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Odd fracton theories, proximate orders, and parton constructions
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The Lieb-Schultz-Mattis (LSM) theorem implies that gapped phases of matter must satisfy nontrivial condi-
tions on their low-energy properties when a combination of lattice translation and U (1) symmetry are imposed.
We describe a framework to characterize the action of symmetry on fractons and other subdimensional fractional
excitations, and use this together with the LSM theorem to establish that X-cube fracton order can occur only
at integer or half-odd-integer filling. Using explicit parton constructions, we demonstrate that “odd” versions of
X-cube fracton order can occur in systems at half-odd-integer filling, generalizing the notion of odd Z2 gauge
theory to the fracton setting. At half-odd-integer filling, exiting the X-cube phase by condensing fractional
quasiparticles leads to symmetry breaking, thereby allowing us to identify a class of conventionally ordered
phases proximate to phases with fracton order. We leverage a dual description of one of these ordered phases to
show that its topological defects naturally have restricted mobility. Condensing pairs of these defects then leads
to a fracton phase, whose excitations inherit these mobility restrictions.
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I. INTRODUCTION

A central goal of condensed matter physics is to understand
the low-temperature phase structure of interacting quantum
many-body systems. Historically, this study centered on de-
lineating ordered phases based on their distinct symmetry
properties. However, over the past three decades, an important
parallel strand of activity has emerged that focuses instead on
more subtle distinctions between quantum-disordered phases
that lack the conventional notion of a local order parameter.
Such phases are said to be topologically ordered [1–4] when
they exhibit fractionalized quasiparticle excitations, which, as
exemplified by the fractional quantum Hall effect, can have
sharp signatures in experiments.

Despite the rapid progress made in understanding
quantum-disordered phases in recent years, the field still holds
unexpected surprises that can motivate fundamentally new in-
sights and ideas, as well as stimulate the development of new
theoretical techniques. A case in point is the identification of a
class of fractionalized phases that exhibit emergent “fracton”
quasiparticles with limited mobility [5–11]. An individual
fracton excitation cannot move by itself but can move in
certain bound states, as dictated by the presence of emergent
higher moment conservation laws [9,12–14]. Additionally,
many systems that give rise to fractons also host “subdi-
mensional” particles which are only free to move in certain
directions. This distinguishes fractons from quasiparticle exci-
tations of conventional topological orders, that suffer no such
restrictions, and indicates that the emergent low-energy theory
of these models cannot be completely captured by standard
topological quantum field theories.

While fracton phases are now being explored from many
different points of view [15–25], there is a need for more

clues on how to search for fracton order in experimentally
relevant systems. In part, this is because most fracton models
are designed to be exactly solvable or nearly so, and thus
should not be expected to offer insight into whether a fracton
phase can emerge at low energy in a conventional system
of electrons, spins, or bosons. This is to be contrasted with
the relatively mature understanding—especially via so-called
parton constructions—of how such systems can in principle
give rise to topologically ordered spin liquid states [26]. We
note that in Ref. [27] parton constructions for certain exactly
solvable fracton models were introduced but not used as a tool
to study the emergence of fracton phases in generic models.

We may make progress toward this goal by studying the
emergence of fracton theories as long-wavelength effective
descriptions of spin systems with local Hamiltonians. This can
also help to identify more conventional ordered phases that
are naturally proximate to fracton phases within a specified
parameter space. Experimental searches can then focus on
classes of materials whose local energetics favor these prox-
imate orders. Since they are typically equipped with a local
order parameter, this is an easier task than directly engineering
a fracton phase. Tuning parameters of the system could then
enhance the effect of fluctuations to drive a transition into a
fracton phase. Such ideas have, for example, identified prox-
imity to a Mott transition as one physical mechanism that can
seed spin liquid behavior [28,29]. Moreover, there is evidence
in the Heisenberg antiferromagnet on the kagome lattice for a
valence-bond ordered phase adjacent to the possible quantum
spin liquid phase [30]. Along similar lines, we also note that
in various simplified models of frustration, such as quantum
dimer models, bond-ordered phases do indeed flank topolog-
ically ordered ones in the phase diagram. For example, the
triangular latttice quantum dimer model furnished an early
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example of a quantum spin liquid phase (as opposed to a
critical point), which appeared as an intervening phase be-
tween staggered and columnar dimer crystals, which are bond
ordered [31]. Here, we take the first steps toward developing
a similar understanding of fracton physics.

For some types of fracton models, the relevant proxi-
mate phases may simply be paramagnets—defined as gapped
quantum-disordered states with no broken symmetries or
fractionalized quasiparticles. In such situations, we obtain
little experimental guidance. However, in other cases, we
are aided by the Lieb-Schultz-Mattis (LSM) theorem, which
guarantees that gapped systems at certain filling fractions
are required to exhibit some nontrivial form of ordering
[32–34]. More specifically, the LSM theorem tells us that, if
a system at fractional filling is gapped and does not exhibit
symmetry-breaking order, it must possess a robust ground-
state degeneracy, which is one of the signature characteristics
of a fractionalized phase. Systems at fractional filling thereby
provide an ideal setting in which to seek experimental realiza-
tions of fracton phases and their proximate ordered phases.

In this work, we derive LSM constraints on a class of
gapped fracton phases, and use this to analyze the possi-
ble fractonic phases of lattice models with XY spin rotation
and translational symmetry. [In other words, we consider
translation-invariant local bosonic lattice systems with a
global U (1) conserved charge.] It is worth clarifying what we
mean by this at the very outset, in order to place this work
in the context of recent related results. Several recent works
[35,36] have also considered LSM-like constraints on fracton
models. However, these authors focused on additional LSM-
like constraints that can be derived assuming the existence of
an additional set of subsystem symmetries. In contrast, here we
consider the minimal set of LSM constraints requiring only
translational and global U (1) conservation, which are phys-
ically relevant to a much larger class of lattice spin systems
without requiring fine-tuning (in contrast to subsystem sym-
metries). As with more familiar topological phases [37,38],
the LSM theorem leads to consistency conditions on what
types of fracton phases can be realized at a particular filling.
However, as we argue below, the conventional flux-insertion
arguments that lead to LSM constraints fail in the fracton
case, motivating a more sophisticated approach that draws on
ideas developed in the context of topologically ordered phases
“enriched” by symmetry, the so-called symmetry enriched
topological (SET) phases.

For concreteness, we focus primarily on variants of the
Z2 fracton order realized in the X-cube model [8], which
can be understood as a type of Z2 symmetric tensor gauge
theory [13,14]. The X-cube model contains a variety of emer-
gent quasiparticles of restricted mobility, including immobile
fractons, “planon” composites of two fractons that move in
two-dimensional planes, and “lineon” particles restricted to
move along certain lines. We begin in Sec. II by demonstrating
that, like ordinary Z2 topological order, X-cube fracton order
can only be realized at integer or half-odd-integer fillings. In
order to establish this result, we introduce a framework to
describe the action of symmetry on the point-like restricted-
mobility excitations of fracton phases. We show that the
commonly studied “even” version of X-cube order cannot
be consistently realized at half-odd-integer filling. Rather, a

system at half-odd-integer filling can only exhibit one of sev-
eral “odd” varieties of X-cube fracton order. In Sec. III, we
present a detailed formulation of these odd X-cube theories,
which are characterized by a uniform background density of
one of the species of emergent quasiparticles. All nontrivial
quasiparticles of these theories carry a fractionalized symme-
try quantum number, ensuring that any phase obtained via
condensation of quasiparticles will feature some form of sym-
metry breaking, as required by the LSM theorem. In Sec. IV,
we provide explicit parton constructions for the odd X-cube
theories to demonstrate how they can arise at a microscopic
level in models with a spin-1/2 site Hilbert space and local
interactions. This also demonstrates the inconsistency of the
even (odd) fracton theories in models with an odd (even)
number of spins 1/2 per unit cell.

In the remaining sections, we explore connections be-
tween the odd X-cube model and other phases of matter, both
through duality arguments and via an analysis of condensa-
tion transitions. In Sec. V, we construct dualities between
odd X-cube theories and various frustrated Ising models. We
first generalize the plaquette Ising duality of the even X-cube
model to its odd counterpart. The corresponding dual of the
odd X-cube model is a frustrated version of the plaquette
Ising model, with flipped signs on certain plaquette terms in
the Hamiltonian. We also construct a multispin Ising dual-
ity for both even and odd X-cube theories. In Sec. VI, we
then consider various ordered phases which can be obtained
from the odd X-cube theory via condensation of its emergent
quasiparticles. For example, one odd theory can give rise to
a plaquette-ordered phase upon quasiparticle condensation.
We then discuss the converse question of how this plaquette-
ordered phase can be driven back into the X-cube phase via
condensation of double vortices. Another odd X-cube the-
ory is proximate to a type of bond order. This identification
of proximate ordered phases provides important hints in the
search for fracton phases in experimental settings. Finally, in
Sec. VII, we summarize and discuss some open questions,
such as the extension of these concepts to other types of
fracton order.

II. FILLING CONSTRAINTS ON FRACTON THEORIES

A. Flux insertion and LSM constraints on conventional
topological orders

The LSM theorem and its various generalizations are
rooted in the idea of flux insertion. The basic idea is to
consider a finite system with periodic boundary conditions
and examine how the crystal momentum (or other symmetry
quantum number) of the ground state of the system changes as
a quantum of U (1) flux is threaded through a noncontractible
loop of the system. This quantity is insensitive to most mi-
croscopic details and depends only on the filling [U (1) charge
per unit cell] and the system size in the direction that encircles
the threaded flux. Any putative long-wavelength, low-energy
description of the system must be consistent with this “sym-
metry inflow” (in the thermodynamic limit) and is therefore
highly constrained.

