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Universal properties of anyon braiding on one-dimensional wire networks
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We demonstrate that anyons on wire networks have fundamentally different braiding properties than anyons
in two dimensions (2D). Our analysis reveals an unexpectedly wide variety of possible non-Abelian braiding
behaviors on networks. The character of braiding depends on the topological invariant called the connectedness
of the network. As one of our most striking consequences, particles on modular networks can change their
statistical properties when moving between different modules. However, sufficiently highly connected networks
already reproduce the braiding properties of 2D systems. Our analysis is fully topological and independent on
the physical model of anyons.
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Introduction. Studies of anyon braiding on one-
dimensional (1D) wire networks are at the forefront of
research of architectures for topological quantum computers.
Such a computer would perform its tasks using topological
states of matter (describing anyons) that are intrinsically
robust against different types of noise and decoherence [1].
Anyons arise in quantum systems that are effectively one or
two dimensional. The braiding of anyons transforms a state
of the corresponding quantum system by a unitary operator
which is a topological quantum gate. A robust realization of
controlled braiding of anyons is one of the major challenges
in this field. Recently developed experimental and theoretical
proposals address this challenge by exploring the possibility
of the braiding of anyons on junctions of one-dimensional
wire networks [2,3]. Such networks are believed to
provide a platform for engineering anyonic braiding most
easily.

This Rapid Communication shows that the braiding of
anyons on networks provides a wider range of possibilities
for the resulting topological quantum operations in compar-
ison to 2D architectures. This suggests that there may exist
quantum systems where computational universality can be
accomplished more easily than in currently known proposals.
Our work also provides a mathematical justification for the
fact that braiding rules in 2D are compatible with braiding
rules on 1D networks. Our purpose here is to describe the
above results, whose mathematical details will be spelled out
elsewhere [4].

Of particular importance in this context is Kitaev’s super-
conducting chain that supports Majorana edge modes. Such
a chain can be modeled as semiconductor nanowires coupled
to superconductors [3] as well as in other solid state [5–8]
and photonic systems [9]. The braiding of edge modes is
then realized by coupling the endpoints of wires so that they
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form a network or, in the simplest case, a trijunction [3].
Importantly, Majorana edge modes braid in a non-Abelian
way, making them useful for quantum computation. However,
the set of gates obtained by the braiding of Majorana fermions
is never universal and in order to realize universal quantum
computation one has to pursue certain additional strategies
[10,11]. This proposal has been recognized as one of the most
robust candidates for an architecture of a topological quantum
computer. Experimental proposals of the above-mentioned
trijunction have been made so far including photonic systems
[9] and Josephson junctions [12,13]. We also mention in this
context effective hopping models for anyons that have been
studied in Ref. [14] and that have led to the classification of
Abelian quantum statistics on networks [15].

Despite the significant interest in problems related to the
braiding of anyons on networks, relatively little is known
about their topological braiding properties. In this Rapid
Communication, we fill this gap by studying relations coming
from continuous deformations of paths corresponding to the
braiding of anyons on a network. Because quantum statistics
is a topological property, any physical model that supports
anyonic braiding on a network has to respect such relations.
In other words, any topological transformation of the quantum
system related to an exchange of anyons remains invariant
under a continuous deformation of the corresponding braid
[16–19]. In the standard 2D setting, an example of such a
relation is shown in Fig. 1. It relates two ways of exchanging
a triplet of anyons. To see this, consider first the so-called
simple braid from Fig. 2(a) that exchanges two neighboring
anyons. Figure 2(a) also explains the origin of the term braid-
ing as the world lines of anyons forming braids in space-time.

Let us denote such a simple braid that exchanges ith and
(i + 1)th anyons by σi. Any exchange of anyons in 2D can
be written as a composition of simple braids. More formally,
simple braids generate the planar braid group. However, they
do not generate the braid group freely, as they are subject to
the following braid relation: σiσi+1σi = σi+1σiσi+1. This can
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FIG. 1. The braiding relation for anyons in 2D.

be seen in Fig. 1—both braids differ by a deformation of the
middle world line (blue line in Fig. 1).

Simple braids also satisfy a commutative relation where
exchanges of disjoint sets of anyons commute with each other,
σiσ j = σ jσi for | j − i| � 2.

