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Impact of phonon nonlocality on nanogap and nanolayer polar resonators
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Polar dielectric nanoresonators can support hybrid photon-phonon modes termed surface phonon polaritons
with length scales below the diffraction limit. In the deep subwavelength regime the optical response of these
systems was shown to diverge from that predicted through a standard dielectric description. Recently, we
developed an analytical, dielectric approach and applied it to spheres and planar heterostructures, reproducing
anomalous features observed in experiment and microscopic calculations. In this Rapid Communication we
develop tools to describe the nonlocal response of polar nanoresonators of arbitrary symmetry, and use them to
investigate systems with nanogaps and nanolayers of practical technological relevance. We demonstrate that the
available field enhancement is strongly reduced, as the electromagnetic energy leaks away from the hot spots,
while phononic resonances are shifted by resonator effects.
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Nanophotonics is concerned with the concentration and
control of light on deep subwavelength scales. This is pos-
sible by exploiting the kinetic motion of charged particles,
allowing the diffraction limit to be beaten many times over
[1]. This is the basis for polar nanophotonics, where photons
are hybridized with the optic phonons of a crystal lattice in
modes termed surface phonon polaritons [2–4]. These modes
are highly tunable [5–10] and have broad applications in
nonlinear optics [11,12] and the fabrication of nanophotonic
circuitry [13–15].

A key benefit of localized surface phonon resonances is
their strong morphological dependence. In geometries con-
taining sharp corners or small gaps this results in a dramatic
increase in local energy density which can be used for sensing
applications [16]. When the confinement length approaches
the atomic length scale, the finite wavelength of the longitudi-
nal optic (LO) and transverse optic (TO) phonons becomes
important. Propagative LO modes affect screening charges
induced at the particle boundary. This is not accounted for
in local theories of dielectric response, which assume screen-
ing charges are exactly localized at the scatterer boundary.
The nonlocal regime has been studied in plasmonic sys-
tems, where the excitation of strongly evanescent bulk plasma
waves smears charge, limiting maximal field enhancement
and blueshifting modal frequencies [17,18].

The nonlocal regime is difficult to access, requiring the fab-
rication of nanoscale resonators or gaps [19]. It is, however,
expected to be of particular interest for phonon polaritons
in the field of crystal hybrids, which are constructed from
many alternating nanoscale layers of different polar dielectric
materials. In these systems recent studies have shown strong
divergence from the local optical response [20]. As nonlo-
cality implies a transfer of energy from the electromagnetic
field to elastic deformation of the lattice, understanding the
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nonlocal physics is also necessary to assess the suitability
of these systems for field-enhancement-based applications
such as surface-enhanced infrared absorption spectroscopy, or
single-molecule strong coupling [21,22]. Nonlocal effects can
be modeled using a first-principles method such as density
functional theory which, however, scales badly to realistic de-
vices [23,24]. To provide more agile approaches we recently
developed an analytical continuum theory, describing polar
nonlocality in terms of macroscopic fields. The validity of this
model was confirmed by a comparison to recent experiments
for structures with features below 2 nm in size [20,25]. Such
analytical approaches are tractable in systems with strong
symmetry but cannot be easily generalized.

In this Rapid Communication we develop numerical tools
to describe the nonlocal response of polar nanosystems with
arbitrary geometry and use them to investigate the nonlo-
cal phenomenology of technologically relevant nano-objects.
This is achieved through integration of our nonlocal response
theory with COMSOL MULTIPHYSICS, a commercial finite-
element solver, and the model is distributed for the use of the
community [26]. The only input parameters required by the
model, beyond those required for a local dielectric descrip-
tion, are the low-wave-vector LO and TO phonon velocities
which can be parametrized utilizing the bulk phonon disper-
sions, readily available in the literature for most materials. The
numerical approach is validated by comparison to our previ-
ous analytical nonlocal scattering spectra for 3C-SiC spheres
[25]. The model is then applied to the study of spherical
dimers, investigating the effect of nonlocality on field confine-
ment. Finally, we study the nonlocal response of macroscopic
resonators containing nanoscale layers, showing the effect of
nonlocality in nanostructured crystal hybrid resonators.

