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Curie-Weiss susceptibility in strongly correlated electron systems
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The genesis of the Curie-Weiss magnetic response observed in most transition metals that are Fermi liquids
at low temperatures has been an enigma for decades and has not yet been fully explained from microscopic
principles. We show on the single-impurity Anderson model how the quantum dynamics of strong electron
correlations leads to the Curie-Weiss magnetic susceptibility sufficiently above the Kondo temperature. Such
behavior has not yet been demonstrated and can be observed only when the bare interaction is substantially
screened (renormalized) and a balance between quantum and thermal fluctuations is kept. We set quantitative
criteria for the existence of the Curie-Weiss law.
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I. INTRODUCTION

The behavior of electrons is decisive for shaping the low-
temperature properties of metals. Unless in an ordered state,
the electrons form a Fermi liquid and display Pauli paramag-
netism. This behavior seems to be independent of the strength
of the electron correlations. Most of the transition metals and
their compounds seem to contradict this simple picture in that
the Curie-Weiss magnetic response is observed in a broad
interval of temperatures even below the Fermi temperature.

The Curie law for the paramagnetic low-temperature sus-
ceptibility χ = C/T was derived by using the concept of local
magnetic moments [1]. Later on, Weiss extended the Curie
law to χ = C/(T − Tc) by introducing an interaction between
atomic magnetic moments in order to cover transitions to the
ferromagnetic state at Tc [2]. This Curie-Weiss law reproduces
well the magnetic response of insulating materials with fixed
spin moments and no relevant charge fluctuations.

The metallic (itinerant) magnetism was first described by
Bloch in terms of electron waves [3] to which Stoner later
added a mean-field description of electron correlations [4].
Such a static, weak-coupling theory with no local moments
leads to Pauli paramagnetism at low temperatures and cannot
account for the Curie-Weiss behavior when the critical tem-
perature lies below the Fermi energy of the degenerate Fermi
gas [5].

A wave of efforts arose to understand the origin of the
Curie-Weiss magnetic response in systems without the appar-
ent presence of local magnetic moments [6]. The first theory
that qualitatively correctly reproduced the Curie-Weiss law
in weak ferromagnetic metals was developed by Moriya and
collaborators. They introduced a self-consistent theory for the
local magnetic susceptibility by including static spin fluctu-
ations [7–14]. Although the theory was able to interpolate
between the weak ferromagnetic and local moment pictures
of itinerant magnetism, it missed the strong-coupling limit,
did not provide a consistent thermodynamic and conserving
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approximation, and did not clearly explain the microscopic
origin of the Curie-Weiss behavior.

The modern approach to strongly correlated electrons
based on the dynamical mean-field theory (DMFT) was used
to derive an implicit form of the Curie-Weiss law from local
dynamical fluctuations [15] and in combination with the lo-
cal density functional it also reproduced the critical behavior
above the ferromagnetic transition of iron and nickel [16].
Although DMFT suggested that local dynamical fluctuations
may be responsible for the Curie-Weiss law, the microscopic
mechanism behind it has not been disclosed.

The reason for the failure of the DMFT to identify the
origin of the Curie-Weiss law is the lack of two-particle
renormalization; that is, a self-consistent determination of
the screening of the bare interaction. The simplest system-
atic theory with two-particle renormalizations is the parquet
construction [17,18]. It is in its full generality, however, not
analytically controllable and it does not reproduce the strong-
coupling Kondo limit of the single-impurity Anderson model
(SIAM) correctly [19,20].

The way out from this trap of complexity with little an-
alytic control is to reduce the parquet scheme. One has to
keep its substantial part, the two-particle self-consistency, so
that to interpolate qualitatively correctly between the weak-
and strong-coupling regimes in a controlled way. One of
the present authors has developed such an analytically con-
trollable scheme qualitatively correctly interpolating between
weak and strong coupling in the SIAM [21–25]. Since the
parquet approach leads to a Fermi liquid at low temperatures
of the SIAM, it is necessary to extend this approach properly
to higher temperatures and beyond the Fermi-liquid regime.
We succeeded to do so and introduced the Kondo temper-
ature as a point at which the thermal fluctuations equal the
quantum, zero-temperature fluctuations and above which the
Fermi-liquid description breaks down [26].

The aim of this paper is to disclose the origin of the
Curie-Weiss law in strongly correlated electron systems.
We show that local dynamical fluctuations due to strong
electron correlations generate the Curie-Weiss magnetic re-
sponse in metallic systems. The necessary constituents of the
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explanation of the Curie-Weiss law in itinerant systems are
(i) two-particle self-consistency renormalizing the interaction
strength, (ii) reliable interpolation between weak and strong
coupling, and (iii) balance between local quantum and thermal
fluctuations. All these conditions are met in our reduced par-
quet scheme [25,26]. We apply it to the SIAM as the generic
model to demonstrate how the dynamical forming of the
local magnetic moment in strong coupling together with ther-
mal fluctuations lead to a non-Fermi-liquid behavior and the
Curie-Weiss susceptibility above the Kondo temperature. Our
findings have general relevance and hold for extended systems
with critical magnetic fluctuations as well. We demonstrate
that the Curie-Weiss law is generally caused by local dynam-
ical fluctuations while spatial fluctuations affect the region of
its validity.

II. LOCAL MODEL OF STRONG
ELECTRON CORRELATIONS

A. Model of a local Fermi liquid

Metallic systems are distinguished by fermionic low-
energy excitations of the ground state, unless strong electron
correlations destroy the low-temperature Fermi-liquid regime.
The strong-coupling limit of the spin- and charge-symmetric
state of the SIAM at low temperatures (Kondo limit) stands for
a model situation of a local Fermi liquid where the dynamical
fluctuations lead to the formation of a local magnetic moment.
Although the ground state remains a Fermi liquid for arbi-
trarily strong electron correlations, a new exponentially small
two-particle scale emerges in strong coupling. The magnetic
susceptibility is large but finite as well as the effective mass
of the one-particle excitations. The spectral function displays
a three-peak structure with an exponentially narrow central
quasiparticle peak. The width of the central peak is propor-
tional to the inverse lifetime of the pair of the electron with
a given spin and the hole with opposite spin. That is why the
Kondo limit of the SIAM is the simplest situation where the
long-lived local magnetic moment can lead to the Curie-Weiss
magnetic response.

