinless lattice fermions with first-quantized
deep neural-network quantum states
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First-quantized deep neural network techniques are developed for analyzing strongly coupled fermionic
systems on the lattice. Using a Slater-Jastrow-inspired ansatz which exploits deep residual networks with
convolutional residual blocks, we approximately determine the ground state of spinless fermions on a square
lattice with nearest-neighbor interactions. The flexibility of the neural-network ansatz results in a high level of
accuracy when compared with exact diagonalization results on small systems, both for energy and correlation
functions. On large systems, we obtain accurate estimates of the boundaries between metallic and charge-ordered
phases as a function of the interaction strength and the particle density.
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I. INTRODUCTION

The difficulty in treating interacting quantum systems
stems directly from the fact that the state space of a many-
body quantum system grows exponentially with the number of
its constituents. The quantum many-body problem is a severe
bottleneck in the understanding of complex quantum phenom-
ena in many domains of science where quantum effects are
relevant. When many-body effects are dominant, variational
methods have proven a successful strategy to approximately
represent, in a compact and computationally manageable
form, many-body quantum states.

The prevailing paradigm for simulating lattice quantum
systems in one spatial dimension is the density-matrix renor-
malization group (DMRG) [1,2], which involves an iterative
procedure to approximate low-entanglement quantum states
using representations known as matrix product states [3,4].
The success of DMRG to produce high overlap with the
ground space stems from the ability of matrix product states
to approximate gapped one-dimensional quantum systems [5]
and the existence of a very efficient numerical scheme for
their variational optimization. In two or more spatial dimen-
sions, however, the situation is qualitatively very different
and research into both computationally efficient and compact
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variational representations of quantum ground states is very
active.

A different context which directly confronts the curse
of dimensionality is machine learning, which has recently
found several applications in physics problems where high-
dimensional functions are to be approximated [6]. The ability
of generative models based on neural networks to overcome
the curse of dimensionality in a variety of learning problems
has motivated the development of neural network quantum
states (NQSs) and an associated real- or imaginary-time evo-
lution algorithm [7] that extends the scope of the variational
Monte Carlo [8] to a number of challenging two-dimensional
lattice systems.

Neural-network-based variational simulation has predomi-
nantly focused on systems corresponding to strongly localized
electrons in which all spatial degrees of freedom have been
frozen out, leaving an effective lattice Hamiltonian governing
the spin degrees of freedom [7,9–12].

Neural networks have also recently been proposed for
simulating fermionic systems in the second-quantized for-
malism [13]. This approach involves mapping the fermionic
modes to an interacting quantum spin model, for example,
through a Jordan-Wigner transformation. The reduction of the
fermionic Hamiltonian to a spin model makes it possible to
capitalize on the successes of NQSs for spin systems, but suf-
fers from the disadvantage that the resulting spin Hamiltonian
is nonlocally interacting. First quantization is an attractive
alternative formalism, which preserves the locality of the
physical interactions. In first quantization, the solution of the
quantum fermionic many-body problem can be posed as a
function approximation problem, in which the target function
to be approximated is a totally antisymmetric solution of
the time-independent Schrödinger equation. First quantization
has been explored for spinful Hubbard Hamiltonians, pre-
dominantly focusing on restricted Boltzmann machines [14],
Pfaffian states [15], and backflow transformations [16]. This

2469-9950/2020/102(20)/205122(10) 205122-1 Published by the American Physical Society

https://orcid.org/0000-0001-7467-6001
https://orcid.org/0000-0001-6852-7296
https://orcid.org/0000-0003-1509-6394
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.205122&domain=pdf&date_stamp=2020-11-20
https://doi.org/10.1103/PhysRevB.102.205122
https://creativecommons.org/licenses/by/4.0/


STOKES, MORENO, PNEVMATIKAKIS, AND CARLEO PHYSICAL REVIEW B 102, 205122 (2020)

approach has also been applied to ab initio calculations of
interacting electrons in the continuum [17,18]. In this paper,
we focus on the problem of approximating the ground state for
a model of two-dimensional spinless fermions with nearest-
neighbor interactions, modeling the wave function using a
Slater-Jastrow-inspired factorization [19], with an additional
neural network trained to capture sign deviations [20] com-
pared with the Slater determinant.