Our polar crystal is treated in the continuum limit as an
isotropic lattice with a single phonon branch characterized
by zone-center LO (TO) phonon frequencies ωL (ωT) in a
quadratic dispersion approximation analogous to that used
in nonlocal plasmonics [17]. Phonons couple to the driving
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electric field E as[
ω2

T − ω(ω + iγ )
]
X + ∇ · τ̄ − μ

ρ
E = 0, (1)

in which X is the relative ionic displacement, γ is the damping
rate, and ρ and μ are the effective mass and charge densities.
The matrix τ̄ describes the phonon dispersion, acting as an
effective stress tensor [27] given for an isotropic lattice by

τ̄ = β2
T[∇X + (∇X)T] + (

β2
L − 2β2

T

)∇ · X Ī, (2)

where βT (βL) are phenomenological velocities describing TO
(LO) phonon dispersion and Ī the identity tensor. The model
is completed by the constitutive relation

P = μX + ε0(ε∞ − 1)E, (3)

where ε∞ is the high-frequency permittivity and the material
polarization is P.

In a previous publication [25] we solved Eq. (1) and
Maxwell’s equations analytically in simple systems of high
symmetry: a sphere in vacuum and a suspended nanolayer.
Here, we employ a numerical method which permits easy
nonuniform meshing as oscillations induced by Eq. (1) occur
on the nanometer scale, while the wavelength of midinfrared
photons is typically four orders of magnitude larger. Nonuni-
form meshing is simple using commercial finite-element
(FEM) solvers. To use Eq. (1) in a FEM calculation it must be
translated into weak form. The strong statement is that the left-
hand side of Eq. (1) is zero everywhere. The corresponding
weak statement is that it, integrated over the computational
domain and multiplied by a family of test functions �, is zero.
Integrating by parts over the computational domain yields∫

d3r

[
μ

ω2
T − ω(ω + iγ )

[
β2

L(∇ · X)(∇ · �)

−β2
T(∇ × X) · (∇ × �)

] + μX · �

+ ε0(εLRA(ω) − ε∞)E · �

]
= 0, (4)

where we simplified using the local dielectric function

εLRA(ω) = ε∞

[
1 + μ2/ε0ε∞ρ

ω2
T − ω(ω + iγ )

]
. (5)

In coupling Eq. (4) with Maxwell’s equations we introduce
the macroscopic fields X and τ̄ . This means the Maxwell
boundary conditions are insufficient to determine mode am-
plitudes in each layer and additional boundary conditions
(ABCs) are required. We provided an exhaustive discussion
of the appropriate ABCs to be used in polar dielectrics in
Ref. [25], to which the interested reader is invited to refer. For
completeness, in the following we provide a brief overview of
this important problem. Considering energy transport across
a material interface [28], it is possible to derive the ABCs
to be satisfied at the interface between two nonlocal media:
the continuity of the normal and in-plane ionic displacement
X and of the normal and shear components of the effective
stress τ̄ · n̂, where n̂ is a unit vector normal to the interface.
At interfaces between local and nonlocal layers the appropri-
ate combination of boundary conditions is actively debated
[29–31]. It is necessary to apply two conditions, leaving the
remaining components discontinuous. We fix the normal com-
ponent of the displacement, analogously to the plasmonic case

FIG. 1. (a) Extinction efficiencies for spheres with r =
4, 3, 2 nm. Numerical data are shown by solid lines. Analytical data
are shown by black dashed lines. The local result is also shown for
r = 3 nm. The inset shows the nonlocal electric field for r = 4 nm.
(b) Comparison of numerical extinction efficiencies using different
ABCs for r = 4 nm.

[17,18,32], and the normal component of the stress tensor,
which provides the correct result in the case of vanishing βT.

To verify our model we study a system whose nonlocal
response is analytically calculable. We demonstrated that non-
local extinction spectra of nanoscopic 3C-SiC spheres are well
described by a quasistatic model in which the TO dispersion
is neglected and only the boundary condition on the normal
displacement is enforced [25,32]. This is a reasonable approx-
imation near the Fröhlich resonance where the TO phonon
is strongly evanescent. Considering the case βL = 15.39 ×
105 cm s−1 [33] we calculate nonlocal extinction efficiencies.