As an example, consider a system of N charge-1 particles
(either bosons or fermions) on an Lx-by-Ly square lattice,
wrapped into a cylinder along the Lx direction. We then
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FIG. 1. We consider a system in a cylindrical geometry, in which
a flux � is threaded through the hole of the cylinder. By studying the
resulting change in momentum as a function of filling, we obtain
restrictions on the corresponding phase of matter. Figure adapted
from Ref. [37].

adiabatically1 insert a magnetic flux of 2π through the hole
of the cylinder, as depicted in Fig. 1, with the flux �(t ) slowly
ramping up from 0 to 2π . By Faraday’s law, the electric field
along the x direction of the lattice is given by

Ex = 1

Lx

d�

dt
(1)

and the total momentum imparted to the system is given by

�Px = N
∫

dt
1

Lx

d�

dt
= −2π

Lx
N. (2)

It is now useful to rewrite this equation using the filling
fraction, ν = N/LxLy, in terms of which we have

�Px = 2πνLy. (3)

(Note that we are free to choose N to be a multiple of Lx, so
that the total charge remains an integer, as it must.) A similar
result holds for �Py if the system is wrapped into a cylinder
along the Ly direction.

If we assume that the system has an energy gap and a
unique ground state, then such a flux-insertion process should
leave the ground state invariant. This is consistent only if �Px

is a multiple of 2π (since crystal momentum is defined mod

1Technically speaking this should be a quasiadiabatic insertion, but
we will not dwell on this subtlety here; see Refs. [33,39,40] for
details.

2π ). In other words, a unique ground state is consistent only
if νLy is an integer. When the filling ν is itself an integer, this
condition is always satisfied. For fractional fillings, however,
a unique ground state is only allowed at certain values of Ly.
This indicates that, in the thermodynamic limit, the system
must either have degenerate ground states or the assumption
of an energy gap must be false. In the former case, this degen-
eracy can arise either from spontaneous symmetry breaking
or (in d > 1) from topological order. If a system at fractional
filling is known to be both gapped and symmetric, then the
only remaining possibility is a topologically ordered phase.

In addition to dictating when a system must exhibit topo-
logical order, this flux-insertion argument can also constrain
the types of topological order which can occur at particu-
lar fillings [37,38]. For instance, consider a system at filling
ν = p/q, with p and q relatively prime integers. Choosing Lx

divisible by q (so that the total charge is an integer) and Ly

relatively prime to q, the flux-insertion argument implies the
existence of q degenerate ground states, with crystal momenta
differing by multiples of �Px = 2πνLy. In fact, because the
adiabatic flux insertion is unitary, it follows that the total
ground-state degeneracy is divisible by q, because the sub-
space of ground states at a fixed crystal momentum Px is
unitarily mapped to a corresponding subspace with crystal
momentum Px + �Px. This constrains which topological or-
ders can occur in principle at filling ν = p/q.

There are also other types of constraints originating from
the LSM theorem. To illustrate this, recall that a two-
dimensional (2D) Z2 gauge theory has three types of gapped
quasiparticle excitations: bosonic electric charges (e), mag-
netic fluxes (m), and their fermionic bound state (ε ≡ e × m).
Suppose we consider a system at half-filling, where a non-
trivial LSM constraint holds, and choose the e particles to
carry the fractionalized U (1) charge of the theory and the
m particles to be charge neutral. If the m particles do not
carry any other nontrivial quantum numbers, then condensing
them would lead to a trivial symmetric gapped phase, which
is not possible at half-filling. We therefore conclude that the m
particles must carry some fractional quantum number. While
by assumption they do not carry the U (1) charge of the theory,
it is possible for excitations to carry fractional crystal momen-
tum [41,42], and this is the only remaining possibility.

The condition that the m particles carry fractional crystal
momentum has consequences for the form of the effective
pure Z2 gauge theory that describes the physics below the gap
to electrically charged e excitations. Specifically, this gauge
theory is of the “odd” variety [43], meaning there is a back-
ground Z2 charge on every site of the lattice. We illustrate this
on the square lattice, where the Z2 gauge degrees of freedom
are spin-1/2 spins on nearest-neighbor links labeled by �,
subject to the Gauss law constraint

Av ≡
∏
�∈+v

σ z
� = −1. (4)

Here, v is a vertex of the square lattice, and the product of σ z
�

Pauli operators is over the four links adjacent to v. The “−1”
on the right-hand side of Eq. (4) indicates the presence of a
background “electric” Z2 gauge charge on the vertex v. An
exactly solvable Hamiltonian for the deconfined phase of the
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odd Z2 gauge theory is

Hodd-gauge = −
∑

p

Bp, (5)

where the sum is over plaquettes p and Bp = ∏
�∈�p

σ x
� .

The odd Z2 gauge theory with Hamiltonian Hgauge is closely
related to the “odd toric code” Hamiltonian

HTC,o =
∑

v

Av −
∑

p

Bp. (6)

Here again spin-1/2 spins reside on each link of the square
lattice, with Av and Bp defined as above. Unlike the odd-Z2

gauge theory, no local constraint is imposed on the Hilbert
space. However, if we project to the subspace where Av = −1,
which minimizes the first term in the Hamiltonian, then the
odd toric code becomes equivalent to the odd-Z2 gauge theory.

The Av = −1 background charge implies that an m particle
picks up a minus sign upon going around a single vertex. In
other words, if we define T (m)

x and T (m)
y as the operators which

translate a single localized m particle by one lattice constant
in the x and y directions, respectively, we have

T (m)
x T (m)

y

[
T (m)

x

]−1[
T (m)

y

]−1 = −1. (7)

The fact that the m particles transform projectively under
translations is what it means for the crystal momentum to
be fractional. Upon condensation of the m particles, this frac-
tionalized momentum will cause the system to develop some
type of spatial order. One likely possibility is a valence bond
solid state, in which translation and rotation symmetries are
both broken. In this way, the odd nature of the Z2 gauge
theory description rescues the system from violating the LSM
theorem.

B. LSM constraints on fracton orders

1. Review of X-cube model

We have reviewed how the LSM theorem places a set of
restrictions on topologically ordered phases. We now discuss
analogous constraints for fracton orders, focusing on the so-
called X-cube fracton order, realized in the exactly solvable
X-cube model [8]. This is a model of spin-1/2 spins on the
links of the simple cubic lattice, with the Hamiltonian a sum
of commuting terms given by

HX,e = −
∑
vμ

Av
μ −

∑
c

Bc. (8)

(The notation differs slightly from that of Ref. [8].) The last
term represents a sum over all cubes of the lattice, where Bc is
defined as a product of the 12 σ x

� ’s on the boundary of a cube:

Bc =
∏
�∈∂c

σ x
� . (9)

In the first term, the sum on v runs over all vertices, while the
sum on μ runs over the three Cartesian coordinate directions
x, y, and z. Each Av

μ term involves only the four coplanar links
lying in the plane orthogonal to μ, out of the six total links
touching v. For example, Av

z is a product over the four links in

FIG. 2. The Hamiltonian of the X-cube model contains two types
of terms: (left panel) a product Bc of σ x

� over the 12 links in the
boundary of a cube c and (right panel) products Av

μ over four coplanar
spins touching each vertex v, shown for μ = z.

the xy plane touching v:

Av
z =

∏
�∈+xy,v

σ z
� . (10)

Note that the three Av
μ operators on a given vertex obey the

important relation

Av
x Av

y = Av
z . (11)

The terms of the Hamiltonian are illustrated in Fig. 2.
Ground states of the X-cube model are eigenstates of all the

Av
μ and Bc operators, with eigenvalue +1. (For an explicit de-

scription of ground-state wave functions, see Ref. [24].) There
are two types of pointlike quasiparticles, which are elementary
in the sense that arbitrary excitations can be constructed as
composites of the elementary excitations. First, cubes with
Bc = −1 are fractons, which are individually immobile. How-
ever pairs of fractons separated along one of the coordinate
axes are mobile in a plane normal to the axis, and are thus ex-
amples of “planon” excitations. This can be seen by studying
the subsystem conservation laws of Eq. (8), which imply that
the fracton number is conserved modulo 2 on planes normal
to the coordinate directions. Second, a vertex with Av

z = −1,
Av

y = −1, and Av
x = 1 is a lineon with mobility only in the

x direction, and similarly for the other directions. [Note that
we cannot have only a single Av

μ operator at v with negative
eigenvalue, due to the restriction of Eq. (11).]

2. Strategy of argument

In this section, we argue that the LSM theorem implies
that X-cube fracton order is only consistent at integer and
half-odd-integer fillings. While flux insertion would seem to
provide a route to such a constraint, a subtle but serious
obstruction to such an argument arises. In a three-dimensional
Lx × Ly × Lz system at filling ν, adiabatically inserting flux
in the x direction results in a crystal momentum change of
�Px = 2πνLyLz. If ν = 1/2, we thus need to choose the prod-
uct LyLz to be odd in order to obtain a nontrivial constraint.
However, this relies on the assumption that there exists a
gapped ground state for system sizes approaching the ther-
modynamic limit with LyLz odd. This assumption turns out to
be problematic for X-cube fracton order, as we demonstrate
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in Appendix A. There we describe a modified X-cube model
that, by construction, can arise in a ν = 1/2 system, but which
does not admit a gapped ground state when any two of Lx, Ly,

or Lz are odd. Indeed, it is a familiar fact that 2D odd Z2 gauge
theory suffers a similar problem in an odd-by-odd system.
Given the close relationship between the X-cube model and
a system of decoupled layered 2D Z2 gauge theories [44,45],
the result of Appendix A can be anticipated.