The paper is organized as follows: we begin by intro-
ducing the Hamiltonian, the qualitative features of the phase
structure, and the observables that have been considered for
identifying phase boundaries, as well as our proposed order
parameter. We then discuss the detailed optimization problem
and the relationship between variational Monte Carlo and
other variational methods such as Hartree-Fock. Finally, we
present results for the phase structure and ground-state corre-
lation functions.

II. THEORY

A. States and Hamiltonian

Consider a system of spinless fermions hopping on the
edges of a simple undirected graph G = (V, E ) with vertices
V and edges E . By Fermi statistics the number of fermions
is constrained by N ∈ {0, 1, . . . , |V|}. For a d-dimensional
hypercubic lattice with periodically identified boundaries, we
have |V| = Ld , where L is the side length of the lattice. The
particle density is denoted by n̄ = N/|V|. Let VN be the set of
N tuples x = (i1, . . . , iN ) ∈ VN and let AN denote the com-
plex vector space of totally antisymmetric functions mapping
VN → C, which is of dimension dimC AN = C|V|

N .
To describe the action of the Hamiltonian on the Hilbert

space of states, we employ the following Fock-space construc-
tion, which is reviewed in the Appendixes. Fix an ordering
� on the vertices i ∈ V . Then an orthonormal basis of N-
particle states is given by |x〉 := ĉ†

i1
· · · ĉ†

iN
|0〉 with the N tuples

x = (i1, . . . , iN ) restricted by the condition i1 < · · · < iN and
where |0〉 denotes the Fock vacuum, which is annihilated by
all ĉi. The associated Hilbert space HN = spanC{|x〉 : i1 <

· · · < iN } is isomorphic to AN . A general state vector |�〉 ∈
HN can be expanded over the basis as

|�〉 =
∑

i1<···<iN

〈x|�〉|x〉 =:
∑

x∈VN

f (x)|x〉, (1)

where in the second equality we have used the Fermi algebra
to expand |�〉 over a spanning set, with coefficients given by
the output of the antisymmetric function f ∈ AN defined by
f (x) := (1/N!)〈x|�〉. Conversely, any antisymmetric func-
tion f ∈ AN gives rise to a valid state vector. This paper
focuses on variational families of states in which the antisym-
metric function f ∈ AN is modeled by using a parametrized
neural network.

The hopping dynamics on the graph G = (V, E ) is
parametrized in terms of a pair of coupling parameters t,V �
0, which represent the kinetic energy and repulsive interaction
strength, respectively,

Ĥ =
∑

{i, j}∈E
−t (ĉ†

i ĉ j + ĉ†
j ĉi ) + V n̂in̂ j, (2)

where n̂i = ĉ†
i ĉi. The above Hamiltonian commutes with the

fermion number operator N̂ = ∑
i∈V n̂i, making it possible to

restrict to the fixed particle number subspace HN .
This model Hamiltonian of spinless fermions in two di-

mensions is approximately realized in several systems of
physical interest, including adsorbed submonolayers of spin-
polarized 3He↓ and D↓ [21,22], several organic materials
(at one-quarter filling) [23], or ultracold atomic gases of
spin-polarized 6Li [24,25]. The model is believed to exhibit
a nontrivial phase transition between metallic and charge-
ordered phases. Despite its apparent simplicity, however, the
phase diagram cannot be determined with high precision
using existing numerical approaches and several questions
remain open. These include the nature of the charge-ordered
phase [26,27] and the precise position of the phase bound-
ary [21,22,26–29]. Several state-of-the-art variational wave
functions have been applied to solve this model, including the
so-called string-bond states [28] and tensor-product projected
states [29] (at half filling), as well as fermionic projected
entangled-pair states (IPEPS) [30] at arbitrary filling in the
grand canonical ensemble. In this work we use neural network
states to systematically investigate the phase diagram in the
fixed particle subspace by considering a large collection of
model parameters.