Results are shown in Fig. 1(a) for radius r = 2, 3, 4 nm. In
the local case small spheres exhibit a single resonance at the
Fröhlich frequency, ωF ≈ 933 cm−1, illustrated for r = 3 nm
by the red curve. In the nonlocal case additional peaks appear
in the extinction spectrum. These correspond to quantized LO
phonon modes. Eventually the Fröhlich resonance redshifts
as a result of an increase in the effective nonlocal dielec-
tric function. Note that in Fig. 1(a) analytical (numerical)
results are illustrated by solid (dashed) lines, and the over-
lap is exact on this scale, demonstrating the accuracy of our

201302-2



IMPACT OF PHONON NONLOCALITY ON NANOGAP AND … PHYSICAL REVIEW B 102, 201302(R) (2020)

implementation. The inset shows the nonlocal electric field
magnitude for the 4-nm sphere, where the short-wavelength
LO phonon oscillation is clearly visible.

Equation (1) is a continuum approximation, treating the
phonon dispersion phenomenologically through the effec-
tive stress tensor Eq. (2). Phonon dispersions are assumed
quadratic, meaning LO and TO dispersion relations have solu-
tions at all frequencies. In reality, the granular structure of the
lattice prevents this, resulting in a decrease in group velocity
to zero at the Brillouin zone edge [34]. In 3C-SiC the TO
dispersion is weak, meaning that using finite βT should not
alter the extinction cross section. We verify this in Fig. 1(b) for
r = 4 nm and βT = 9.15 × 105 cm s−1 [33], demonstrating
that the ABC we chose overlaps with the βT ≈ 0 cm s−1 limit
explored in the prior section. In the same panel we also plot re-
sults using different ABCs, showing how also fixing the shear
stress provides essentially the same results, while using the
in-plane displacement would lead to an unphysical redshift.

We have applied our numerical model to systems with ana-
lytical solutions, demonstrating its reliability. In the remainder
of this Rapid Communication we apply it to nanophotonic
systems relevant for technologically relevant surface phonon
polaritonics [6,35], where the lack of symmetry prevents ana-
lytical solutions. First, we study the effect of nonlocality on
field hot spots, predicted in plasmonic systems to result in
strong charge smearing and a corresponding decrease in the
maximal field [36]. We consider a spherical dimer, consisting
of two 3C-SiC spheres of radius r = 5 nm, separated by a gap
of width d . For large gaps the system modes are those of the
isolated spheres studied in Fig. 1. For small d these hybridize
into bonding and antibonding resonances [37], as shown in the
local scattering spectra for d = 2 nm in Fig. 2(a) at 918 and
935 cm−1, respectively. In the nonlocal spectra (solid line)
these modes are supplemented by the LO modes supported
by the dimer, as in Fig. 1(a).

The antibonding mode is of most interest as opposing
charges enclosing the gap result in strong capacitative field
enhancement. This is demonstrated in the local case by the
dashed line in Fig. 2(a), which shows a field enhancement at
the gap center. On resonance in the local case this peaks at
around 125. In the nonlocal case the enhancement diminishes
to around 40. This can be understood from the field intensity
plots inset in Fig. 2(b). In the local case the field is strongly lo-
calized in the gap, and is efficiently screened from the sphere
interior. In the nonlocal case screening is less efficient and
induced screening charges smear into the spheres, diminishing
the capacitative charging of the dimer. The gap dependence
is demonstrated in Fig. 2(b), where we plot peak field en-
hancement for the antibonding mode. In the local case the
field enhancement diverges as d → 0, while in the nonlocal
case this is offset by increased energy transfer to propagative
LO modes in the nanosphere. Note that, as clear from the
inset in Fig. 2(b), longitudinal modes emitted in the nonlocal
case form standing waves inside the nanospheres. The field
can thus in principle be enhanced at its antinodes inside the
dielectric. Although applications are normally predicated on
enhancement exterior to the polar resonator [21,22], we prefer
to point out this feature as it stands in stark contrast to what
happens in plasmonic systems, where the longitudinal modes
are instead evanescent.

FIG. 2. a) Local (red) and nonlocal (blue) extinction efficiencies
(solid) and field enhancements (dashed) at the gap center for a dimer
of radius r = 5 nm and gap d = 2 nm. (b) Comparison of local (red
squares) and nonlocal (blue circles) peak field enhancements for a
dimer with r = 5 nm as a function of gap width. The inset shows the
electric field magnitude of the antibonding mode for d = 1 nm.

We have discussed nonlocality in systems of nanoscopic
dimensions or with nanoscale air gaps. The fabrication of
polar resonators on this scale is challenging, however, making
macroscopic heterostructures containing nanolayers is a well-
established process. It was recently suggested that in bulk
polar superlattices, termed crystal hybrids [20], a nonlocal de-
scription of the optical response is necessary [25]. Describing
a system containing many polar layers is beyond the scope of
this work, however, we demonstrate the effect of nonlocality
in larger resonators containing a few nanoscopic polar layers.