The Hamiltonian of the SIAM in second quantization is

HI =
∑
kσ

ε(k)c†
kσ ckσ

+ Ed

∑
σ

d†
σ dσ + Ud†

↑d↑d†
↓d↓

+
∑
kσ

(Vk d†
σ ckσ

+ V ∗
k c†

kσ dσ ), (1)

where c†
kσ , ckσ

are creation and annihilation operators of
the conduction electrons with spin σ and momentum k, and
d†

σ , dσ are the creation and annihilation operators of the im-
purity electron with spin σ .

The conduction electrons can be projected out, which leads
to a band of energy states on the impurity. The effect of the
conduction electrons can be approximated by a shift � =
2πV 2ρc of the imaginary part of the frequency of the bare
propagator, where ρc is the local density of states of the
conduction electrons at the Fermi energy.

The Curie-Weiss response must be deduced from the
two-particle vertex. One hence has to directly approach the
two-particle response and vertex functions when looking for
a specific behavior of the magnetic susceptibility. We use the

K = − Λ

⎡
⎢⎢⎢⎣ Λ + K

⎤
⎥⎥⎥⎦

FIG. 1. The reducible vertex K determined from the Bethe-
Salpeter equation with the integral kernel � being the vertex
irreducible with respect to multiple scatterings of the singlet electron-
hole pairs. The arrows indicate the charge propagation and the upper
lines carry spin up while the lower lines carry spin down.

standard diagrammatic perturbation theory for the full two-
particle vertex that can be decomposed in the local model into
the irreducible � and the reducible K vertices:

	(iωn, iωn′ ; νm) = �(iωn, iωn′ ; iνm) + K(iωn, iωn′ ; iνm),
(2)

of a specific two-particle scattering channel. Here ωn =
(2n + 1)πkBT and νm = 2mπkBT are fermionic and bosonic
Matsubara frequencies, respectively. The scattering channel
should be chosen so that the respective Bethe-Salpeter equa-
tion is expected to generate a divergence due to multiple
scatterings of pairs of electrons or electron-hole pairs. Since
we expect that the magnetic susceptibility will be large and
will approach a critical point at low temperatures, we use the
decoupling of the full two-particle vertex into the reducible
and irreducible components in the singlet electron-hole chan-
nel with nonsingular � and possibly singular K, as observed
in the weak-coupling perturbation expansion.

B. Reduced parquet equations

The problem of the weak-coupling diagrammatic (per-
turbation) expansion is that it will reach a singularity in
the two-particle vertex in intermediate coupling. We hence
need to go over to nonperturbative approximations if we
want to describe reliably the transition from weak-coupling
to strong-coupling regimes. Singularities in the two-particle
vertex may have different origins. One is the proximity of the
metal-insulator transition and is signaled by a divergence of
the imaginary part of the self-energy near the Fermi energy
[27–29]. A more common singularity in the two-particle ver-
tex with repulsive interaction is caused by multiple scatterings
of the singlet electron-hole pairs. It is manifested in the Bethe-
Salpeter equation in the random-phase approximation (RPA).
The generic Bethe-Salpeter equation for the reducible vertex
K in the electron-hole singlet channel is graphically repre-
sented in Fig. 1. If the full irreducible vertex � is replaced
with the bare interaction U the reducible vertex K becomes
singular at the critical interaction Uc = π�. This singularity
is, however, unphysical in the local models with no spatial
fluctuations. We have to renormalize the bare interaction to
a self-consistent equation for the irreducible vertex �. It will
be achieved via a two-particle self-consistency of the parquet
equations.

The complete set of the parquet equations contains three
coupled two-particle scattering channels, and their solution
can be reached only numerically in the Matsubara formal-
ism [20,30–33]. The electron-hole singlet and triplet channels
generate the same singularity in the two-particle vertex. We
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Λ = − K Λ

FIG. 2. The irreducible vertex �, a renormalized interaction
strength, determined from a reduced Bethe-Salpeter equation with
multiple electron-electron scatterings in which only the dominant
contributions from the reducible vertex K that do not drive the
solution out of its critical region are taken into account, as explained
in the text. The vertical wavy line is the bare Hubbard interaction
between electrons with opposite spins.

can hence neglect one of them without qualitatively affecting
the critical behavior of the two-particle vertex. This is why
we can resort only to two-channel parquet equations. The
full solution of neither the three-channel nor the two-channel
parquet equations leads to the Kondo behavior [34]. The par-
quet equations with the full one-particle self-consistency also
fail to guarantee that the strength of the electron repulsion is
determined only by the present charge densities [23,35].

The irreducible vertex � renormalizing the bare in-
teraction U from the RPA in the two-channel parquet
scheme is determined from the Bethe-Salpeter equation with
multiple scatterings of the singlet electron pairs. The renor-
malization obtained from the full Bethe-Salpeter equation
misses the strong-coupling Kondo regime in the SIAM. We
hence introduced a reduced Bethe-Salpeter equation in the
electron-electron channel that renormalizes the interaction
appropriately to recover qualitatively correctly the Kondo
strong-coupling asymptotics [25]. The diagrammatic repre-
sentation of this equation is plotted in Fig. 2.

The reasoning behind its derivation is as follows. The
bare interaction is used in the weak-coupling regime until
the critical region of the RPA pole is reached. A new small
two-particle scale emerges. We call it the Kondo scale and
denote its dimensionless form a. We now rearrange the per-
turbation expansion according to the powers of the inverse
Kondo scale a−1. The leading term in the irreducible vertex
�ee in the Bethe-Salpeter equation with multiple scatterings
of the singlet electron pairs is the reducible vertex from the
electron-hole channel and we replace �ee → K. If we resort
to the parquet equations with the bare interaction as the fully
irreducible vertex we must renormalize only the irreducible
vertex � by multiple scatterings of the singlet electron pairs
and suppress the self-renormalization of the singular vertex
K. The renormalization of vertex K drives the solution away
from the critical region of the RPA pole. The full vertex 	

on the right-hand side of the full Bethe-Salpeter equation
in the particle channel is then replaced by the irreducible
one, 	 → �. In this way the two-particle self-consistency of
the parquet approach is conserved and the critical behavior
of the RPA pole is thereby transferred to strong coupling
where it goes over to the Kondo critical regime. The qualita-
tive behavior of the Kondo limit of the SIAM, that is, the linear
dependence of the Kondo temperature on the bare interaction
strength with the critical point at U = ∞, is thereby repro-
duced [23,25]. The reduced parquet equations are justified
in the critical region of the reducible vertex K with a small
scale a � 1 measuring the distance to the critical point with

a = 0. Their solution can, however, be extended outside the
critical region, simulating well the qualitative behavior of the
model in the whole range of the input parameters. The reduced
parquet equations are the simplest approximation reproducing
qualitatively correctly the quantum critical behavior due to
singularities in the Bethe-Salpeter equations.