B. Phase structure

Throughout this section, we focus exclusively on the L × L
square with periodic boundary conditions. Moreover, we only
consider even values of the side length L such that L2 is even
so that the lattice supports half occupation. A rough picture
of the n̄-V/t phase diagram can be determined by considering
the limits of strong coupling (V/t → ∞) and weak coupling
(V/t → 0), in which the model becomes exactly soluble for
any value of n̄. In the strong-coupling limit V/t → ∞, the
system behaves like a hard-core classical lattice gas, in which
translation invariance is broken as a result of charge order-
ing. In the particular case of half occupation (n̄ = 0.5) the
charge ordering is a staggered, checkerboard pattern and the
corresponding phase is insulating. The noninteracting limit
V/t → 0 exhibits uniform density distribution and power-
law density-density correlation functions, characteristic of a
metallic phase. The above phase structure is qualitatively sim-
ilar in one spatial dimension, where the phase diagram can
be exactly computed by using the Bethe ansatz and bosoniza-
tion [31].

Although the phase diagram has been investigated using a
variety of techniques [21,22,26–30,32], there still exist open
questions concerning the precise location of the phase bound-
ary (particularly at half occupation [21,22,28,29]), as well as
the nature of the charge-ordered phase in the vicinity of the
critical point [27].

An unrestricted Hartree-Fock (HF) analysis [26] found
that, for sufficiently small values of the interaction, the system
is in a gapless metallic state with uniform charge distribution.
A critical value of V/t was found, above which a first-order
phase transition leads to a thermodynamically unstable phase
separation state where the system is comprised of both metal-
lic and staggered charge-density wave components. More
recently [27], an analysis using mean-field antinodal fermions
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refuted the hypothesis of a phase separation state, which was
claimed to be an artifact of lack of accuracy of the unre-
stricted Hartree-Fock approximation, in a region of the phase
diagram where the system is highly degenerate. They argue
that the true nature of this state is a gapped, symmetry-broken
charge-density wave (CDW) state with commensurate (stag-
gered) charge order at half occupation and incommensurate
charge order otherwise. Both of these analyses are formulated
in the grand canonical ensemble, where the Hilbert space is
chosen by the unrestricted Fock space, and the Hamiltonian
is parametrized by a chemical potential μ ∈ R as Ĥ (μ) =
Ĥ − μN̂ . The phase diagram was constructed by identifying
cusps in the ground-state energy of Ĥ (μ) as a function of μ. In
contrast, since we restrict to a subspace HN defined by fixed
particle number, the chemical-potential term only contributes
an irrelevant constant to the energy, so we require a different
strategy to find the transition points.

Different observables have been considered for detecting
the phase transition at fixed particle number. In particular, at
half-occupation (n̄ = 0.5), the phase transition from a metal-
lic phase to a checkerboard charge-ordered insulating phase
is detected by the so-called charge structure factor S(π, π ),
defined as the k = (π, π ) component of the Fourier transform
of the two-point correlation function averaged over lattice
locations [21,22,28,29].

This observable abruptly increases upon crossing to the
charge-ordering phase due to the staggered charge order-
ing [21,22]. The charge structure factor S(π, π ) is not suitable
for identifying the transition away from half filling because it
assumes that the charge ordering is commensurate with the
underlying lattice.

To define an order parameter suitable for general filling
fraction, we first identify the vertex set with the two-
dimensional periodic torus V ∼= Z2

L (where ZL = {0, . . . , L −
1}) and define a density signal ρ : Z2

L → [0, 1] on the torus by
ρ(r) = 〈n̂r〉 where r ∈ Z2

L. We seek an order parameter o that
measures the departure of this density signal from homogene-
ity so we define

o[ρ] := L2

N (L2 − N )

[
‖ρ‖2

2 − 1

L2
‖ρ‖2

1

]
� 0. (3)

Positivity of the order parameter follows directly from the
relation between the l1 and l2 norms. The bound is saturated
when ρ is a constant function (uniform density) and the over-
all normalization is chosen such that the order parameter is
unity for a classical N-particle state. Moreover, by Parseval’s
identity, this order parameter is related to the energy in the
nonzero Fourier modes

o[ρ] = 1

N (L2 − N )

∑
k 
=0

|̃ρ(k)|2, (4)

where the k sum is over all nonzero modes in the discrete
Brillouin torus 2π

L Z2
L. This quantity is evidently dependent

on multiple Fourier modes, as required to capture incom-
mensurate order. Therefore, in the thermodynamic limit,
this observable vanishes in the metallic phase and becomes
nonzero and finite upon the formation of a charge-ordered
state.