Braiding on junctions. In order to see if the braid rela-
tion is satisfied by braids on the trijunction, we first define
the network counterpart of the simple braid. It is shown in
Fig. 2(b)—the trijunction stretched in a time interval makes
up three rectangles. Anyon 1 is first transported to the right
branch (the bottom branch in the picture) of the trijunction,
then anyon 2 travels to the left branch, making space for
anyon 1 to go back to the original initial position of anyon
2. The exchange is completed by the return of anyon 2 from
the right branch to the original initial position of anyon 1.
In order to track all the moves of anyons on an arbitrary
junction, we set up the following notation. For a d junction
(d incident branches), we fix the initial position of anyons to
align one after another on a fixed branch. Having drawn the
junction on a plane, we enumerate the remaining branches in
a clockwise fashion by labels from 1 to d − 1. The exchange
of ith and (i + 1)th anyons will be unambiguously encoded
by a sequence of integers a := (a1, a2, . . . , ai+1) with 1 �
a j � d − 1 and ai �= ai+1. Elements of a denote (i) labels of
branches where first (i − 1) anyons were distributed—these
are a1, . . . , ai−1; and (ii) labels of branches where anyon i and
(i + 1) exchange—these are ai and ai+1. Note that swapping
the order of ai and ai+1 reverses the direction of the exchange.
Going back to the concrete example of two particles on a
trijunction from Fig. 2(b), the depicted braid would be denoted
by σ

(2,1)
1 , i.e., a = (2, 1).

In order to visualize the counterparts of braids in the braid
relation from Fig. 1, we need to define the counterpart of
σ2—the simple braid exchanging anyons 2 and 3. To this end,
anyon 1 has to be moved to the right or left branch of the
junction so that anyons 2 and 3 can carry on and exchange as

(a) (b)

FIG. 2. Simple braid on the plane vs simple braid on a trijunction.

FIG. 3. Braid σ
(2,1)
1 σ

(2,2,1)
2 σ

(2,1)
1 on a trijunction. The depicted

braid has been deformed to simplify the picture.

in Fig. 2(b). Let us choose the braid where anyon 1 moves to
the right branch, which we denote σ

(2,2,1)
2 . The composition

σ
(2,1)
1 σ

(2,2,1)
2 σ

(2,1)
1 is shown in Fig. 3.

Strikingly, the world line of the middle anyon (blue line in
Fig. 3) is now blocked by world lines of the other particles
and it cannot be deformed freely. Consequently, there is no
braiding relation on a trijunction. In fact, the three-particle
braid group of the trijunction is freely generated by σ

(2,1)
1 ,

σ
(2,2,1)
2 , and σ

(1,2,1)
2 . However, when one considers a bigger

junction or a larger number of anyons, some relations appear.
Their precise form is as follows.

(1) For n � 4, pseudocommutative relations appear. For
j − i � 2,

σ
a1···a j+1

j σ
a1···ai+1
i = σ

a1···ai+1
i σ

a1···ai−1ai+1aiai+2···a j+1

j . (1)

(2) For d � 4 and n � 3, pseudobraid relations appear. For
1 � i � n − 2,

σ
a1···ai−1aiai+1ai+2
i+1 σ

a1···ai−1aiai+2
i σ

a1···ai−1ai+2aiai+1
i+1

= σ
a1···ai−1aiai+1
i σ

a1···ai−1ai+1aiai+2
i+1 σ

a1···ai−1ai+1ai+2
i . (2)

Let us emphasize that the braid group of a d junction has
more generators than the planar braid group and hence it
imposes fewer topological constraints on the unitary braiding
operators that are assigned to simple braids in a physical
model. This is perhaps most striking in the case of three
anyons on a trijunction where we had three generators and
no relations between them.

General (planar) network architectures. In order to relate
braiding relations for anyons on general networks with the
braiding of anyons in 2D, we first have to consider a different
presentation of the planar braid group. Namely, we will con-
sider the total braid δ which is a product of all simple braids,
δ := σ1σ2 · · · σn−1. Braid δ corresponds to the move where the
first anyon exchanges consecutively with all anyons. Using 2D
braiding relations one can show that any simple braid can be
expressed by σ1 and δ as σi = δi−1σ1δ

1−i [20].
We will next show how the above relations are recovered

on networks. To this end, we fix a spanning tree of our network
T which is a connected tree that contains all vertices of the
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(a) (b)

FIG. 4. (a) Total braid δ on a lollipop network. (b) One-particle
move γ on a lollipop network. The rooted spanning tree with root ∗
is drawn by solid lines.