1. Mean-value approximation

The vertices from the reduced parquet equations remain
frequency dependent. The reduced parquet equations from
Figs. 1 and 2 contain frequency convolutions. They can
hence be solved with unrestricted frequency dependence of
the vertices only numerically in the Matsubara formalism.
We are predominantly interested in the critical behavior of
the reducible vertex K with a small Kondo scale a � 1
where we can separate the critical and noncritical dynami-
cal fluctuations. The former fluctuations scale critically with
the controlling parameter a while the latter do not. We
then neglect the finite noncritical fluctuations represented by
fermionic Matsubara frequencies, and keep only the domi-
nant critical ones that have bosonic character and drive the
reducible vertex K towards its critical point with a = 0. The
convolutions in the fermionic frequencies are then simplified
in the spirit of the mean-value theorem so that only the asymp-
totic limit of the fermionic frequencies to the Fermi energy
survives while the whole spectrum of the transfer bosonic fre-
quencies of the two-particle excitations is considered without
restrictions. We thereby simplify the reduced parquet equa-
tions to a single mean-field-like self-consistent equation for
the static irreducible vertex in the electron-hole channel �, an
effective screened interaction [25]

� = U

1 − �2φ(0)X
, (3)

where the frequency-dependent electron-hole bubble is

φ(ω+) = −
∫ ∞

−∞

dx

π
f (x)[G(x + ω+) + G(x − ω+)]

× ImG(x+), (4)

and ω+ = ω + i0+ denotes the way the real axis is reached
from the complex plane. The electron-electron multiple scat-
terings from vertex K contribute to the screening of the
interaction strength via integral X = X0 + �X that we de-
compose into quantum and thermal contributions, X0 and �X ,
respectively,

X0 = −
∫ ∞

−∞

dx

π
f (x)Im

[
G(x+)G(−x+)

1 + �φ(−x+)

]
, (5a)

�X =
∫ ∞

−∞

dx

π

Re[G(x+)G(−x+)]

sinh (βx)
(5b)

× Im

[
1

1 + �φ(−x+)

]
.

We used the equality f (x) + b(x) = 1/ sinh(βx). We straight-
forwardly continued analytically the sums over the Matsubara
frequencies to spectral integrals with Fermi, f (x) = 1/(eβx +
1), and Bose, b(x) = 1/(eβx − 1), distributions. We use in
this paper the bare Green’s function of the SIAM G(ω±) =
1/(ω − EF − Un/2 ± i�), where n is the charge density. We
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showed that we reproduce the exact Kondo limit qualitatively
correctly with this propagator [23,25]. The Kondo strong-
coupling criticality is manifested at half filling, that is, for
n = 1 and EF = −U/2, to which we resort.

The resulting approximation with the renormalized inter-
action � has a well-established analytic structure. It is easily
numerically solvable in the whole range of the interaction
strength and arbitrary temperature. It leads to thermodynamic
properties defined analogously as in the RPA. The major
difference with respect to the RPA is that the vertex � sig-
nificantly renormalizes the bare interaction strength and never
goes over the critical interaction of the RPA, Uc = π� in
the impurity models. Its strong-coupling asymptotics at zero
temperature is �

.= π�[1 − exp(−U/π�)] [25]. This ap-
proximation also qualitatively correctly interpolates between
the low and high temperatures [26].

The static thermodynamic susceptibility in this approxima-
tion has a simple, mean-field-like representation:

χT

μ0μ
2
B

= − 2φ(0)

1 + φ(0)�
, (6)

where μ0 is the permeability of vacuum and μB is the Bohr
magneton. We introduce a dimensionless Kondo scale a, the
denominator of the susceptibility that measures the distance
from the critical point at which it would vanish. The equations
for the Kondo scale and the effective interaction � from
Eq. (3) are then

a = 1 + φ(0)�, (7a)

� = 1

2X (1 − a)
[
√

1 + 4(1 − a)UX − 1]. (7b)

We can exclude the variable a from the above equations and
obtain an explicit solution for the dimensionless parameter
ā = 1 − a ∈ (0, 1) as a root of a cubic equations

ā3 + ā

y
= u

y
, (8)

where we introduced dimensionless parameters u = U |φ(0)|
and y = X/|φ(0)|. We transform the cubic equation (8) to a
quadratic one for a new variable w3 by a substitution

ā = w − 1

3yw
. (9a)

The root obeying the correct boundary conditions is

w3 = u

2y

[
1 +

√
1 + 4

27

1

u2y

]
. (9b)

We use the solution for � = ā/|φ(0)| from Eqs. (9) in Eqs. (5)
to close a self-consistent equation for the sum of the integrals
y = y0 + �y. The equations for the two dimensionless param-
eters y0 and �y read

y0 = −
∫ ∞

−∞

dx

π
f (x)Im

[
G(x+)G(−x+)

|φ(0)| + āφ(−x+)

]
, (10a)

�y =
∫ ∞

−∞

dx

π

Re[G(x+)G(−x+)]

sinh (βx)
(10b)

× Im

[
1

|φ(0)| + āφ(−x+)

]
.

These equations can be solved iteratively in ā, starting with
ā = 0 in Eqs. (10). The integrals y0 and �y are then used in
Eq. (9b) from which we determine the new ā from Eq. (9a)
until convergence is reached.