We instead take an alternative approach to deriving LSM
constraints that rests on the idea that one can combine topo-
logical phases by stacking them and condensing bound states
of fractionalized excitations to access other phases. The basic
idea in the current setting is to consider a system with X-cube
order at filling ν, and stack this system with itself to obtain a
system at filling 2ν. We will argue that in this system we can
always condense particle-like excitations to obtain a trivial
gapped phase, which implies that 2ν is an integer. Therefore,
X-cube order can only occur at integer or half-odd-integer
filling ν. We note that similar arguments also apply for more
conventional topologically ordered theories and present an
alternative to the usual flux-insertion arguments [37].

To proceed, we will need to characterize the symmetry-
enriched fracton (SEF) order of systems with X-cube order
and symmetry G = Z3 × U(1), where Z3 is the group of
lattice translations. The perspective will be to first charac-
terize the X-cube order and then describe how this order is
enriched by the G symmetry, separating out the description
of the fracton order from that of its symmetry enrichment.
The same perspective is often employed in more conven-
tional symmetry-enriched topological (SET) phases, which
are topologically ordered phases (i.e., noninvertible topologi-
cal phases) in the presence of symmetry [42,46–49]. Based on
the now-extensive understanding of SET phases, we assume
that SEF phases can be completely characterized by describ-
ing the fractional excitations and the action of symmetry on
fractional excitations. In fact, such a characterization—unless
one also considers extrinsic defects, i.e., symmetry fluxes—is
only expected to give a complete description of SET phases
up to stacking with a symmetry-protected topological (SPT)
phase, or other invertible topological phase, an issue that also
arises for SEF phases. However, we can safely ignore this
issue as it does not affect LSM constraints; invertible topo-
logical phases have a unique ground state on the torus and can
thus only occur at integer filling in systems with Z3 × U(1)
symmetry.

3. Review: Characterization of two-dimensional
symmetry-enriched topological phases

Before turning to the description of the SEF X-cube order,
we first review the corresponding description in an Abelian
SET phase with unitary symmetry G, focusing on two di-
mensions where all excitations are pointlike [42,47–49]. See
Appendix B for additional mathematical detail that is covered
lightly in the main text to simplify the presentation. Particle
types are labeled by elements of a finite Abelian group A,
where the addition operation in A corresponds to fusion of
particles. The action of symmetry on fractional excitations is
specified by two pieces of data. First, the symmetry may per-
mute particle types, as specified by a homomorphism ρ : G →

Aut(A). This makes A into a Z[G] module, or a G module for
short. Second, the symmetry fractionalization is specified by
an element [ω] of the second cohomology group H2(G,A∗).
Here, A∗ = Hom(A, U(1)) is the group of homomorphisms
from A to U(1), sometimes referred to as the Pontryagin dual
of A. A∗ inherits a G-module structure from that of A, and this
structure enters into the definition of the cohomology group;
see Appendix B for details. When A is finite, we have A ∼= A∗
(see Appendix B), so often a distinction is not made between
A and A∗.

A point not often emphasized, but one that will be im-
portant for applications to fracton orders, is that the physical
interpretation of [ω] differs depending on whether A or A∗ is
chosen as the coefficient group. In either case, we let ω(g1, g2)
be a specific 2-cocycle representing the class [ω]. With A∗
coefficients, ω(g1, g2) is a homomorphism from A to U(1),
whose values can be written ωa(g1, g2) ∈ U(1), for a ∈ A.
In the simple case where ρ is trivial, i.e., when symmetry
does not permute particle types, ωa(g1, g2) has a simple phys-
ical interpretation having to do with symmetry localization
[42,47]. Suppose a state |�〉 contains anyon excitations of
types a1, . . . , an, well separated from one another in space,
and that the system is locally in the ground state away from
these excitations. Then if g ∈ G is represented by the unitary
U (g), we have

U (g)|�〉 = Ua1 (g) . . .Uan (g)|�〉, (12)

where Uai (g) has support in a bounded region surrounding the
excitation ai. These operators obey the algebraic relations

Uai (g1)Uai (g2) = ωai (g1, g2)Uai (g1g2), (13)

and we see that ωa(g1, g2) enters as the so-called factor system
of a projective representation describing the symmetry action
on a. A similar interpretation holds, though is more subtle,
even when ρ is nontrivial [48]; the details will not be needed
for our purposes.

If instead we choose the coefficient group to be A, the
interpretation of ω(g1, g2) is in terms of fusion of symmetry
fluxes [50]. We denote a pointlike g flux by g. This is a
pointlike extrinsic defect and more specifically a gauge flux
of a nondynamical G background gauge field. We have the
projective fusion rule

g1g2 = ω(g1, g2)g1g2 . (14)

The interpretation is that fluxes fuse according to the group
multiplication in G, as they must, but only up to fusion
with an anyon given by ω(g1, g2) ∈ A. While this interpreta-
tion clearly differs from that associated with A∗ coefficients,
they are, of course, related, with ωa(g1, g2) ∈ U(1) being the
mutual statistical phase for a process where a is braided coun-
terclockwise around ω(g1, g2) ∈ A.

4. Characterization of symmetry-enriched X-cube fracton order

Now we are in a position to characterize X-cube fracton
order enriched by the symmetry G = Z × U(1). We begin
with a more general discussion of Abelian fracton orders
with only pointlike fractional excitations, which includes the
X-cube order of interest. Particle types are again labeled by
elements of an Abelian group A, where the addition operation
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in A again corresponds to fusion of particles. However, as
emphasized in Ref. [51] and in contrast to two-dimensional
topologically ordered phases, A is not finitely generated in
fracton orders. In the X-cube order, A can be constructed as a
quotient of a countably infinite direct sum of Z2 summands.

A key difference between SEF and SET phases is the
presence of excitations with restricted mobility in the former.
In order to have a workable characterization of fracton orders
in terms of their excitations, the restricted mobility should be
incorporated somehow. This can be done in a precise way
using lattice translation symmetry, which acts on A by per-
muting particle types [51–53]. Mathematically, this action is
described by a homormophism ρ : Z3 → Aut(A).

Given the crucial importance of restricted-mobility excita-
tions and the lack of a precise way of describing them apart
from lattice translation symmetry, we take the following point
of view: The action on A by translation symmetry, as specified
by ρ, is part of the specification of a fracton order itself.
This point of view contrasts with that taken in describing
SET phases, where a clean separation between the description
of a topological order and the action of symmetry on its
excitations is possible. We then take the X-cube order to be
defined by the example of the X-cube model, with the action
ρ given by the full translation symmetry of the cubic lattice.
Mathematically, ρ makes the Abelian group A into a module
over Z[Z3], which is described in detail for the X-cube order
in Ref. [51]. To summarize some key points, A = A f ⊕ A�,
where A f consists of all particle types obtained as composites
of fractons, and A� is similar but for the lineon excitations. A f

has a single generator, denoted f , which is the particle type
of a fracton at some arbitrary fixed position (other fractons
are obtained from f by acting with translation). Similarly,
A� has two generators, which can be chosen as �x and �y,
corresponding to lineons moving in the x and y directions,
respectively, at some arbitrarily chosen locations.

Now we extend this discussion to X-cube SEF order. The
first point is that we need to choose the coefficient group
to be A∗ rather than A. Unlike in two-dimensional SET
phases, where this choice is a matter of different physical
interpretation, here it is more important, because A and A∗ are
not in general isomorphic when these groups are not finitely
generated. (See Appendix B for more detail.) We choose A∗,
because the physical interpretation of symmetry fractional-
ization in terms of symmetry localization is still valid for a
fracton order with pointlike excitations. On the other hand, the
interpretation in terms of projective fusion of symmetry fluxes
is no longer valid, because in three dimensions the fluxes are
line objects and are not pointlike.

Next, we specialize to the relevant symmetry group G =
Z3 × U(1). As a continuous group, the U(1) symmetry can-
not permute particle types, and therefore ρ : G → Aut(A)
is specified entirely by the action of translation symmetry
ρ : Z3 → Aut(A), which is specified as part of the fracton
order. Therefore, the SEF data, as distinguished from the data
characterizing the fracton order, is given completely by an
element [ω] ∈ H2(G,A∗). An important point will be that
ωa(g1, g2) can only take values ±1, which follows from the
fact that any particle type in the X-cube order fuses with
itself to the trivial type 0 ∈ A. More formally, a + a = 0

for any a ∈ A, and ωa1 (g1, g2)ωa2 (g1, g2) = ωa1+a2 (g1, g2),
which implies [ωa(g1, g2)]2 = 1.

5. Stacking argument

Now we suppose we have a system with SEF X-cube order
at filling ν and stack this system with itself. The filling of the
system is of course 2ν, and it has two copies of X-cube order.
The group of particle types A is a direct sum A = A1 ⊕ A2,
with the summands corresponding to the two copies of X-cube
order. We denote the generators of the fracton sectors of A1

and A2 by f1 and f2, and similarly denote by �1x, �1y, �2x, �2y

the generators of the lineon sectors.
We consider condensing composite excitations f1 + f2.