Another observable which has received attention in this
context is the so-called density-density correlation function,
which is defined for1 r ∈ ZL+1 = {0, . . . , L} as follows:

C(r) = 1

L2Nr

∑
i∈V

∑
j∈Sr (i)

〈(n̂i − n̄)(n̂ j − n̄)〉, (5)

where Sr (i) = { j ∈ V : d (i, j) = r} is the set of vertices with
graph distance r from i ∈ V and Nr = |Sr (i)| is the number of
such vertices, which is constant for the square lattice under
consideration.

Due to the expected short-distance divergences of the two-
point correlation function in the continuum limit, we define
the renormalized Fourier space correlator by subtracting the
coincidence limit of the position space correlator

C̃ren(k) :=
L∑

r=0

e−ikrCren(r) =
L∑

r=1

e−ikrC(r), (6)

where k ∈ 2π
L+1 {0, . . . , L}.

III. METHODS

In this section we describe the variational Monte Carlo
and Hartree-Fock optimization problems and our proposed
variational ansatz.

A. Optimization problem

For each integer particle number N in the range 1 � N �
|V|, we consider the problem of finding a minimal energy
simultaneous eigenvector |�0〉 of both the Hamiltonian Ĥ
and the number operator N̂ such that N̂ |�0〉 = N |�0〉 and
Ĥ |�0〉 = E0|�0〉. Such an eigenvector admits a characteriza-
tion in terms of the Rayleigh quotient as follows,

|�0〉 ∈ arg min
�∈HN :� 
=0

〈�|Ĥ |�〉
〈�|�〉 . (7)

In the case of the interacting Hamiltonian (2), optimization
over all N-particle wave functions is intractable, so we focus
on the simpler problem of selecting a wave function from
a variational class of trial wave functions. A subset of HN

is chosen by specifying a family F ⊆ AN of antisymmet-
ric functions. For each f ∈ F , the associated wave function
|� f 〉 ∈ HN gives an upper bound on the ground-state energy,

E0 � 〈� f |Ĥ |� f 〉
〈� f |� f 〉 , (8)

and thus optimizing this bound over F yields an approxima-
tion of the ground-state eigenpair.

By standard arguments reviewed in the Appendixes, the
above Rayleigh quotient can be expressed as a classical ex-
pectation value of a local energy functional

〈� f |Ĥ |� f 〉
〈� f |� f 〉 = E

x∼π f

[E f (x)], (9)

1The domain of definition of C follows from the fact that L is
assumed to be even.
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Algorithm 1 Markov Chain Metropolis

1: Initialize x = (i1, . . . , iN ) ∈ VN

2: for t = 1 to T do
3: Sample particle n ∼ Unif({1, . . . , N})
4: Sample vertex i ∼ Unif (Adj(xt−1(n)))
5: if κt−1(i) 
= empty then
6 xt = xt−1

7: else
8: x′ = xt−1

9: i′n ← i
10: q ∼ Unif([0, 1])
11: if q < | f (x′)|2/| f (xt−1)|2 then
12: xt = x′

13: else
14: xt = xt−1

where π f is a permutation-invariant probability distribution
over the classical state space VN , which assigns a probability
to x ∈ VN given by

π f (x) = | f (x)|2∑
x′∈VN | f (x′)|2 , (10)

and the local energy E f is a permutation-invariant function of
x ∈ VN defined by

E f (x) = −t
∑

x′∈�x

f (x′)
f (x)

+ V
∑

{i, j}∈E
nin j, (11)

where �x ⊆ VN denotes the set of classical states obtained by
applying the kinetic operator to |x〉, and ni ∈ {0, 1} denotes
the binary occupation number of vertex i ∈ V . In practice,
the family of antisymmetric functions F is parametrized by
unconstrained variational parameters θ ∈ Rd , and we locally
optimize the following loss function:

L(θ ) := E
x∼π fθ

[E fθ (x)]. (12)

Sampling from the probability density π f was performed
using a Markov chain Monte Carlo strategy outlined in Algo-
rithm 1. The configuration space of the Markov chain is given
by the classical state space VN . It is convenient to maintain a
lookup table κ : V → [N] ∪ {empty} which returns the loca-
tion of a given vertex in the array x = (i1, . . . , iN ), or empty
if absent.