2. Low-frequency asymptotics

We need to evaluate integrals in Eqs. (4) and (5). We use the
low-frequency approximation in calculating the electron-hole
bubble φ(ω+) in the Kondo regime, where the Kondo scale
a = 1 + φ(0)� � 1. We replace 1 + φ(ω±)� ≈ a ∓ iAω/�.
Such an approximation is well justified in the critical region
of a singularity (pole) in the Bethe-Salpeter equation in the
electron-hole channel in Fig. 1.

We denote

g = φ(0) =
∫ ∞

0

dx

π
tanh

(
βx

2

)
Im[G(x+)2] (11)

and use the bare Green’s function G(x+) = 1/(x + i�) to
evaluate the integrals in the definitions of the parameters
to be determined from the reduced parquet equations. We
showed in our previous publications that the unperturbed
Green’s function used in the perturbation expansion gives the
best and qualitatively correct estimate for the Kondo strong-
coupling asymptotics in the SIAM [21,23,25]. The results for
the dimensionless integrals y0 and �y from Eqs. (16) in the
low-frequency approximation 1 + �φ(ω+)

.= a − iωA/� are

y0 = − 1

|g|
∫ ∞

0

dx

π
tanh

(
βx

2

)

× Re[G(x+)2]Ax + Im[G(x+)2]a

a2 + A2x2/�2
, (12a)

and

�y = − 2A

π |g|
∫ ∞

0

dx x

sinh (βx)

Re[G(x+)2]

a2 + A2x2/�2
. (12b)

Here we used the electron-hole symmetry, G(x+) =
−G(−x+) and φ(x+) = φ(−x+).

The expansion parameter of this low-frequency approxi-
mation is

A = (1 − a)β�

2π |g|
∫ ∞

0

dx

cosh2 (βx/2)
|ImG(x+)|2. (13)

These integrals are the input for the self-consistent Eqs. (9).

III. TEMPERATURE BEHAVIOR

The approximation defined by Eqs. (9) and (10) leads to a
Fermi liquid at low temperatures. The Curie-Weiss suscepti-
bility may hence be observed only at higher temperatures. The
full numerical solution of these equations at nonzero temper-
atures is unsuitable for identifying the microscopic origin of
the Curie-Weiss magnetic susceptibility. The integrals to be
evaluated contain trigonometric functions preventing us from
obtaining explicit analytic results. To reach analytic estimates
one has to approximate the integrals with the Fermi and Bose
distribution functions.
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FIG. 3. Exact (solid line) and approximate (dashed line) representations of tanh(βx/2) from Eq. (14a), left panel, coth(βx/2) from
Eq. (14b), right panel, for two temperatures kBT = �, 0.1�, blue and red lines, respectively. The algebraic representation fits the Fermi
and Bose distributions quite well for all temperatures while being quite precise for low and high ones.

A. Approximate spectral integrals

We can use interpolation formulas with linear fractions replacing the spectral functions in the regions of low and high
frequencies. We use the following approximation:∫ ∞

−∞
dx f (x)F (x) =

∫ ∞

0
dx

[
F+(x) − tanh

(
βx

2

)
F−(x)

]

→
∫ ∞

0
dxF+(x) − β

2

∫ 2/β

0
dxxF−(x) −

∫ ∞

2/β

dxF−(x) (14a)

for the Fermi integral, and ∫ ∞

−∞
dxb(x)F (x) = −

∫ ∞

0
dx

[
F+(x) − coth

(
βx

2

)
F−(x)

]

→ −
∫ ∞

0
dxF+(x) + 2

β

∫ 2/β

0

dx

x
F−(x) +

∫ ∞

2/β

dxF−(x) (14b)

for the Bose integrals. We introduced symmetric and antisymmetric functions, F+(x) = 1
2 [F (x) + F (−x)] and F−(x) =

1
2 [F (x) − F (−x)]. These approximate formulas well reproduce the integrals with the Fermi and Bose distribution functions
from low to high temperatures, see Fig. 3.

The explicit approximate analytic expressions for the integrals in Eqs. (11)–(13) are

g
.= − β

2π
arctan

(
2

β�

)
, (15a)

A
.= 1 − a

4π |g|�
[
β� arctan

(
2

β�

)
+ 2β2�2

4 + β2�2

]
, (15b)

y0 = 1

2π |g|(A − a)2

{
A

�
ln

A2(4 + β2�2)

4A2 + β2a2�2
+ βa

[
arctan

(
2

β�

)
− arctan

(
2A

βa�

)]}
(16a)

and

�y = 2A

π |g|�(A2 − a2)

[
A2 + a2

A2 − a2

A

aβ�
arctan

(
A

aβ�

)
− 2A2

A2 − a2

1

β�
arctan

(
1

β�

)
− 1

1 + β2�2

]
. (16b)

The above equations are used to determine the dimensionless Kondo scale by combining Eqs. (9) into a single equation:

(1 − a)3

4

[
1+

√
1 + 4

3y(1 − a)2

]3

= u

y

[
1 +

√
1 + 4

27

1

u2y

]
, (17)

with u = U |g|.
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FIG. 4. Comparison of the exact, Eqs. (12) (blue line), and the
approximate, Eqs. (16) (red line), representations of X0 (upper panel)
and �X (lower panel) for fixed parameters A = 1 and a = 0.1. The
precision of the algebraic approximation of the trigonometric func-
tions increases with decreasing Kondo scale a.

The algebraic approximation for the Fermi and Bose distri-
bution functions used to reach the above analytic expressions
proves to be quite accurate, in particular in the Kondo limit
a � 1 as shown in Fig. 4 for integrals y0 and �y.

We are interested in the low-temperature limit, β� → ∞,
in the strong-coupling regime, a → 0. It follows from the
above expressions that the parameter deciding how this limit
looks like is βa�. We find two asymptotic regimes, βa� →
∞ and βa� → 0 at low temperatures. The former limit leads
to the Fermi liquid, while the latter leads to a magnetic criti-
cality with the Curie-Weiss susceptibility. The Fermi liquid is
recovered for �y � y0 while the Curie-Weiss is recovered for
the opposite limit, �y � y0.