These are bound states of a fracton in “layer 1” with another
in “layer 2,” at the same spatial positions. It is easy to see
that it is possible to condense such excitations—this can be
done starting with two copies of the standard X-cube model
and adding a term −h

∑
� σ z

�1σ
z
�2 to the Hamiltonian, where

the second index on the Pauli operators is a layer index. We
make h sufficiently large, so that f1 + f2 bound states pro-
liferate and condense. Upon such condensation, one obtains a
system with a single copy of X-cube order, with fracton sector
generated by f = f1

∼= f2; i.e., in the presence of the f1 + f2

condensate, the distinction between f1 and f2 fractons goes
away. In the lineon sector, the generators �1x, �1y, �2x, �2y are
all confined by the condensate, but �x = �1x + �2x and �y =
�2x + �2y are lineon generators that do not feel the condensate
and remain deconfined.

The question then is whether f1 + f2 can be condensed
without breaking symmetry. Clearly this can be done in the
standard X-cube model, via the −h

∑
� σ z

�1σ
z
�2 term above.

The key point is that whether f1 + f2 can be condensed
without breaking symmetry should depend only on the sym-
metry fractionalization data of f1 + f2 excitations, i.e., on
ω f1+ f2 (g1, g2). But ω f1+ f2 (g1, g2) = ω f1 (g1, g2)ω f2 (g1, g2) =
[ω f1 (g1, g2)]2 = 1, because the two layers have the same SEF
X-cube order. Therefore, f1 + f2 always carries the same
(trivial) SEF data as in the case of stacking two standard
X-cube models and is always condensible without breaking
symmetry.

We do not yet have a gapped trivial phase, but we can
obtain one by condensing the lineons �x and �y. These arise
as bound states of lineons in the two layers, carrying identical
SEF data, so by the same argument as above, �x and �y carry
trivial SEF data. To see that this is enough to be able to
condense the lineons without breaking symmetry, one need
only consider the standard X-cube model, now adding the
term −h

∑
� σ x

� , where lineons proliferate and condense once
h is sufficiently large. The remaining fracton excitation f is
confined in the presence of the lineon composite, and a gapped
trivial phase results, implying that 2ν is an integer and thus ν

is an integer or half-odd-integer.
A very important point is that if a given SEF X-cube order

is possible for integer filling, it is impossible for half-odd-
integer filling, and vice versa. This means that for every SEF
X-cube order, there are three mutually exclusive possibilities:
(1) the SEF order occurs for integer filling, (2) the SEF or-
der occurs for half-odd-integer filling, or (3) the SEF order
cannot occur in a strictly three-dimensional system (but may
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potentially occur at the boundary of a four-dimensional sys-
tem). We are only concerned with the first two possibilities in
this work; the latter possibility may be interesting to explore
in the future. To obtain this conclusion, suppose that the same
SEF X-cube order occurs in two different systems, one at
integer filling ν1 and the other at half-odd-integer filling ν2;
we will obtain a contradiction. Stacking these two systems
produces a system at filling ν = ν1 + ν2, which is a half-odd-
integer. We can run the same argument as above to condense
excitations and obtain a gapped trivial phase, which contra-
dicts the LSM theorem.

A good question at this point is how much the above
conclusions depend on our point of view that the X-cube
order includes the action ρ of translation symmetry on frac-
tional excitations. This question is challenging to address,
because it is not clear how much freedom one has to change
ρ while still maintaining a fracton order that can sensibly be
viewed as X-cube order. However, one simple observation is
that we can start from the standard X-cube model and then
lower the translation symmetry to an arbitrary subgroup that
is still isomorphic to Z3. This corresponds to enlarging the
crystalline primitive cell and results in a different choice of
ρ. All the arguments then run almost exactly as above, with
no difference in the conclusions—the key fact is that we still
have [ωa(g1, g2)]2 = 1 for any particle type a ∈ A of such a
modified X-cube fracton order.

III. ODD X-CUBE MODELS

The conventional (i.e., “even”) X-cube model is canon-
ically formulated in terms of spin-1/2’s on each link of a
cubic lattice [8]. The Hamiltonian for this model was provided
in Eq. (8), and a summary of the quasiparticle types was
provided in Sec. II B.

We now seek to formulate “odd” versions of the X-cube
model in which quasiparticles carry fractionalized crystal
momentum in some sense. These models are related to odd
generalized gauge theories, which we will show in the fol-
lowing section can arise as low-energy effective descriptions
in systems at half-filling. The relationship is analogous to that
between the odd toric code and odd Z2 gauge theory discussed
in Sec. II A.

As for the odd toric code model, these theories can be
constructed by flipping the signs of certain terms of the Hamil-
tonian. For example, we can flip the sign of two of the A terms
of the Hamiltonian to yield

HX,oyz =
∑

v

(
Av

y + Av
z − Av

x

) −
∑

c

Bc. (15)

In this case, Av
y and Av

z prefer to be in their −1 state, while
it is still favorable for Av

x to be in the +1 state. (We use the
subscript “oyz” to denote it is an odd theory where the y, z
vertex terms are flipped; the generalization of the notation is
obvious.) This type of state corresponds to having a back-
ground density of x-directed lineons, with one lineon on each
vertex. Similarly, we could have considered flipping other
combinations of two A terms in order to obtain a background
density of y- or z-directed lineons. We thereby obtain an
intuitive understanding of three different types of odd X-cube
models, corresponding to uniform background densities of the

three types of lineons. Since any two different types of lineons
can fuse to form the third type, there are no further possible
configurations of lineon charge backgrounds. Note that we
also could have considered a model in which only one of the
A terms had a flipped sign. In this case, however, there is no
configuration of spins which allows all A and B terms to have
their energetically preferred value, and the resulting model is
frustrated. We will not consider such models further in this
paper.

For concreteness, we now focus on the odd X-cube model
of Eq. (15). We emphasize that this model is only consistent
with LSM constraints at integer filling. More precisely, if
we assume a U (1) global symmetry that acts trivially on the
spin-1/2 degrees of freedom of the model, and if we assume
that translations act without any internal rotation in spin space
(i.e., a translation t sending � 	→ t� acts on Pauli operators by
σ

μ

� 	→ σ
μ

t�), then it is possible to condense lineon excitations
to obtain a trivial gapped phase. This is so because the lineons
carry the same SEF data as in the ordinary even X-cube model,
because the ground state has no background of fractons. An-
other even simpler way to reach the same conclusion is to
observe that in a large Zeeman field, the model enters a gapped
trivial phase.

The situation changes upon projection to the subspace
where the Av

μ terms in the Hamiltonian are minimized. This
results in a generalized gauge theory with Gauss law con-
straint Av

y = Av
z = −1 (this implies Av

x = 1). This theory thus
features a uniform background of x-directed lineons. This
background density leads to important consequences for the
fracton sector of the theory, manifesting most clearly in the
behavior of planon composites of two fractons. Planons mov-
ing normal to the y or z directions have mutual semionic
statistics with x-directed lineons within the same plane of
motion. (Note that this sense of mutual statistics is well
defined, even in this three-dimensional system, due to the
restricted two-dimensional motion of the planons.) Planons
moving normal to the y or z direction will then pick up a
phase factor of −1 upon going around any vertex of the lattice.
As in our previous discussion of the toric code, this phase
factor indicates that these planons carry a fractional crystal
momentum. As such, condensing these planons will naturally
lead to a spatially ordered phase, the precise form of which
we consider later. These considerations suggest that this odd
X-cube gauge theory can arise in a system at half-odd-integer
filling, which we show by an explicit parton construction in
the following section. The theory avoids running afoul of the
LSM theorem, since destruction of the fracton order, e.g.,
driven by condensation of planons, will coincide with the
development of spatial symmetry breaking. While particles
in the fracton sector carry fractional crystal momentum, we
should expect that lineon excitations, once included in the
theory, carry fractional charge under the U (1) global sym-
metry, an expectation born out by the parton construction in
Sec. IV.

Finally, we consider a separate type of odd X-cube model
in which we flip the sign on the B term of the X-cube Hamil-
tonian, while keeping the A terms the same: >

HX,oc = −
∑
v,μ

Av
μ +

∑
c

Bc, (16)
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where we use the subscript “oc” to denote the fact that it is
an odd theory obtained by flipping the cube term. (We will
occasionally refer to this as the “odd-cube” model.) Again,
we project to the subspace Bc = −1, which minimizes the
contribution to the energy of the cube term, corresponds to a
uniform background of fractons, and results in a distinct type
of odd generalized gauge theory. In this case, we expect that
the lineon excitations should carry some type of fractionalized
momentum quantum number, which we can see by studying
“dipoles” of lineons. For example, consider a bound state of
two x-directed lineons separated by a single lattice constant
along the z direction, which is a planon moving only within
the xy plane. This lineon dipole has mutual π statistics with
a fracton within its plane of motion, meaning that the dipole
acquires a phase factor of −1 upon going around any cube
of the lattice. As in previous examples, this implies that the
lineon dipole carries fractional crystal momentum. Any topo-
logically trivial gapped phase obtained by condensing lineons
will therefore break spatial symmetries, which is consistent
with this generalized gauge theory arising at half-odd-integer
fillings.

For completeness, we note that we could also consider an
odd X-cube model in which both the B term and two of the
A terms have flipped signs. In this case, there would be a
finite background density of both fractons and lineons, such
that fracton dipoles and lineon dipoles both carry fractional
momentum.