B. Hartree-Fock

It is instructive to contrast the VMC optimization problem
with Hartree-Fock, which provides one of our baselines. Sup-
pose that the matrix φ ∈ C|V|×N is an isometric matrix; that is,
φ†φ = 1N and therefore P = φφ† is a Hermitian projection
onto the image of φ. If we define a family of N creation
operators,

c̃†
n =

∑
i∈V

ĉ†
i φn(i), (13)

and define the N-particle normalized Hartree-Fock state,

|�HF〉 = c̃†
1 · · · c̃†

N |0〉, (14)

then it is easily shown that the entries of the projection matrix
P ∈ C|V|×|V| are given by

Pi j = 〈�HF|ĉ†
j ĉi|�HF〉. (15)

Expressing the Hamiltonian in terms of the adjacency matrix
A for the graph,

Ĥ =
∑

(i, j)∈V2

Ai j

[
−t ĉ†

i ĉ j − 1

2
V ĉ†

i ĉ†
j ĉiĉ j

]
, (16)

where we have used the fact that A is zero on the diagonal. The
quantum expectation value of the Hamiltonian in the Hartree-
Fock state is thus given by

〈�HF|Ĥ |�HF〉 =
∑

(i, j)∈V2

Ai j

[
−tPji − 1

2
V (Pi jPji − PiiPj j )

]
.

(17)

The optimization problem is to minimize the energy
EHF(φ) := 〈�HF|Ĥ |�HF〉 viewed as a function of the isomet-
ric matrix φ,

minimize EHF(φ)

subject to φ†φ = 1N . (18)

In practice, we approximated the solution of the above con-
strained optimization problem by alternating between steps
of the Adam optimization followed by orthogonalization of
the columns of φ. This kind of alternating optimization is
described in Ref. [33].

C. Wave-function ansatz

Since the focus of this paper is ground-state optimization,
we restrict ourselves to real-valued wave functions by ex-
ploiting the time-reversal invariance of the Hamiltonian. To
describe our choice of antisymmetric functions F , it is useful
to define an indicator vector nx ∈ {±1}|V| for the configuration
x ∈ VN , which is given in terms of the recentered binary
occupations

nx := (2ni − 1)i∈V , (19)

where ni ∈ {0, 1}. The family of antisymmetric functions F
is chosen to consist of parametrized functions fθ possessing
a generalized Jastrow-Slater form, meaning that their depen-
dence on the occupation numbers factorizes from a Slater
determinant as follows:

fθ (x) = ψ0(x)J (nx )S(nx ). (20)

The domain and range of the constituent functions appearing
in the above factorization is given as follows:

ψ0 : VN → R, (21)

J : {±1}|V| → [0,∞), (22)

S : {±1}|V| → [−1, 1]. (23)

In particular, ψ0 is a Slater determinant, while J and S are
neural networks, chosen with the property that they are in-
variant under a subset of lattice symmetries, and furthermore
that they approach constant functions for some setting of the
parameters. The proposed ansatz can thus be viewed as a
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FIG. 1. Diagram of the wave-function ansatz as defined in Eq. (20). From left to right: square lattice of side length L = 10 with 20 particles,
occupation map in the lattice that the sign and amplitude networks take as an input. Top and bottom convolutional networks are amplitude and
sign factors, respectively. The number of convolutional filters is indicated above each layer.

deformation of the Hartree-Fock wave function by a Jastrow
factor and an additional factor that corrects the sign structure.
The fact that J and S can exactly represent constant functions
implies that the proposed ansatz is exact in the noninteracting
(V/t = 0) and classical (V/t → ∞) limits. An ablative study
conducted for small systems indeed found that dropping the
S network systematically decreased performance, indicating
that the combination of the Slater determinant and strictly
positive Jastrow factor is unable to capture the correct sign
structure of the ground state. These results are deferred to the
Supplemental Material [34].

The variational parameters characterizing the Slater de-
terminant consist of a |V| × N matrix φ = [φ1, . . . , φN ] ∈
R|V|×N . Denoting the ith entry of the nth column φn ∈ R|V|
by φn(i), it follows that the Slater determinant is ψ0(x) =
detm,n[φn(im)] where the orbital functions φn : V → R are
neither normalized nor orthogonal.