All the two-particle parameters used in this approximation,
A and y, are functions of the Kondo scale a determined at the
end from Eq. (9). Its temperature dependence is decisive for
the determination of the Curie-Weiss behavior. Both the tem-
perature and the Kondo scale must be small. The expressions
for the integrals y0 and �y reduce in the Kondo limit a → 0
and in the leading order of T → 0 to

�y
.= 2

aβ2�2

arctan
(

A
aβ�

)
arctan

(
2

β�

) , (18a)

y0
.= 2

Aβ�

ln
(

A
a

)
arctan

(
2

β�

) . (18b)

They replace Eqs. (16) in the asymptotic Kondo limit.
The logarithm on the right-hand side of Eq. (18b) is re-

sponsible for suppressing the magnetic transition in the SIAM
at zero temperature, the emergence of the exponential Kondo
scale in the magnetic susceptibility, and the narrow central
quasiparticle peak in the spectral function in the strong-
coupling regime.

B. Low-temperature regime

It is evident from Eq. (18a) that the Fermi-liquid regime
corresponds to the low-temperature limit aβ� � A with
A ≈ 1 for β� → ∞. We start with the zero-temperature
solution that reduces in the analytic low-frequency approx-
imation to

g0 = − 1

π�
, (19a)

A0 = 1 − a0, (19b)

y0 = 1

1 − 2a0

[
1 − a0

1 − 2a0
ln

(
1

a0
− 1

)
− 1

]
, (19c)

with the Kondo scale determined from Eq. (17). The sub-
script 0 refers to the values at zero temperature. Solving
these equations in the strong-coupling limit U → ∞, we
recover the Kondo scale a0 = exp(−U/π�). The exact
Bethe-ansatz scale for the Lorentzian density of states is
a = √

U/2� exp(−πU/8�) [36]. Although the nonuniversal
exponential prefactor (depending on the density of states)
π2/8 and the logarithmic correction ln

√
U/2� are not

reproduced, the universal linear dependence of the expo-
nent of the Kondo scale on the interaction strength U is
maintained.

The leading temperature contribution is quadratic, δT =
1/β2�2. We first evaluate the explicit temperature depen-
dence for the fixed self-consistent parameters, g, X = X0 +
�X , A, a, and �. We obtain

δT g = 4

3π

1

β2�3
, (20a)

δT A = − 8�0

3π�

1

β2�2
, (20b)

δT X = −4(�0 − πa�)

3π2�2

1

β2�2a2
, (20c)

with �0 = (1 − a0)π�.
To add the temperature dependence of the self-consistent

parameters we need to evaluate partial derivatives, all taken
at T = 0. We use the derivatives with respect to the Kondo
scale a and the effective interaction �. Parameter A can be
determined explicitly and does not enter the self-consistency
at low temperatures. The derivatives of the X integral are

δX0

δa0
= π�

(�0 − πa�)3

×
[

2�0 ln

(
�0

πa�

)
− (�0 − πa�)2

πa�

]
, (21a)
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δX0

δ�0
= − 1

(�0 − πa�)3

×
[

(�0 + πa�) ln

(
�0

πa�

)
− 2(�0 − πa�)

]
.

(21b)

We will also need the derivatives of the right-hand side of
Eq. (7b) with respect to parameters a and X ,

δ�

δX
= − 1

X0

U − �0√
1 + 4(1 − a0)UX0

, (22a)

δ�

δa
= − X0

1 − a0

δ�

δX
. (22b)

The total temperature variations of A and the Kondo scale a
are fully determined by the non-self-consistent temperature
dependence from Eqs. (20) and the variation of the effective
interaction δ�,

δA = − 8�0

3π�

1

β2�2
+ 1

π�
δ�, (23)

δa = �0δT g + g0δ�. (24)

We determine the variation of the effective interaction by
putting together the above partial derivatives. The result is{

1 − δ�

δX

[
δX0

δ�0
− 1

π�

(
δX0

δa0
− X0

1 − a0

)]}
δ�

= δ�

δX

[
δT X + �0

(
δX0

δa0
− X0

1 − a0

)
δT g

]
. (25)

The temperature variation of the effective interaction is
positive; that is, it increases with temperature and the renor-
malization of the bare interaction decreases. In the Kondo
strong-coupling limit U → ∞ with a → 0 we obtain

δ� = 4π

3�
eU/π� k2

BT 2. (26)

The effective interaction is, however, not a strictly monotonic
function of temperature. Its slope changes around the Kondo
temperature at which the thermal fluctuations start to domi-
nate and the low-temperature Fermi-liquid behavior goes over
to the Curie-Weiss regime [26].

C. Curie-Weiss regime

The dominant thermal fluctuations contributing to the
renormalization of the bare interaction are due to the integral
�X . They start to control the approximation above the Kondo
temperature at which X0 = �X . The magnetic susceptibility
may take the form of the Curie-Weiss law only if βa� � 1
and simultaneously β� � 1. If we use a dimensionless pa-
rameter

α = 1

2

[
β�

2
arctan

(
2

β�

)
+ β2�2

4 + β2�2

]
, (27)

then A = �α/π� and the X integrals in this limit are

X0 = 1

�α
ln

(
�α

πa�

)
, (28a)

FIG. 5. The Kondo dimensionless scale a calculated from
Eq. (7a), blue line, and from the asymptotic formula in the Curie-
Weiss regime, Eq. (35), red line, for two values of the interaction
strength. Linear temperature dependence sets in only on a small
temperature interval and for strong electron repulsion.