To summarize the results of this section, a consistent way
for X-cube fracton order to arise at half-odd-integer filling
is for particles either in the fracton or the lineon sector
to carry fractional crystal momentum. This occurs in the
two different classes of odd X-cube theories that we formu-
lated here, which correspond to uniform background densities
of either lineons or fractons. In the former case, there are
three different odd theories corresponding to the three dif-
ferent orientations of the lineon background, while particles
in the fracton sector—specifically, planon composites of two
fractons—carry fractional crystal momentum. In the latter
case, a uniform background of fractons induces nontrivial
momentum quantum numbers in the lineon sector, which we
exposed by considering dipoles of lineons that move within
two-dimensional planes.

IV. PARTON CONSTRUCTIONS

Thus far, we have not yet linked the odd X-cube models
and corresponding generalized gauge theories to physical sys-
tems at half-odd-integer filling. We now do this by extending
the generalized gauge theories constructed in the preceding
section to include dynamical matter degrees of freedom. The
resulting parton theories have a deconfined phase with X-cube
fracton order, and a confining limit where the Hilbert space
reduces to that of a spin-1/2 spin model with a global XY
(or Heisenberg) spin symmetry, and an odd number of spin-
1/2 moments per crystalline unit cell. The existence of such
a confining limit shows that the generalized gauge theories
can emerge as low-energy effective description of the cor-
responding spin model. In the deconfined phase, below the
gap to excitations carrying the fractional U (1) charge, the
parton theories reduce to the pure generalized gauge theories

introduced previously. We also go further and perturb around
the confining limit to extract simple effective models that
contain terms that we might expect to stabilize a fracton phase
of the corresponding local spin model.

We first consider the case of the generalized pure gauge
theory with Bc = −1, constructed in Sec. III from the model
HX,oc defined in (16). The parton generalized gauge theory
again has spin-1/2 spins on links of the cubic lattice and also
includes fermionic partons fcα placed on the center of each
cube c. The choice of fermions as opposed to bosons is not
important and is made purely for technical convenience. The
fermions carry spin-1/2, with α =↑,↓ the spin index, and
transform under a global XY [i.e., U (1)] spin-rotation sym-
metry (rotations about the z axis in spin space). Therefore, the
fcα fermions are fractionally charged under the U (1) global
symmetry, with α =↑ (α =↓) fermions carrying charge +1/2
(−1/2). None of the conclusions are affected if we enlarge
the XY spin-rotation symmetry to the full SU(2) Heisenberg
symmetry. The gauge constraint is modified to be Ĝc = 1,
with

Ĝc = (−1)n̂c+n0
c Bc, (17)

with n̂c = ∑
α f †

cα fcα the fermion number at c and n0
c a static

background gauge charge, which we take to be n0
c = 1.

We consider the Hamiltonian

Hgauge,c = −
∑
v,μ

Av
μ + U

∑
c,α

f †
cα fcα − h

∑
�

σ x
� + · · · , (18)

with h,U > 0, with U ≈ 1. The ellipses represent further
terms consistent with the symmetries and gauge invariance,
that for convenience of discussion we take to be small. It is
important to note that the total number of fermionic partons
is not fixed, although the number of partons in each plane
normal to the Cartesian coordinate directions is conserved
modulo 2. This follows from taking the product of Ĝc = 1
over such a plane P; the Bc operators cancel out and we obtain
the condition (−1)

∑
c∈P (n̂c+n0

c ) = 1. If P has an even number of
lattice sites, this implies that

∑
c∈P n̂c = 0 mod 2.

Let us consider two limiting cases of this gauge theory.
For h  1, it is clear that we should focus on satisfying the
U term first by appropriately choosing matter field configura-
tions. Evidently, the minimum of energy is achieved by taking
n̂c = 0 on each cube, and U > 0 ensures that there is a gap to
excitations carrying gauge charge. Below this gap, imposing
the gauge constraint is then equivalent to demanding that
Bc = (−1)n0

c = −1 on each cube. In this limit, we thus recover
the pure generalized gauge theory obtained by projection in
Sec. III from HX,oc.

Turning now to the opposite limit h � 1, the dominant
term in the Hamiltonian is minimized by setting σ x

� = 1 on
every link, so that Bc = 1 trivially for each c. Therefore, re-
quiring Ĝc = 1 is equivalent to fixing (−1)n̂c = (−1)n0

c = −1.
This implies that n̂c = 1, so the Hilbert space in this limit
reduced to that of a single spin-1/2 moment on each cube.
This implies that this generalized gauge theory can emerge
as a low-energy effective description of such a spin model,
which, of course, has an odd number of spin-1/2 moments
per unit cell.
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A similar analysis can also be performed for the odd gauge
theories with a background of lineon excitations in the ground
state. In this case, we introduce three species f (μ)

v,α of spin-1/2
fermions on each vertex of the cubic lattice, representing the
lineons of the theory. The index α =↑,↓ still represents spin,
and μ runs over x, y, z. We impose the three gauge constraints
Ĝμ

v = 1 on each vertex, with

Ĝx
v = (−1)(n̂y

v+n̂z
v )Ax

v, (19)

Ĝy
v = (−1)(n̂x

v+n̂z
v+n0,x

v )Ay
v, (20)

Ĝz
v = (−1)(n̂x

v+n̂y
v+n0,x

v )Az
v, (21)

where n̂μ
v = ∑

α f †,(μ)
v,α f (μ)

v,α . Note that Ĝx
vĜy

v = Ĝz
v , so these

actually constitute only two independent constraints. We have
also chosen to introduce a static background charge n0,x

v = 1
of x-directed lineons. (A background of y- or z-directed li-
neons could have been introduced along similar lines.)

We consider the Hamiltonian

Hgauge,v = −
∑

c

Bc + U ′ ∑
μ,v,α

f †,(μ)
v,α f (μ)

v,α − h′ ∑
�

σ z
� + · · · ,

(22)
where h′,U ′ > 0 and U ′ ∼ 1. Once again, it is straightforward
to analyze various limits of the gauge theory Hamiltonian. For
h′  1, the U ′ term requires n̂μ

v = 0 in the ground state for
all μ. Below the lineon gap, as a result of the background
charge, the gauge constraints reduce to Ax

v = 1 and Ay
v = Az

v =
−1 on every vertex. We thus obtain the pure generalized gauge
theory that we obtained by projection in Sec. III.

In the other limit, with h′ � 1, we have σ z
� = 1 on every

link, so that Av
μ = 1 for all μ. The gauge constraints then

become (−1)(n̂y
v+n̂z

v ) = 1 and (−1)(n̂x
v+n̂z

v ) = (−1)(n̂x
v+n̂y

v ) = −1
which is satisfied by n̂x

v = 1 and n̂y
v = n̂z

v = 0 mod 2. As be-
fore, the system will have a single spin-1/2 degree of freedom
on each vertex. This demonstrates, as proof of principle, how
this odd X-cube parton theory can consistently emerge as a
low-energy effective theory of a physical spin system with an
odd number of spin-1/2 moments per site.

V. DUAL ISING MODELS

To study the odd X-cube models in more detail, it is useful
to write down their dual Ising models. More precisely, we
consider dualities between the pure generalized X-cube gauge
theories of Sec. III and Ising-like models, building on earlier
work of Ref. [8]. These dualities are analogous to that between
two-dimensional Z2 gauge theory and the conventional trans-
verse field Ising model. In the case of an odd Z2 gauge theory,
the corresponding Ising dual is fully frustrated, as reviewed
in Appendix C. For X-cube models, the dualities come in two
different varieties, depending on whether we treat the Av

μ term
or the Bc term as the Gauss law constraint of a generalized
gauge theory. This corresponds to working in lineon-free and
fracton-free sectors, respectively.

A. Plaquette Ising models

One way to dualize X-cube models is to work with the
generalized gauge theory obtained by projecting to the lineon-
free sector. Before proceeding to the odd X-cube model, we

first review this duality in the case of the ordinary (even)
X-cube model [8]. We begin with the even X-cube theory,
augmented by a Zeeman field term that generates hopping of
planon composites of fractons:

H ′
X,e = −

∑
c

Bc − g
∑

�

σ z
� . (23)

This Hamiltonian is supplemented by the constraint Av
μ = 1.

Note that we have not included a σ x perturbation, which
does not respect the constraint. Within this sector, we can
dualize the theory by solving the Av

μ = 1 constraint in terms
of a new set of spins-1/2 τ spins on the dual of the original
cubic lattice. Unlike the case of the toric code (see Appendix
C), there is no simple two-spin expression for σ which can
simultaneously solve all three of these constraints. Rather,
the constraints can be solved by the following four-spin
expressions,

σ z
� =

∏
i∈�d,�

τ z
i , (24)

where the product is over spins τi at the four corners of the
plaquette of the dual lattice normal to link � on the direct
lattice. By checking commutation relations, we can also
easily identify

Bci =
∏
�∈∂ci

σ x
� ≡ τ x

i , (25)

where i is the site on the dual lattice that lies at the center of
cube ci on the direct lattice. Using these expressions, we can
then rewrite the X-cube Hamiltonian in dual form as

H̃ ′
X,e = −

∑
i

τ x
i − g

∑
p

∏
i∈p

τ z
i , (26)

where the sums run over the vertices i and plaquettes p of
the dual lattice. This dual Hamiltonian takes the form of a
plaquette Ising model in a transverse magnetic field. The
g → 0 limit, which corresponds to the deconfined phase of
the X-cube model, has all spins polarized in the x direction.
The g → ∞ limit, corresponding to the confined phase of
the X-cube model, leads to an ordered phase of the Ising
spins in which all plaquette terms are minimized. While the
precise nature of the ordering is subtle and to our knowledge
not completely characterized [54–56], it seems likely that
it will involve the spontaneous breaking of the subsystem
symmetries that are characteristic of plaquette Ising models.