The remaining variational parameters θJ ∈ RdJ and θS ∈
RdS characterize the weights and biases of the neural networks
J and S. To meet the desiderata of translational invariance and
ability to represent the constant function, we choose J to be a
convolutional feed-forward network with output exponential
nonlinearity and we chose S to be a deep residual network [35]
with convolutional residual blocks, followed by an averaging
layer, a fixed affine transformation,2 and final output tanh non-
linearity. In both cases the convolutions employed periodic
boundary conditions (see Fig. 1).

The variational parameters θ = (φ, θJ , θS ) ∈ Rd (d =
|V|N + dJ + dS) were jointly optimized by using the stochas-
tic reconfiguration method [36], which can be interpreted as
imaginary time evolution or a particular case of the natural
gradient optimization [37,38].

The variational parameters (θJ , θS ) were initialized by us-
ing standard random initialization strategies and the Slater
determinant parameters φ were initialized by using the solu-
tion of the Hartree-Fock optimization scheme described above
to improve convergence.

The number of variational parameters in the neural net-
works do not change significantly with system size as a result

2In practice, we chose the affine layer to be a pointwise application
of x �→ x

2(2N−|V|) + 1
2 .

of using convolutions with a fixed number of channels and
filter size. It follows that the largest contribution to the num-
ber of parameters (filters) does not change with system size.
Although the number of biases scales linearly with system
size, for the system sizes considered, the number of biases is a
small fraction of the total number of parameters. This scaling
is comparable to typical Jastrow factors invariant under trans-
lations, where the number of parameters also scales linearly
with the system size.

IV. RESULTS

In this section we analyze the ground-state correlation
functions and the phase structure by performing ground-state
optimization of the neural network ansatz using variational
Monte Carlo. In particular, two-point density correlation func-
tions are analyzed to probe the nature of the charge-ordered
phase. Then the phase diagram is constructed by performing a
finite-size scaling analysis of the density order parameter (3).

A. Exact diagonalization benchmark

To verify the implementation, the exact ground-state eigen-
pair was determined by using the Lanczos algorithm as im-
plemented in QUSPIN [39,40], working in the zero-momentum
sector containing the ground state. Exact diagonalization is
practical for system sizes up to L = 6 with N � 17 particles.

The relative error in the ground-state energy obtained
using VMC optimization of the neural network is shown
in Fig. 2, alongside the relative error obtained using un-
restricted Hartree-Fock for comparison. Unsurprisingly, the
neural-network ansatz outperforms the unrestricted HF in
terms of accuracy of ground-state energy, with relative errors
smaller by up to two orders of magnitude for certain values of
the coupling. For most values of V/t , the relative error does
not exceed O(10−3). In the worst cases, which correspond to
large values of the interaction (but still far from the classi-
cal limit), the relative error is no larger than O(10−2). The
ground-state energies obtained using our method were found
to be lower than those obtained using tensor-product projected
states [29] and string bond states [28], which are available for
system size L = 4 and half occupation (n̄ = 0.5).
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FIG. 2. Benchmark of the proposed variational ansatz (VMC)
and Hartree-Fock approximation (HF) using the exact ED states. (a),
(b) Color-maps show the relative error of the energy in the square
lattice of size (a) L = 4 and in the square lattice of size (b) L = 6.
Relative error is shown at different fillings of the lattice and values
of the coupling constant. Lines separate regions of the phase diagram
with different orders of magnitude of the relative error as indicated.
(c) Shows the error of the proposed ansatz in panels (a) and (b),
relative to the error of the Hartree-Fock approximation, in the square
lattice of size L = 4 and L = 6.

To benchmark the ground-state wave function beyond the
energy error, we computed density-density correlations as de-
fined in Eq. (5) and compared against ED results, as shown in
Fig. 3. The neural-network ansatz accurately reproduces the
exact-correlation functions for any graph distance r at any V/t
and filling values.

The benchmark with ED shows that the proposed neural-
network variational ansatz provides an accurate approxima-
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FIG. 3. Benchmark of the proposed variational ansatz (VMC)
using ED eigenpairs in the square lattice of side length L = 6.
Two-point density correlation functions [Eq. (5)] are shown as a
function of graph distance r at different values of V/t : V/t = 0.01,
V/t = 0.599, V/t = 2.15, and V/t = 5.99, as shown by the color
scale in the top of the panel. Solid lines are the correlations from ED
and the dots correspond to the correlations computed with our ap-
proach. Different panels correspond to different fillings, as indicated
in each panel. The results obtained using ED and neural networks are
visually indistinguishable.

tion to the ground-state, making it a suitable tool to study the
phase diagram of the model.