�X = 2

πβa�2
arctan

(
�α

πβa�2

)
. (28b)

Assuming further that

α

π

�

�
� aβ�, (29)

we obtain

X = X0 + �X = 1

�α
ln

(
�α

πa�

)
+ 1

aβ�2
. (30)

The equations for the effective interaction and the Kondo
scale a � 1 reduce to

� =
√

U

X
, (31)

1 = Ug2

X
. (32)

We determine X and � from the above equations and are left
with a single equation for the Kondo scale

Ug2 = |g|
α

ln

(
α

a|g|�
)

+ 1

βa�2
. (33)
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The second term on the right-hand side of this equation should
dominate the first one to reach the Curie-Weiss regime. That
is,

|g|
α

ln

(
α

a|g|�
)

� 1

βa�2
= Ug2. (34)

The solution for the small Kondo scale in the Curie-Weiss
regime then is

a = kBT

Ug2�2
. (35)

The conditions to be fulfilled to reach the Curie-Weiss
regime are Eqs. (29) and (34). Inserting the solution for
the Kondo scale into Eq. (29) we obtain an upper order-of-
magnitude bound on temperature

kBT � 1

π
Uα|g|. (36)

We obtain the lower temperature bound for the Curie-Weiss
regime from Eq. (34) by using the solution for the Kondo scale
from Eq. (35),

kBT � 1

π
Uα|g|�e−U |g|α. (37)

Next, we have to satisfy the condition for criticality in the
Kondo regime, a → 0. The Kondo scale from quantum (zero-
temperature) fluctuations and integral X0 should be very small

a > aQ = α

|g|�e−U |g|α � 1. (38)

It sets the lower bound on the Kondo scale at nonzero temper-
atures. It is small only in strong coupling when the exponent
on the right-hand side is sufficiently big, namely,

U � UL = 1

|g|α ln

(
α

|g|�
)

. (39)

The boundaries for the linear temperature dependence of the
Kondo scale a restrict the Curie-Weiss region to a rather
narrow interval and for very strong interactions as shown
in Fig. 5. The lower bound UL on the interaction strength
increases significantly with increasing temperature as shown
in Fig. 6.

The magnetic susceptibility is directly connected to the
Kondo scale a, Eq. (6),

χT

μ0μ
2
B

= 2|g|
a

= 2|g|3�2

kBT
U . (40)

Combining this representation with the solution for the Kondo
scale from Eq. (35), we obtain an equation for the effective
Curie constant

C = U |g|3�2

kB
. (41)

The Curie-Weiss law becomes pronounced if the Curie
constant is only weakly dependent on temperature. It is

FIG. 6. The lower bound on the interaction strength above which
we can expect the Curie-Weiss magnetic susceptibility as defined
on the left-hand side of Eq. (39). The bound increases fast with the
increasing temperature.

when

T

C

dC

dT
= 2T

g

dg

dT
= 1

arctan
(

2
β�

)
×

[
arctan

(
2

β�

)
− 2β�

β2�2 + 4

]
� 1. (42)

It leads to an upper bound on temperature that at low tem-
peratures is kBT � �

√
3/8 below which we can observe the

Curie-Weiss behavior. It is a stronger upper bound on the va-
lidity of the Curie-Weiss susceptibility than that from Eq. (36).

The full estimate for the low-temperature behavior of the
magnetic susceptibility above the Kondo temperature and in
the region of the Curie-Weiss linear response is

χT

μ0μ
2
B

=
Uβ3�2

4π3kB
arctan3

(
2

β�

)
T + β2�2

4π2kB
arctan2

(
2

β�

)
Ue−U/π�

, (43)

where we shifted the origin of the linear temperature depen-
dence to the Kondo temperature to get a better fit for the
behavior close to the Kondo temperature.

The lower bound for the validity of the Curie-Weiss law
is the Kondo temperature TK defined from equality of quan-
tum and thermal fluctuations expressed by an equation �X =
X0 [26]. The magnetic susceptibility is then well approxi-
mated by the Curie-Weiss law if �X � X0, which sets the
lower temperature bound. The order-of-magnitude tempera-
ture bounds on the validity of the Curie-Weiss law in the
SIAM are √

3

2

�

2
� kBT � U

π2
e−U/π�. (44)

The Curie-Weiss susceptibility exists only in strongly cor-
related systems and sufficiently above the Kondo temperature
but still at low temperatures, small fractions of the bandwidth,
as demonstrated in Fig. 7. We can see a very good agreement
of the asymptotic expression from Eq. (43) and the full nu-
merical solution for interactions U > 20�. Although we may
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FIG. 7. The inverse magnetic susceptibility calculated from the
exact formula, Eq. (6) (solid lines), and from the asymptotic form,
Eq. (43) (dashed lines), for two values of the interaction strength,
U/� = 20, 60, blue and red lines, respectively. The inset shows the
temperature dependence of the ratio of the Curie constants C/C0.

observe almost linear temperature dependence of the inverse
susceptibility also at rather high temperatures, its origin there
is no longer in the critical behavior of the magnetic transition
at which the Kondo scale vanishes, a = 0.

D. High-temperature regime

The Curie-Weiss regime realizes on a temperature inter-
val sufficiently above the Kondo temperature and sufficiently
below the temperature corresponding to the bandwidth. We
know that for any finite interaction strength U the high-
temperature limit of the magnetic susceptibility is in our units
χ

.= β/2 [37]. This high-temperature asymptotics does not
correspond to the Curie-Weiss susceptibility in Eq. (6) that
has the high-temperature asymptotics β → 0,

χT

μ0μ
2
B

.= β4

32
U�2. (45)

It means that there is a crossover from the Curie-Weiss
linear dependence of the inverse susceptibility to the high-
temperature linear dependence. The crossover depends on the
interaction strength. Equation (45) holds only in the Kondo
regime with a � 1. It poses a restriction on the interaction
strength that for high temperature (β → 0) is from Eq. (35)

U � 16

�2
(kBT )3. (46)

The crossover temperature from intermediate to high-
temperature regimes is

TH = 1

2kB

3

√
U�2

2
. (47)

The Curie-Weiss regime breaks down before this crossover
temperature is reached.

FIG. 8. The controlling parameter aβ� decisive for setting the
temperature regime. The Fermi-liquid sets for aβ� � 1, while the
Curie-Weiss for aβ� � 1. The full solution (solid lines) and the
asymptotic solution from Eq. (35) (dashed lines) are compared for
two interaction strengths U = 60� (red curves) and U = 100�

(black curves).

The high-temperature asymptotics of the magnetic suscep-
tibility in the strong-coupling regime can now be assessed by
using the crossover temperature TH ,

χT

μ0μ
2
B

= 1

2kBT

(TH

T

)3

for T < TH , (48a)

χT

μ0μ
2
B

= 1

2kBT
for T > TH . (48b)

The crossover temperature has a similar effect as the Kondo
temperature on the opposite temperature scale. The high-
temperature asymptotics of the susceptibility decreases as T −4

up to the crossover temperature TH above which it decreases
as T −1.