We now wish to perform the same duality transformation
for an odd X-cube gauge theory. For concreteness, let us
consider the odd theory with a uniform background density of
x-directed lineons. The Hamiltonian is unchanged but the con-
straint is modified to Av

x = −Av
y = −Av

z = 1. The constraint
can once again be solved by a four-spin expression, after
introducing a suitable sign structure, as follows:

σ z
� = η�

∏
i∈�d,�

τ z
i , (27)

where the product is over the four sites on the dual lattice
plaquette pierced by the link � on the direct lattice. η� is a
fixed (i.e., nondynamical) function defined on the links of the

205106-9



PRETKO, PARAMESWARAN, AND HERMELE PHYSICAL REVIEW B 102, 205106 (2020)

direct lattice (plaquettes of the dual lattice), taking values 1 or
−1, which is forced to obey the constraints

∏
�∈+xy

η� =
∏

�∈+xz

η� = −1,
∏

�∈+yz

η� = 1, (28)

on each vertex. In words, there must be an odd number of
negative η values in both the xy and xz planes, with an
even number of negative values in the yz plane. This can be
achieved, for example, by having η� = −1 on one x-directed
link touching each vertex. Putting everything together, the
dual Ising Hamiltonian of the odd X-cube model is given by

H̃ ′
X,yz = −

∑
i

τ x
i − g

∑
p

ηp

∏
i∈p

τ z
i , (29)

where we label dual lattice plaquettes by p and the product
in the second term is over the sites at the corners of the
plaquettes (note that we have now labeled η by its dual-lattice
plaquette index rather than its direct-lattice link index). The
constraints of Eq. (28) dictate that, adjacent to each site of
the dual lattice, there must be either one x-oriented plaquette
of flipped sign or two plaquettes of flipped sign with normals
y and z. This dual Hamiltonian once again corresponds to a
plaquette Ising model in a transverse magnetic field. However,
the model is now frustrated, since all the constraints cannot be
simultaneously satisfied. We will consider the various phases
of this model further in the next section.

We note that if we start with the other class of odd X-cube
model, with the sign of the Bc term flipped but with the
coefficient of Av

μ negative, and project to the Av
μ = 1 lineon-

free subspace, we again obtain the even X-cube generalized
pure gauge theory discussed above. The only difference is the
sign of the Bc term, which results in an unimportant flipped
sign of transverse field in the dual model. However, the same
odd X-cube model has an interesting dual if projected to the
subspace Bc = −1, which has dynamical lineons and a frozen
background of fractons.

B. Multispin Ising models

As an alternative pathway to an Ising-like dual of the X-
cube model, we can consider the generalized gauge theory
describing the fracton-free sector. Beginning with the even
X-cube model, we impose the constraint Bc = 1 and consider
the Hamiltonian takes the form:

H ′
X,e = −

∑
v,μ

Av
μ − g′ ∑

�

σ x
� , (30)

where, notably, the simplest perturbation respecting the con-
straint is now a σ x term, not σ z. The constraint can be solved
by introducing three sets of spins, (τ, μ, s), on each vertex of
the lattice. In terms of these new variables, the original spins
can be written as

σ x
i,i+x = τ z

i τ
z
i+xμ

z
i μ

z
i+x, (31a)

σ x
i,i+y = μz

i μ
z
i+ysz

i s
z
i+y, (31b)

σ x
i,i+z = sz

i s
z
i+zτ

z
i τ

z
i+z. (31c)

By checking commutation relations, we can also identify

Av
x =

∏
+yz,,v

σ z = τ x
i μx

i , (32a)

Av
y =

∏
+zx,v

σ z = sx
i μ

x
i , (32b)

Av
z =

∏
+xy,v

σ z = τ x
i sx

i . (32c)

Putting all of the pieces together, we can rewrite the Hamil-
tonian as

H̃ ′
X,e = −

∑
i

(
τ x

i sx
i + τ x

i μx
i + sx

i μ
x
i

)

− g′ ∑
i

(
τ z

i τ
z
i+xμ

z
i μ

z
i+x + μz

i μ
z
i+ysz

i s
z
i+y

+ sz
i s

z
i+zτ

z
i τ

z
i+z

)
, (33)

which is an unusual type of multispin Ising model. Note that,
much like the plaquette Ising model, this model has planar
subsystem symmetries, such as flipping all τ spins (τ z →
−τ z) along any xz plane.

We can now extend this duality to an odd X-cube model
with a background density of fractons, keeping the Hamilto-
nian the same but modifying the constraint to Bc = −1. We
can solve this constraint through a similar expression to the
even theory, but with an added sign structure:

σ x
i,i+x = ηi,i+xτ

z
i τ

z
i+xμ

z
i μ

z
i+x, (34a)

σ x
i,i+y = ηi,i+yμ

z
i μ

z
i+ysz

i s
z
i+y, (34b)

σ x
i,i+z = ηi,i+zs

z
i s

z
i+zτ

z
i τ

z
i+z, (34c)

where η is a fixed function defined on the links of the lattice,
taking values −1 or 1, which satisfies the condition∏

�∈∂c

η� = −1 (35)

on each cube of the lattice. In other words, there must be
an odd number of negative η values on the links around the
boundary of each cube. In the language of the dual lattice, we
can regard this as an odd number of η values on the plaquettes
touching each vertex. Using this sign structure, the dual Ising
Hamiltonian of this odd X-cube model can be written as

H = −
∑

i

(
τ x

i sx
i + τ x

i μx
i + sx

i μ
x
i

)

− g′ ∑
i

(
ηi,i+xτ

z
i τ

z
i+xμ

z
i μ

z
i+x + ηi,i+yμ

z
i μ

z
i+ysz

i s
z
i+y

+ ηi,i+zs
z
i s

z
i+zτ

z
i τ

z
i+z

)
, (36)

which is a frustrated version of the multispin Ising model.

VI. PROXIMATE ORDERED PHASES

In the previous sections, we have argued that the odd X-
cube models give rise to ordered phases upon condensation of
their emergent quasiparticles, as required by the Lieb-Schultz-
Mattis theorem. However, we have so far said nothing about
what specific types of ordered phases are obtained. The iden-
tification of these ordered phases represents an important task,
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FIG. 3. Two examples of bond-ordered phases proximate to the
odd X-cube model with a uniform background of x-directed lineons.
There must be one flipped x-directed bond touching each vertex of
the lattice. These bond orders can come in several different columnar
and staggered varieties.

since systems hosting such orders may be proximate to fracton
phases. In this way, mapping out the adjacent ordered phases
can provide us with insight into which physical systems may
give rise to fractons. We therefore set out to identify which
symmetries are broken by various condensation transitions out
of the odd X-cube models.

We first consider an odd X-cube model with a uniform
background density of lineons, which we take to be directed
in the x direction for concreteness. This theory is obtained
when the lineons carry the fractionalized global U (1) charge,
so condensation of lineons leads to ordinary superfluid (or
magnetic) order. The more interesting possibility is that we
have condensation of fractons and their composites, which
carry only fractional crystal momentum. This transition can be
studied via a Hamiltonian of the form (23), reproduced here
for convenience:

H ′
X,e = −

∑
c

Bc − g
∑

�

σ z
� . (23)

This Hamiltonian is supplemented with the constraint Av
z =

−Av
y = −Av

z = 1.
When g is small, the fractons and their composites are

gapped, and we remain in the X-cube phase. As g is increased,
however, the fractons (and their planon composites) eventu-
ally condense and drive the system into an ordered phase.
As g → ∞, the system prefers to have all of its spins in the
σ z

� = 1 state, but this cannot be achieved due to the constraint.
Instead, the energy is minimized when the number of flipped
spins is as small as possible. The least costly way to satisfy
the constraint is to have exactly one flipped spin, with � in
the x direction, touching each vertex. Assuming that quantum
fluctuations of the flipped spins do not play an important role,
the system will thus form a type of valence bond order, with all
bonds oriented in the x direction. Two orders of this type are
depicted in Fig. 3. We leave the question of which state is se-
lected energetically for future work. The same considerations
apply to the odd X-cube theories with background densities of
other orientations of lineons.