B. Phase diagram

1. Correlation functions

The ground-state two-point density correlation functions
are shown for the largest available system size (L = 10) in
Fig. 4(a). In practice, computation times did not change signif-
icantly between the 6×6 and 10×10 systems, and we expect,
as a result of translational invariance, that the results should
generalize to larger system sizes, given additional training
time.

For weak coupling, the correlation functions barely os-
cillate and decay to zero with increasing graph distance r
between correlation pairs. As the interaction strength in-
creases, the correlations spatially oscillate with increasing
amplitude due to ordering of the charge distribution when
the transition is crossed. In the charge-ordered phase, the
amplitude of the oscillations decays (as a function of r) at
a slower rate than in the metallic phase. At half occupation
the charge ordering is staggered, leading to commensurate
oscillations in the correlation functions. Away from half
occupation, due to the geometry of the lattice, the charge order
cannot be staggered, leading to incommensurate oscillations
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FIG. 4. Two-point density correlation function defined in Eq. (5)
and the moduli of their renormalized Fourier modes defined in
Eq. (6). Different colors indicate different values of V/t , as indicated
in the legend in the top of the plot. (a) Two-point density correlation
functions as a function of the graph distance r. System size is L = 10.
Dots represent the obtained values for the correlations and black solid
lines are for visual guidance. Each panel corresponds to a different
filling as indicated. (b) Modulus of the Fourier transform of the
correlation functions displayed in the corresponding (a) panels, as
a function of k. Note that |C̃ren(k)| is only shown for k ∈ [0, π ] as
|C̃ren(k)| is symmetrical with respect to k = π . (c) Amplitude peak
in |C̃ren(k)| shown in panel (a) as a function of the lattice size.
For different system sizes the peak is identified as the maximum
of |C̃ren(k)| at the largest value of V/t considered. Different panels
correspond to different lattice fillings, as indicated.

in the correlations. For all occupations, increasing the inter-
action strength increases the amplitude of the oscillations,
without significantly altering their wave form.

This behavior is also evident in the Fourier component
amplitudes |C̃ren(k)| [Fig. 4(b)]. For all values of occupation
and for weak interaction, |C̃ren(k)| exhibits a uniform distri-
bution without peaks. When the coupling is large enough, the

system transitions to the charge-ordered state where a peak
appears in which the amplitude monotonically increases with
V/t . Note that at n̄ = 0.24 the peak is not well resolved due
to the small number of k values accessible in this system size.
The position of the peak depends on the filling, as anticipated.
At half occupation the peak is narrow and centered around
k = π (staggered ordering). Close to half occupation and for
the considered system size, the peak is still centered at k = π

but with increased width due to the rise of noncommensurate
order. Lower values of the filling lead to Fourier peaks that
correspond to longer-wavelength orderings.

The results discussed above appear to be consistent with
the formation of a CDW state as opposed to a phase-separated
one. We further analyze the nature of the |C̃ren(k)| peak by
studying its amplitude as a function of the system size, as
shown in Fig. 4(c). At values of V/t corresponding to a metal-
lic state, the amplitude of the corresponding Fourier mode
saturates to a constant value, or decreases as L is increased,
depending on the filling. In contrast, in the CDW phase the
amplitude of the peak increases with L. Although this scaling
could in principle be used to determine the transition points,
the system sizes we considered are not sufficient to accurately
extract the critical point. This is in part due to the access to a
limited set of Fourier modes in the discrete Fourier transform,
which may not provide the necessary resolution in k space to
resolve the true period of the oscillations away from half fill-
ing. Despite these difficulties, the above results are consistent
with a CDW phase [27], rather than a phase-separated one.