IV. RELIABILITY AND QUANTITATIVE ACCURACY OF
THE APPROXIMATE SOLUTION OF THE SIAM

The three temperature regimes in the SIAM were derived
within the reduced two-channel parquet equations in which
we neglected noncritical fluctuations in the strong-coupling
Kondo regime. This regime is determined by the asymptoti-
cally vanishing dimensionless scale a = 1 + �φ(0). It means
that the approximation that we used is justified and quali-
tatively reliable in the critical region a � 1. This regime is
reached in the SIAM only in the strong-coupling regime U →
∞ and at very low temperatures kBT/� � 1. The parameter
deciding which temperature regime sets in is aβ�. We set
approximate bounds for each of the temperature regimes in
the SIAM from the estimates of the behavior of this parameter.
We used further approximations to derive the analytic formu-
las for the Kondo scale a, the effective interaction � and the
thermodynamic susceptibility χT .

Our analytic approximation allowed us to disclose the
mechanism for the emergence of the Curie-Weiss law in the
magnetic susceptibility even in the SIAM where this behavior
was overlooked. It was mostly due to the fact that the ad-
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FIG. 9. Comparison of the two integrals y0 and �y calculated
from the asymptotic solution, Eq. (16) for U = 100� in the linear
scale (upper panel), and log-log scale (lower panel). The Curie-Weiss
regime sets in for �y � y0.

vanced nonperturbative solutions at nonzero temperatures are
purely numerical from which we cannot derive criteria for the
existence of the Curie-Weiss law. Moreover, the Curie-Weiss
regime sets in only for extremely strong interactions that were
out of interest and were not studied. Nevertheless, one should
test the validity of the assumptions used in the approximate
Curie-Weiss behavior.

The Curie-Weiss regime is characterized by a linear de-
pendence of the Kondo scale a on temperature T . It is
expressed by Eq. (35). This behavior was derived with two
assumptions, aβ� � 1 and �y � y0. We plotted in Fig. 8
the temperature dependence of the controlling parameter aβ�

for two interaction strengths, U = 60�, 100�. Both the full
and the asymptotic solution coincide around kBT ≈ 0.1�.
The higher the interaction, the smaller the parameter and the
broader the interval on which the full and asymptotic solutions
coincide.

The other criterion for the existence of the Curie-Weiss law
is the dominance of the thermal fluctuations represented by
integral �y over the quantum ones in integral y0. We plotted
the two integrals in linear and log-log scales in Fig. 9. The
figure confirms that �y � y0 around kBT ≈ 0.1�.

FIG. 10. Thermodynamic parameter T χT demonstrating the
transition from the high-temperature to the Curie-Weiss regime for
interaction strengths U = 20�, 60�, 100�, blue, red, and black
lines.

These test criteria are internal ones using the parameters
introduced in our solution and cannot be checked indepen-
dently by other approaches. We plotted a thermodynamic
quantity T χT available from the exact Bethe-ansatz solution
[38] and the Monte Carlo simulations [39] for intermedi-
ate interaction strengths. The output of our approximation is
plotted in Fig. 10 for interactions strengths U = 20�, 60�,
100�. The Curie-Weiss behavior is indicated by a plateau at
low temperatures, determining the effective Curie constant C
from Eq. (41). The parameter falls down to zero below the
Kondo temperature. We can see only a marginal temperature
dependence of the Curie constant around kBT ≈ 0.1� where
the Kondo scale depends linearly on temperature. The Fermi-
liquid regime sets in for much lower temperatures beyond the
plotted region.

Neither Bethe-ansatz nor quantum Monte Carlo (QMC)
simulations are available for the interaction strengths of order
U ≈ 50�. We hence performed our own simulations using the
TRIQS/CTHYB 2.2.0 continuous-time, hybridization expansion
quantum Monte Carlo solver [40] to calculate the temper-
ature dependence of the susceptibility. We used a constant
tunneling density of states �(ω) = �(W 2 − ω2)/(2W ) with
a half-bandwidth W = 100�. The results depend only weakly
on the bandwidth (less than 2% difference between W =
100� and W = 1000�). The static susceptibility was calcu-
lated by integration of the dynamical susceptibility χ (τ ) =
μ0μ

2
B〈m(τ )m(0)〉 where m = n↑ − n↓. The calculation of

each data point was performed on a 32-core computer, per-
forming 107 measurements per core with a sweep size of 1000
Monte Carlo steps between measurements to minimize the
autocorrelation effects. The results for U = 10�, 20�, 60�

are plotted in Fig. 11. We can see that the plateau starts
to form for U > 20� and the stronger the interaction the
broader and flatter the plateau is. The predicted Curie-Weiss
law in the SIAM by an analytic approach is thus confirmed
by numerical QMC simulations. The simulations indicate that
our analytic estimates for the interval on which the Curie-
Weiss law holds are too conservative. Notice that the QMC
simulations start showing tangible statistical errors at low
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FIG. 11. CT-HYB QMC data (symbols with error bars) for T χ .
The solid lines are a spline fit of the CT-HYB data and serve only
as a guide for the eye. The simulations confirm the emergence of the
Curie-Weiss law in the magnetic susceptibility for sufficiently strong
electron interactions, U > 20�, over a broader temperature interval
than predicted analytically.

temperatures and they cannot reach the Fermi-liquid regime
in the strong-coupling limit.

The temperature dependence of T χT in the approximate
analytic solution and the QMC data are qualitatively simi-
lar. The most visible difference is, however, the height of
the low-temperature plateau, or the numerical value of the
Curie constant. It is not so surprising, since this parameter
is noncritical and does not scale with the vanishing pa-
rameter a. We used the bare propagators to determine the
Curie constant, Eq. (41). The bare propagators are good
for determining the universal critical behavior but must be
renormalized by a dynamical spin-symmetric self-energy to
improve upon quantitative estimates of noncritical quanti-
ties. The dynamical or spectral self-energy is determined
from the Schwinger-Dyson equation where various degrees
of one-particle self-consistency can be used [25]. The next
quantitative improvement will be achieved by considering a
nontrivial dependence of the irreducible vertex � as well as
the fully irreducible vertex on fermionic frequencies. This
turns the algebraic equation determining the critical behavior
integral with the necessity to diagonalize the integral kernel
of the Bethe-Salpeter equation for the reducible vertex K.
The latter step goes beyond the mean-field character of the
proposed analytic approximation.