A more interesting case is the odd X-cube model with
a uniform background density of fractons. Such a theory
tends to arise when the fractons carry the fractionalized
U (1) charge. As such, condensation of fractons will lead

FIG. 4. Two examples of plaquette-ordered phases proximate to
the odd X-cube model with a uniform fracton background. There
must be one flipped plaquette touching each vertex of the lattice.
These plaquette orders can come in columnar (left), staggered (right),
or other varieties.

to a relatively mundane scenario of a phase with U (1)
symmetry-breaking order. Instead, we now consider the effect
of condensing the lineons of the theory, which can be studied
via Hamiltonian (30),

H ′
X,e = −

∑
v,μ

Av
μ − g′ ∑

�

σ x
� , (30)

together with the constraint Bc = −1. At small g′, the lineons
are gapped, and we remain in the X-cube phase. As g′ → ∞,
however, the lineons condense, and the last term in the Hamil-
tonian dictates most of the physics. This term tells us that
the system prefers to have as many spins as possible in the
σ x

� = 1 state, aligned with the transverse field. However, the
constraint implies there must be an odd number of flipped
spins around each cube center. This constraint can be more
usefully visualized on the dual lattice, where the spins reside
on plaquettes, and it becomes the condition that there must be
an odd number of flipped spins on the 12 plaquettes touching
each vertex of the dual lattice. Since the g′ term dictates that
the number of flipped spins is minimized, a ground state of the
system will have precisely one flipped plaquette touching each
vertex of the lattice, which can indeed be achieved. Models
of plaquette degrees of freedom on the cubic lattice with
precisely this constraint have been studied before [57–63], and
the selection of a ground state will be governed by an effective
model of this kind. One likely possibility is a plaquette solid
phase; a variety of possible ordering patterns are possible, and
two are depicted in Fig. 4. How this plaquette order should be
physically interpreted depends on the context. For example, if
the parent odd X-cube model arose in a fractionalized electron
model, this order could be considered a type of plaquette-
centered charge-density wave.

It is of further interest to ask how a plaquette-ordered phase
can be driven back into the X-cube phase. To do this, we must
consider condensing some vortex defect of the plaquette order.
Specifically, we need to condense double vortices (bound
states of two identical vortices). To see this, it is useful to
follow Ref. [59], where it was shown that models of plaquette
degrees of freedom on the cubic lattice, with the constraint
considered here, can be viewed as certain symmetric tensor
gauge theories. In Ref. [65], it was shown that vortices of the
plaquette order, depicted in Fig. 5, are charges of the gauge
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FIG. 5. A vortex of a plaquette order within a two-dimensional
plane, which can be regarded as a confined charge of a U (1) tensor
gauge theory, in close analogy with similar work in the context of
valence bond order [64].

theory, with the following simple relationship:

∂i∂ jEi j = (−1)x+y+z(qv − 1), (37)

where Ei j is a “hollow” symmetric tensor (i.e., with com-
ponents Exy, Eyz, and Exz) which represents the plaquette
variable, taking values 0 if the plaquette is unoccupied, and
(−1)x+y+z if it is. The variables x, y, and z denote the integer
x, y, and z coordinates of the plaquette, in units of the lattice
spacing, while the variable qv represents the vortices, acting
as the fracton charges of the tensor gauge theory.

In this gauge language, the most general low-energy
Hamiltonian we can write for the plaquette system is

H =
∑

p

E2
i j − g

∑
i=x,y,z

(∑
c

cos(Bi )

)
+

∑
v

q2
v + · · · , (38)

where Bi = ∑
jk εi jk∂ jAki are the three gauge-invariant mag-

netic field operators on each cube of the lattice. This gauge
theory does not have a stable deconfined phase [59], which
leads to the confining energy cost of vortices within the
plaquette-ordered phase. Despite the absence of a deconfined
phase of this U (1) tensor gauge theory, it has been shown
that condensation of charge-2 objects can drive this gauge
theory into the stable deconfined phase of the X-cube model
[13,14]. We therefore conclude that condensation of doubled
vortices of the plaquette order will drive the system back into
the X-cube phase.

VII. CONCLUSIONS

In this work, we have investigated a type of fracton
order described by generalizations of odd lattice gauge the-
ories, focusing on the example of odd X-cube models. The
ground states of these theories are characterized by uniform
background densities of either fractons or lineons, which leads
to phenomena analogous to crystal momentum fractionaliza-

tion in the opposite sector. These theories are of particular
interest due to the constraints of the Lieb-Schultz-Mattis the-
orem. Specifically, X-cube order can only occur at integer
and half-odd-integer filling, with systems at half-odd-integer
filling described by an odd X-cube gauge theory. This ensures
that any condensation transition out of the X-cube-ordered
phase will lead to some form of symmetry breaking, such
as plaquette-ordered phases. In turn, plaquette order can give
rise to an X-cube phase via condensation of doubled vortices.
By identifying such proximate symmetry-breaking phases, we
gain important clues as to what types of systems may host
fracton order. We also show how odd X-cube models are
related by duality transformations to various types of Ising
models, such as a fully frustrated version of the plaquette Ising
model.

Our work opens various further questions. For example,
the tools of this paper can be used to construct odd variants
of other versions of fracton order that can occur in systems
at half-odd-integer filling. More generally, in this paper we
introduced a framework for characterizing symmetry enriched
fracton (SEF) phases via the action of symmetry on the frac-
tional excitations. We only used this framework to argue for
filling constraints on X-cube fracton order, but it actually has
much more general applicability, as a means to characterize
SEF phases and to guide exploration of their phenomena. We
believe this will be an interesting direction for future work.
Indeed, while some attention has been devoted to symmetry
enrichment of fracton orders [17,20,66,67], a systematic treat-
ment is not yet available.
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APPENDIX A: FAILURE OF FLUX INSERTION PROOF OF
LSM THEOREMS IN FRACTON MODELS

In this Appendix, we explain why flux-insertion argu-
ments cannot be applied to derive LSM constraints on fracton
theories, using an explicit example to illustrate where the
arguments fail. To that end, consider a model of bosons at
half-filling on the cubic lattice and construct an X-cube par-
ton effective theory along the lines of Sec. IV, where we
fractionalize the boson by b = a2. In the X-cube phase, the
half-charge a bosons will be in a Mott insulating state with one
a boson per site. This parton theory has the gauge constraint:

Bc = (−1)a†a. (A1)

Here we are thinking of the a bosons as living on cube centers.
Now let us take a product of all the cubes Bc over a yz plane at
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fixed x. Clearly this product has to be 1 if we are locally in the
ground state everywhere in this plane. However, the product
of the right-hand side is (−1)LyLz . Note that because the a’s
are fractons, their number in each plane is conserved modulo
2, so the product of the right-hand side is fixed and does not
fluctuate. Clearly, we have a contradiction if Ly and Lz are
both odd: the only way to resolve this contradiction is to have
an odd number of fractons in the yz plane, i.e., an excitation
above the (local) ground state. (A similar issue arises when
considering d = 2 Z2 topological order in a similar setting,
i.e., where the gauge charges are half-charge partons and the
underlying bosons are at half-filling.)

How does this affect the flux insertion arguments? Recall
that in using flux-threading argument to prove that there must
be degenerate ground states, if we turn on the background
U (1) vector potential along the x direction to thread flux
through the noncontractible loop in this direction, we have

�Px = 2πνLyLz. (A2)

For ν = 1/2, we need LyLz odd for this to be useful, which is
exactly the case that led to a contradiction above. Therefore,
there is no longer a guarantee that the system is gapped:
Indeed, the fracton excitations that get forced in can combine
into dipoles moving in neighboring yz planes, and these can
disperse, leading to a gapless spectrum. In the absence of a
gap, we can no longer apply the flux threading argument. In
addition, a corollary of the above argument is that there is
no longer a sharp separation of the Hilbert space into sectors
labeled by eigenvalues of logical operators.

APPENDIX B: MATHEMATICAL DETAILS FOR SET
AND SEF PHASES

Here we discuss some mathematical details that are treated
lightly in Sec. II B. The purpose of this Appendix is not to
give a self-contained introduction to the relevant mathematical
topics but rather to enhance the mathematical precision of the
discussion in the main text, which may be useful for some
readers.

Given a group G, by a G module we mean an Abelian
group A together with a homomorphism ρ : G → Aut(A),
by which we can view elements of g as acting on elements
of A. We write the action of g ∈ G on a ∈ A as ga = ρ(g)a.
To understand this notation, observe that ρ(g) : A → A is an
automorphism, and we write the value of the function ρ(g)
as ρ(g)a ≡ (ρ(g))(a). In contrast to the main text, here we
use the symbol A in place of A; in the main text, and later
in this Appendix, A always has the physical interpretation
of the group of superselection sectors (particle types), but A
is simply a G module. Our use of “G module” is actually
short-hand for “left Z[G] module,” where Z[G] is the group
ring over G with integer coefficients. Elements of Z[G] are
finite formal sums of elements of G with integer coefficients,
and the action of G on A given by ρ makes A into a left module
over the ring Z[G].

Now we very briefly discuss some limited aspects of
group cohomology over the G-module A. Let Cn(G, A) be
the Abelian group of functions from Gn to A, where by Gn

we mean the n-fold product of G with itself. It is important
to stress that elements of Cn(G, A) are merely functions and

need not be homomorphisms. In fact, Cn(G, A) is a G module,
coming from the G-module structure on A. If ω ∈ Cn(G, A),
then we define (gω)(g1, . . . , gn) = ρ(g)ω(g1, . . . , gn).

There are group homomorphisms δn : Cn(G, A) →
Cn+1(G, A) that satisfy the property δn+1 ◦ δn = 0. We
only need δ1 and δ2, which we now define:

(δ1α)(g1, g2) ≡ α(g1) + ρ(g1 )α(g2) − α(g1g2), (B1)

where α ∈ C1(G, A), and

(δ2ω)(g1, g2, g3) = ρ(g1 )ω(g2, g3) + ω(g1, g2g3)

−ω(g1, g2) − ω(g1g2, g3). (B2)

Because δ2 ◦ δ1 = 0, we can define the Abelian group
H2(G, A) ≡ ker δ2/ im δ1. This is one of a sequence of group
cohomology groups Hn(G, A).