2. Order parameter

Figure 5 shows the order parameter (3) as a function of V/t
at different lattice occupations. Each panel also displays the
order parameter at different system sizes L = 6, L = 8, and
L = 10. Interpolation is required to obtain the value of o[ρ] at
the desired filling at a given system size. Linear interpolation
is used instead of higher-order interpolation schemes. The
reason for this is that the order parameter takes values close
to zero in the metallic phase, leading to negative values of the
interpolated value of o[ρ] when using higher-order methods.
The order parameter takes a small but nonzero value in the
metallic phase (smaller values of V/t) and abruptly increases
upon crossing to the charge-ordered phase. In the metallic
phase and at fixed values of the filling and coupling, o[ρ] � 0
decreases with system size. This is consistent with the CDW
coming from the opening of a gap like in the d = 1 case,
where the amplitude of the charge-density wave increases
with the magnitude of the gap [31]. In finite-sized systems the
metallic phase has a small but nonzero gap, which decreases
with the increase of system size and becomes zero in the ther-
modynamic limit. This nonzero gap leads to a small amplitude
in the charge order.

Finite-size scaling is thus required to find the transition
points. At fixed values of the density we analyze the order
parameter as a function of V/t , starting in the metallic phase,
where its value decreases with L. The transition point is taken
where the order-parameter curves corresponding to different
system sizes cross each other upon increasing the value of the
coupling. Transition points are determined by the average of
the first three crossing points. Error bars are determined by
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FIG. 5. Order parameter as defined in Eq. (3) as a function of the coupling constant. Each panel shows the order parameter in system sizes
L = 6, L = 8, and L = 10, as indicated in the legend with different colors. Lines connecting dots are for visual guidance. Different panels
correspond to different fillings as indicated.

the maximum between the range of V/t between the first three
crossing points and the separation of the V/t values sampled.
The scaling of the order parameter at half filling is consistent
with a transition at an infinitesimally small value of V/t due
to Fermi-surface nesting [41].

The phase diagram arising from these transition points is
displayed in Fig. 6. Particle-hole symmetry has been applied
to determine the phase boundary for n̄ > 0.5 from the results
obtained at n̄ < 0.5.

3. Phase diagram

We conclude this study by analyzing the obtained phase
diagram and comparing it with the phase diagram obtained
with unrestricted Hartree-Fock [26] and IPEPS [30], in the
grand canonical ensemble. Figure 6 shows the phase diagrams
obtained with unrestricted HF [26], IPEPS [30], and with our
neural-network ansatz superimposed onto a color map of the
order parameter in the largest system size considered. In the
IPEPS study [30], it was found that, by increasing the bond
dimension (and consequently the accuracy of the ground-state

approximation), the transition line shifts to higher values of
V/t . The phase boundary obtained in this work lies at slightly
larger values of the interaction than those obtained from
IPEPS, which may indicate that the proposed neural-network
ansatz is more accurate than the IPEPS wave function.

The magnitude of the order parameter in the largest
system size analyzed L = 10 already provides a good indi-
cation of the transition point as shown by the superimposed
color map.

V. CONCLUSION

We showed that neural networks can be used to analyze
the ground-state properties of lattice fermionic systems in first
quantization. The proposed wave function and minimization
scheme are applicable to arbitrary lattice models. In particular,
we applied it to the study of the phase diagram of the two-
dimensional periodically identified square lattice with nearest
neighbor repulsive interactions.

The exact diagonalization benchmarks demonstrate that the
proposed wave function accurately captures the ground-state

FIG. 6. Phase diagram of the two-dimensional interacting spinless fermion model under consideration. The Hartree-Fock and IPEPS
transition lines are from Ref. [30]. The orange dots correspond to the transition points from the finite-size scaling of o[ρ], using the proposed
variational ansatz. Lines connecting the dots are for visual guidance. The color-map represents the CDW order parameter o[ρ] in the largest
system size studied (L = 10) at different values of the particle density and interaction strength.

205122-8



PHASES OF TWO-DIMENSIONAL SPINLESS LATTICE … PHYSICAL REVIEW B 102, 205122 (2020)

energy for a wide range of lattice fillings and interaction
strengths. It also achieves lower energies than other ap-
proaches at half occupation for system size L = 4 where
comparison data are available. Furthermore, we tested the
accuracy in reproducing other observables such as two-point
density correlation functions finding essentially the same val-
ues as those from exact diagonalization.

The study of the two-point density correlation functions
shows results consistent with a charge-density-wave state for
large values of the coupling, rather than a phase separated one.
A finite-size scaling analysis of the order parameter allowed

us to obtain the phase boundaries for the model, allowing the
construction of the phase diagram from a canonical ensemble
approach.
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