network. Moreover, we choose the root of T to be a vertex
of degree two that lies on the boundary of the network. The
initial configuration of anyons is such that the anyons are
assembled on the edge of T which is incident to the root.
The above choice of a spanning tree unambiguously defines
all possible exchanges on junctions. To see this, note that for
every essential vertex v of the network (i.e., the vertex at
which three or more edges are incident), we have a unique
path in T , denoted by [v, ∗], that connects this vertex with the
root. Such a path implies labeling of branches of the junction
at v with branch 0 being the one that is contained in [v, ∗]
and the remaining branches labeled clockwise as described in
the previous section. Consequently, simple braids at v will be
denoted by an additional superscript, v. The counterpart of
total braid δ is realized by utilizing a loop containing the root
of T (effectively considering a lollipop-shaped subnetwork;
see Fig. 4)—anyon 1 is transported along the loop to the end
of the line. It is straightforward to check that up to some
backtracking moves, in the lollipop setting from Fig. 4 we
have

σ
v;(1,...,1,2,1)
i = δi−1σ

v;(2,1)
1 δ1−i. (3)

Moreover, braid δ can be expressed in terms of simple braids
at the junction of the lollipop and a one-particle move γ

defined as the move where anyons 1 through n − 1 are trans-
ported to branch 2 of the junction and anyon n travels alone
around the lollipop loop. The precise relation reads

γ = σ
v;(2,...,2,2,1)
n−1 · · · σ v;(2,1)

1 δ. (4)

Let us pause for a moment to analyze the role of one-
particle moves. Such moves do not describe any exchange,
hence assigning unitary operators to these moves can only
come from the existence of some external gauge fields punc-
turing the plane where the considered network is confined.
For instance, the presence of a deltalike magnetic flux flowing
perpendicularly through the middle of the lollipop loop would
result with multiplication of the anyonic wave function by a
phase factor due to the Aharonov-Bohm effect. From now on,
we will always assume that there are no such external gauge
fields present in the system. Consequently, we will equate all
one-particle loops to identities.

FIG. 5. A � network with the rooted spanning tree marked by
solid lines. Arrows symbolize the total braid δ and one-particle loop
γ as described in the main text.

By putting γ to identity, we obtain δ =
σ

v;(1,2)
1 · · · σ v;(2,...,2,1,2)

n−1 . Note that at this point we have
almost recovered the presentation of the planar braid group
that we considered at the beginning of this section. The only
difference is that the expression for δ involves different simple
braids than expression (3). As we show in the next section,
this problem disappears for a wide class of networks that are
sufficiently connected.

We say that a network is k connected when any two of its
essential vertices can be connected by at least k paths that
are mutually internally disjoint. By Menger’s theorem [21],
this is equivalent to the fact that after removing at most k − 1
vertices, the network remains connected.

Braiding on 2-connected networks. The key feature of
2-connected networks that simplifies their braid groups is
that for every trijunction in the network we can find suitable
lollipop subnetworks that allow us to reduce the number of
generators. In particular, if v is the first essential vertex from
the root ∗ (i.e., there are no essential vertices on path [v, ∗],
as in Fig. 4), then for every branch a1 at junction v, there
exists a path connecting v and ∗ that contains branch a1 and
is independent of [v, ∗]. Consequently, we have a lollipop
where, for any a = (a1, a2, . . . , ai+1), we obtain

σ v;a
i = δσ v;a′

i−1 δ−1, (5)

where a′ = (a2, . . . , ai+1). The above expression allows us to
inductively reduce any simple braid at v to a braid of the form
δi−1σ

v;(a,b)
1 δ1−i with a > b. This in turn means that for simple

braids taking place at a fixed trijunction spanned on branches
(a, b) at vertex v, we indeed obtain a set of 2D braiding
relations. However, braids at different trijunctions are still a
priori independent of each other. One can show that a similar
situation concerns simple braids at junctions that are further
away from the root.

To recapitulate, 2-connected networks indeed support gen-
uine 2D braiding relations. However, the relations are valid
only within certain sets of braids that are restricted to fixed
trijunctions of the network. This is strikingly different from
the 2D anyon braiding where braiding is ruled by only one
type of simple braids. Note that this feature of braiding can
be utilized to design networks consisting of different modules
where quantum statistics can be changed when moving anyons
from module to module. An example of such a modular net-
work is shown in Fig. 6.
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(a) (b)

FIG. 6. (a) A modular network with two modules containing
junctions v, v′ and w, w′, respectively. (b) Network from point
(a) modified by adding one edge that makes it 3-connected.