The value of the noncritical quantity T χT is then sensi-
tive to the renormalization of the one-electron propagators
we used to determine the susceptibility. If we choose a self-
energy �(ω+) to renormalize the thermodynamic propagator
and keep the irreducible vertex � frequency independent, the
magnetic susceptibility will be [25]

χ = (
2 + �χT

) ∫ ∞

−∞

dx

π
f (x)Im[G(x+ − �(x+))2]

= −2

a

∫ ∞

−∞

dx

π
f (x)Im[G(x+ − �(x+))2]. (49)

The dynamical self-energy is determined from the
Schwinger-Dyson equation in the spin-symmetric sector not

FIG. 12. Thermodynamic parameter T χ calculated from Eq. (6),
dashed line, and with the susceptibility from Eq. (49) renormalized
by the self-energy from the lowest order in Eq. (50), solid line,
for U = 60�. The value of the Curie constant was significantly
decreased and became less temperature sensitive. It is closer to the
value from the QMC simulations at low temperatures but misses the
crossover from intermediate to high-temperature asymptotics.

to affect the magnetic critical behavior derived with the
thermodynamic propagators. Its form with the frequency-
independent irreducible vertex � is [25]

�(ω+) = U�

∫ ∞

−∞

dx

π

{
f (x + ω)

φ(x−)

1 + �φ(x−)
ImG(x + ω+)

− b(x)G(x + ω+)Im

[
φ(x+)

1 + �φ(x+)

]}
. (50)

We used the lowest-order contribution in � to this self-
energy to check the dependence of parameter T χ on the
dynamical corrections of the one-particle propagators. Its tem-
perature dependence is plotted in Fig. 12. The Curie constant
is closer to the value obtained from the QMC simulations
and it becomes also less temperature dependent than the one
calculated from χT with the bare propagators. It misses, how-
ever, to reproduce the correlation-induced crossover downfall
from intermediate to high temperatures. It means that the
renormalization of the susceptibility with the lowest-order
self-energy from Eq. (51) falls into the weak-coupling regime
at intermediate temperatures before the high-temperature
asymptotics sets in. Adding more terms to the self-energy
in the Schwinger-Dyson equation decreases the value of the
Curie constant even more. It is hence difficult to find the ap-
propriate renormalization of the vertex function and the self-
energy to simulate quantitatively accurately the behavior of
thermodynamic quantities in the whole range of temperatures.
Dynamical corrections to the irreducible vertex � have to be
taken into account.

V. EXTENDED SYSTEMS

The reduced parquet approximation can straightforwardly
be extended to lattice systems. The dynamics of the two-
particle functions is then determined not only by frequency
but also by momentum fluctuations. That is, the dynami-
cal variable in the two-particle integrals changes from ω
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to (q, ω). The Kondo scale becomes momentum dependent,
a → a(q) = a + �Dq2, the electron-hole bubble goes over
to φ(ω) → φ(q, ω), and the denominator of the low-energy
asymptotics of the dynamical susceptibility transforms to 1 +
�φ(ω) → 1 + �φ(q, ω)

.= a + �Dq2 − i�Aω/�, where �

is an effective bandwidth. The integral renormalizing the bare
interaction goes over to

X ∝ φ2
0Sd

∫ 2/l0

0

dq

(2π )d
qd−1

∫ 2t

−2t

dω

π
b(ω)Im

×
[

1

a + �Dq2 − iπ�Aω

]
, (51)

where φ0 = φ(0, 0) and Sd is the surface of the d-dimensional
unit sphere. We used cutoffs for this low-energy asymp-
totic formula with t being the hopping amplitude on the
d-dimensional hypercubic lattice and 1/l0 is an appropriate
cutoff on the momentum integration. The momentum integral
changes the low-temperature dependence and magnetic tran-
sitions with a = 0 at nonzero temperatures may occur only
if integral X is finite, which happens in dimensions d > 2.
The Curie-Weiss behavior can be observed on an interval of
temperatures on which the effective Curie constant C does not
change much from its value at the critical point. The Kondo
scale in extended systems is inversely proportional to the spa-
tial correlation length ξ , a = �2/ξ 2. The critical behavior of
the extended systems is compatible with the Mermin-Wagner
theorem [41]. No long-range order exists for dimensions
d = 1, 2 at nonzero temperatures, since integral X is lin-
early and logarithmically divergent for a = 0. This makes the
reduced parquet equations a suitable and affordable approxi-
mation for studying qualitative behavior in the critical region
of instabilities in realistic systems with strongly correlated
electrons.

VI. CONCLUSIONS

There is no transition to the magnetic state in the SIAM
with a = 0 and that is why the Curie-Weiss law holds only
for extremely strong interaction strengths, above the Kondo
temperature, and beyond the Fermi-liquid regime. It is also
the reason why the Curie-Weiss law has not yet been demon-
strated in the SIAM. The strong-coupling Kondo limit of the
SIAM is, however, a paradigm for the explanation of the
Curie-Weiss magnetic response in metals. Our analysis has
therefore a general significance beyond the impurity models.
We can draw general conclusions if we appropriately interpret
the scales used in the SIAM. The Kondo scale is generalized to
ac = (T − Tc)/TF , where Tc is the magnetic critical and TF the
Fermi temperature. Further on, the effective bandwidth � ∼
kBTF and A ∼ �πρF with ρF being the local density of states
at the Fermi energy. The critical magnetic response in metallic
systems is controlled by the generalized Kondo scale ac. The
smaller the ratio Tc/TF the longer is the temperature interval
with the Curie-Weiss susceptibility above the critical temper-
ature. The Curie constant C is proportional to the bare interac-
tion U while the critical temperature Tc is proportional to the
renormalized vertex �. The Curie-Weiss behavior in metallic
systems is hence most pronounced for broad-band systems
with strong and significantly screened electron interactions.
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