In Sec. II B, we emphasize the distinction between a G-
module A and its Pontryagin dual A∗. Here we provide some
further mathematical details. Letting A be a G module, its
Pontryagin dual is A∗ ≡ Hom(A, U(1)). That is, A∗ is the
Abelian group of homomorphisms from A to U(1). In fact,
A∗ also has a natural G-module structure that it inherits from
A. All we need is a left G-action on A∗, and for ω ∈ A∗ this is
given by

(gω)(a) ≡ ω(g−1a), (B3)

where the inverse sign is needed so that g1(g2ω) = (g1g2)ω,
as required for a left action.

Forgetting about G-module structure for a moment, if A is
a finite Abelian group, then it is a basic fact in group theory
that A ∼= A∗; i.e., A is isomorphic to its dual. To see this,
one can first show that Zn

∼= (Zn)∗, and then use the result
that finite Abelian groups are products of Zn factors. The
isomorphism between A and A∗ is not canonical, in the sense
that constructing an isomorphism requires making an arbitrary
choice of generators.

Now let us consider the physical context of Abelian SET
phases with symmetry group G, where A is the group of
superselection sectors and is a finite G module. In this context,
there is a canonical isomorphism θ : A → A∗, given by the
braiding statistics of the Abelian anyons. θ is defined by
a 	→ θa ∈ A∗, where θa(b), for b ∈ A, is the statistical phase
obtained when a is braided around b. That is, θa(b) is the
mutual statistical phase of the a and b anyons. Physically
we have θa(b + c) = θa(b)θa(c), because the phase obtained
upon braiding a around the fusion composite b + c is the
same as multiplying the phases obtained upon braiding a
separately around b and around c. Mathematically, this says
that θ is a homomorphism. Moreover, the principle of braiding
nondegeneracy amounts to the statement that θ is injective.
Therefore, since A and A∗ are finite and of the same size, θ

must be a group isomorphism.
In fact, θ is an isomorphism of G modules, which follows

from the physical requirement that acting with g does not
change the statistics of a pair of particles. Mathematically,
this is expressed θga(gb) = θa(b). Putting b → g−1b, we have
θga(b) = θa(g−1b) = (gθa)(b), which is the statement that θ is
a G-module isomorphism. Therefore, there is no difference
between the cohomology groups H2(G,A) and H2(G,A∗),
and while one can attach different physical interpretations to
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these two cohomology groups, it does not really matter which
one we consider.

As noted in Sec. II B, the situation is different in gapped
fracton phases, where the group of superselection sectors A is
infinite. In this case, A and A∗ are not expected to be isomor-
phic, and it matters which of these G modules we choose when
using group cohomology to describe the data of an SEF phase.
In the main text, we argued on physical grounds that A∗ is
the proper choice, and one needs the cohomology H2(G,A∗).
Here, we first establish that when A is a countably infinite sum
of Z2’s, A is countable while A∗ is uncountable, so A and
A∗ are not isomorphic even as Abelian groups, let along as G
modules. We then show that in the X-cube phase—indeed, for
any fracton phase that can be realized by a commuting Pauli
Hamiltonian—A is indeed isomorphic to a countably infinite
sum of Z2’s.

Suppose that A = ⊕
n∈N Z2, so we have a countably in-

finite sum of Z2’s indexed by the natural numbers. Here we
are only interested in A as an Abelian group; we do not need
to consider any G-module structure. Denote the generator of
the nth summand by an, then elements a ∈ A are finite formal
sums a = ∑

n∈N cnan, with coefficients cn ∈ Z2 = {0, 1}. To
see that A is countable, given a ∈ A we can define i(a) =∑

n∈N cnn, which is well defined because only finitely many
of the cn are nonzero. It is easy to see that given a fixed k ∈ N,
only finitely many elements a ∈ A have i(a) = k. Therefore,
we can enumerate the elements of A by first enumerating
those with i(a) = 0, then those with i(a) = 1, and so on.

Now we consider A∗. An element ϕ ∈ A∗ is completely
determined by its values on generators, ϕ(an) ∈ {+1,−1}.
Any such choice of values is possible, so elements of A∗

correspond bijectively to infinite sequences of ±1 entries
[ϕ(a1), ϕ(a2), . . . ]. As a set, A∗ is therefore clearly in bi-
jective correspondence with the set of infinite sequences of
zeros and ones, indexed by the natural numbers. Such infinite
bit strings can, for instance, be used to uniquely represent
real numbers in the interval [0, 1] as binary decimals, and
this makes it clear that A∗ is uncountable, since [0,1] is also.
Therefore, it is impossible for A and A∗ to be isomorphic as
groups, since they are not even in bijective correspondence as
sets.

To complete this discussion, it only remains to show that A
for the X-cube model is isomorphic (as a group) to

⊕
n∈N Z2.

For fracton models realized as commuting Pauli Hamiltonians
(including the X-cube model), Refs. [51–53] obtain A as a
quotient of E , the group of configurations of excitations above
the ground state, which is a countably infinite direct sum of
Z2’s. One takes the quotient by those excitations that can be
created by operators of bounded support. It is easy to see that
the quotient A is countable (because E is), and in fracton
models A is infinite. So far we have seen that A is countably
infinite, and every nonidentity element in A is of order 2
(because this holds in E). Any such group is isomorphic to⊕

n∈N Z2. To see this, let b1, b2, · · · ∈ A be an enumeration
of the nonidentity elements of A. We construct from this enu-
meration a set {a1, a2, . . . } of independent generators of A,
which gives the desired isomorphism. Start by putting a1 = b1

and a2 = b2; we know b2 is not a linear combination of b1

because b1 �= b2. Now, if b3 is not a linear combination of b1

and b2, then put a3 = b3. Otherwise, we choose a3 to be the
next bi that is not a linear combination of a1 and a2. We keep
going in the same manner, with, e.g., a4 chosen as the next
bi that is not a linear combination of a1, a2, a3. This clearly
results in a set of independent generators for A, as desired.

We note the result that A and A∗ are not isomorphic groups
is quite general—it holds for any fracton phase realized as a
commuting Pauli Hamiltonian. Indeed, we expect this result
holds for all gapped Abelian fracton phases.

APPENDIX C: REVIEW OF ISING DUALITY FOR
TWO-DIMENSIONAL Z2 GAUGE THEORY

Here we review the Ising duality mapping [68] for the
conventional two-dimensional Z2 gauge theory to illustrate
how the even versus odd behavior of a gauge theory manifests
in the dual Ising model. The ordinary (even) gauge theory can
be written in terms of a set of spins, σ , located on the links of
a square lattice, with Hamiltonian given as

HZ2 = −
∑

p

Bp − g
∑

�

σ z
� , (C1)

where the sums are over all plaquettes p and links � of the lat-
tice, respectively. The spins are subject to the local constraint
Av = 1 for each vertex v. The Av and Bp operators take the
form

Av =
∏
�∈+v

σ z
� , Bp =

∏
�∈�p

σ x
� , (C2)

where the products run over the links touching the vertex v

and in the perimeter of the plaquette p, respectively.
We can dualize this theory by solving the Av = 1 con-

straint. This is the lattice Z2 analog of solving �∇ · �E = 0 by
letting �E be the curl of an arbitrary vector field. Similarly, the
constraint is solved by writing

σ z
�≡(i,i+y) = τ z

i τ
z
i−x, (C3)

σ z
�≡(i,i+x) = τ z

i τ
z
i−y, (C4)

where the τ spins are located at sites on the plaquette cen-
ters. By comparing canonical commutation relations, it is also
straightforward to identify

Bp =
∏
�i

σ x = τ x
i . (C5)

In this dual language, we can then rewrite the Hamiltonian
of Eq. (C1) in the following form:

H̃Z2,e = −
∑

i

τ x
i − g

∑
〈i j〉

τ z
i τ

z
j , (C6)

which takes the form of a transverse field Ising model. The
g → 0 limit, corresponding to the deconfined phase of the
gauge theory, leads to a paramagnetic phase with all spins
polarized in the x direction. The g → ∞ limit, correspond-
ing to the confined phase of the gauge theory, leads to the
ferromagnetic phase of the Ising model.

With our duality in hand for the even gauge theory, we
can now proceed to the odd case, where the Hamiltonian
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is unchanged, but the constraint is modified to Av = −1. A
natural interpretation is that the odd gauge theory model has
a background e particle on every vertex of the lattice, which
leads to phase factors associated with motion of m particles.
We proceed as before by solving the constraint, which is
accomplished by writing

σ z
�≡(i,i+y) = ηi,i+yτ

z
i τ

z
i−x, (C7)

σ z
�≡i,i+x = ηi,i+xτ

z
i τ

z
i−y, (C8)

where η is a nondynamical function defined on the

links, taking values 1 or −1, which for each vertex v

must satisfy ∏
�∈+v

η� = −1. (C9)

The dual form of the Hamiltonian Eq. (C1) is then

H̃Z2,o = −
∑

i

τ x
i − g

∑
〈i j〉

ηi jτ
z
i τ

z
j , (C10)

where, due to Eq. (C9), η must have a flipped sign on an odd
number of links in each plaquette of the dual lattice. This leads
to frustration in the spin system, since it is not possible to
simultaneously have each bond in its energetically preferred
configuration. The Hamiltonian of Eq. (C10) is known as the
fully frustrated Ising model [69], and its link to the odd gauge
theory was made in Ref. [43].
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