Braiding on 3-connected networks. In contrast to the
great complexity of braiding scenarios outlined so far for
1- and 2-connected networks, 3-connected networks bring a
tremendous simplification. The key is to consider the so-called
� network that consists of two essential vertices connected by
three edges (Fig. 5). By definition, every two essential vertices
in a 3-connected network can be connected by three indepen-
dent paths that form a � subgraph. The key property of anyon
braiding on a � network is that it identifies simple braids on
different trijunctions. This in turn means that the 2D braiding
relations are recovered. Similarly, by considering suitable �

subnetworks of a general 3-connected network, one can show
that the above identification recovers the planar braid group.
Let us see explicitly how it happens for a � network from
Fig. 5. Denote by γ the one-particle loop where the first anyon
travels around the upper loop in Fig. 5. Moreover, denote by
γ ′ a move which involves anyons 1 and 2 where (i) anyon 1
travels to branch (2w) through the solid edge [v,w], (ii) anyon
2 travels around the upper loop, and (iii) anyon 1 goes back
along the tree from branch (2w). Up to some backtracking
moves, we have the following relations,

δγ = γ ′δ, σ
w;(2,1)
1 γ = γ ′σ v;(2,1)

1 . (6)

Because γ is a one-particle move, according to our assump-
tion about the nonexistence of external fields, we put it to
identity. Then, the left relation in (6) implies that γ ′ is an
identity as well. This in turn applied to the right relation yields
σ

w;(2,1)
1 = σ

v;(2,1)
1 .

To sum up, relations (4) and (5) for lollipops together
with relation (6) for � subnetworks enabled us to identify
the a priori complicated braiding relations on networks with
the well-known 2D braiding when the considered network is
3-connected.

Example: A modular 2-connected network. A simple
realization of a modular network that admits different non-
Abelian quantum statistics in different modules is shown in
Fig. 6.

Because one can span a � connection between trijunctions
at v and v′, simple braids at these junctions are identified
with each other. Similarly, one identifies simple braids at
trijunctions at w and w′. However, simple braids at v and
w are independent of each other. Moreover, appropriate lol-
lipop relations ensure that σ v;a

i = δi−1σ
v;(2,1)
1 δ1−i and σw;a

i =
δi−1σ

w;(2,1)
1 δ1−i for any a, hence braiding is independent of the

distribution of anyons. There are no topological constraints
that would forbid utilizing simple braids at v and w in such

a way that they would realize different topological quantum
gates σ v;a

i → Ui, σw;a
i → Vi. In such a system, the braiding of

anyons i and (i + 1) at junctions v or v′ would realize gate
Ui, while braiding at junctions w or w′ would realize gate Vi.
This proposal shows that conducting quantum computations
on a topological quantum computer based on such a modular
network would be a relatively easy task provided that one
could manipulate anyons efficiently.

Finally, let us remark that the above desired features of
the modular network are lost when one adds just a sin-
gle edge to the network in the way shown in Fig. 6(b).
By a visual inspection, one can check that network from
Fig. 6(b) is now 3-connected. Analogous properties of quan-
tum statistics on networks have been observed for Abelian
anyons [15,22].

Relation to the braiding of Majorana fermions. Let us
consider Majorana fermions in quantum wires modeled by a
Kitaev superconducting chain of spinless fermions [23,24].
In a certain range of this model’s Hamiltonian (called the
topological region forming topological strings) there exists
one zero-energy eigenmode d0 which can be represented in
terms of two Majorana edge modes γ1 and γ2, d0 = γ1 + iγ2,
that are localized at the beginning and at the end of the chain,
respectively [24]. Because of the localization of Majorana
modes, one can consider their braiding on chains that are
coupled into trijunctions by adiabatically tuning parameters
of the Hamiltonian in a local fashion [3]. Performing quantum
computations with Majorana edge modes would require cre-
ating a network with multiple well-separated edge modes on
it. It has been shown in Ref. [3] that the exchange of two edge
modes γi and γi+1 gives a quantum gate Ui = exp(πγiγi+1/4).
Moreover, any one-particle move where just one Majorana
fermion is being adiabatically transported results with the
multiplication of the wave function by a global phase factor.
Hence, in terms of anyon braiding, this model has the follow-
ing properties: (i) All one-particle moves do not change the
quantum state of the system (are effectively put to identity)
and (ii) all simple braids are represented by the same quantum
gate, i.e., σ v;a

i → Ui for any v and a. Although our introduced
braids ignore the existence of topological regions that connect
pairs of Majorana edge modes, our approach can be adapted
to take them into account. In particular, one can perform all
braids on junctions, all lollipop moves, and � moves in a
way that avoids self-intersections of the topological “strings”
(see Supplemental Material [25]). Therefore, the braiding of
Majorana fermions on any network is exactly the same as
braiding in 2D and it seems not to exploit the full potential of
modular networks outlined in previous sections. That said, this
model shows that one can hope to find other physical models
for anyon braiding on networks that would not be directly
equivalent to 2D braiding [26,27].
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