We apply our model to a typical polar resonator, a 3C-
SiC nanopillar of height h = 250 nm and radius r = 500 nm
on the same material substrate [6,35]. We consider a single
AlN layer in the pillar center as in Fig. 3(a), with βT =
1 × 105 cm s−1, βL = 5.1 × 105 cm s−1 [25]. Dashed lines in
Fig. 3(b) show the local extinction efficiency for film thick-
nesses d = 0.5 and 1 nm. The spectrum shows three features.
The first, closely resonant with the zone-center LO phonon
in the AlN (ωL ≈ 887 cm−1, marked by the vertical line), is
the Berreman mode of the AlN film [7], independent of the
pillar dimensions. Other peaks are photonic modes resulting
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FIG. 3. (a) Electric field intensity at the nanopillar boundary
for local and nonlocal models, normalized to the maximal value in
each case. (b) Comparison of local (dashed) and nonlocal (solid)
extinction efficiencies for a 3C-SiC nanopillar on a substrate with
h = 250 nm, 2r = 500 nm containing an AlN film of thickness 0.5
and 1 nm. (c) Comparison of local (dashed) and nonlocal (solid)
extinction efficiencies for a 3C-SiC nanopillar on a substrate with
h = 250 nm, 2r = 500 nm containing one and two thin AlN films of
thickness 0.5 nm.

from hybridization of the monopolar mode of the nanopillar
[6] with the epsilon-near-zero response of the AlN [7]. In
the 1-nm case these are more strongly split around ωL as in-
creased film thickness leads to enhanced pillar-film coupling.

In the nonlocal case [solid lines in Fig. 3(b)] the Berreman
mode redshifts and weakens as a result of the quantization of
LO phonon resonances in the film, and it is only visible as
a shoulder around 882 cm−1 for the 1-nm film. In the local
case all LO phonon modes sit at exactly ωL, yielding a single
resonance with a large oscillator strength. In the nonlocal case
phonons of differing out-of-plane wave vectors have differ-
ent frequencies, smaller than ωL, thus splitting the Berreman
resonance into a set of discrete peaks, each of which has a di-
minished oscillator strength. Additionally, photonic modes are
redshifted, and this is particularly true for the low-frequency
mode. The redshift is more pronounced for the 0.5-nm film.
This is because, as demonstrated in Ref. [25] for freestand-
ing films, thin AlN films support quantized Fabry-Pérot LO
phonon modes which redshift as d → 0, resulting in a redshift
of the hybridized resonances.

To demonstrate how these results can be extrapolated to
crystal hybrids comprising multiple crystal layers, we con-
sider the effect of adding a second 0.5-nm AlN film, separated
from the first by a 0.5-nm 3C-SiC spacer layer [results are
shown in Fig. 3(c)]. In the local (dashed lines) cases the ad-
ditional layers result in an increased splitting of the photonic
modes around ωL as a result of increased coupling between
the AlN epsilon-near-zero mode and the pillar resonance. In
the nonlocal case the same effect is observable around the
redshifted fundamental Fabry-Pérot LO phonon resonance.
Also shown in Fig. 3(a) are the electric field magnitudes in
the nanopillar for a 1-nm AlN film. In the local case the
field is localized at the pillar edge [9]. In the nonlocal case
propagative LO modes cause electromagnetic energy to leach
into the pillar, smearing field hot spots.

We developed a numerical method to study the nonlocal
response of nanoscopic polar resonators, and applied it to
geometries of practical relevance for current nanophotonic
investigations. We demonstrated that nonlocal effects
can lead to a strong reduction in the achievable field
enhancement in structures with nanoscopic features, allowing
the electromagnetic energy to propagate in the bulk in the
form of LO phonons.

We also studied the nonlocal phenomenology of cylindrical
nanoresonators, which would manifest in the reflectance of
arrays comprising such nanoresonators [6,35]. Subnanometer
phonon oscillations could also be visualized explicitly with
electron energy-loss spectroscopy [38,39]. These nonlocal ef-
fects will be of practical relevance for a number of current
nanophotonic investigations, including the attempt to reach
single-molecule vibrational strong coupling or few-electron
strong coupling [40,41].
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