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We suggest the possibility that the two-dimensional SU(2)k Wess-Zumino-Witten (WZW) theory, which has
global SO(4) symmetry, can be continued to 2 + ε dimensions by enlarging the symmetry to SO(4 + ε). This is
motivated by the three-dimensional sigma model with SO(5) symmetry and a WZW term, which is relevant to
deconfined criticality. If such a continuation exists, the structure of the renormalization group flows at small ε

may be fixed by assuming analyticity in ε. This leads to the conjecture that the WZW fixed point annihilates with
a new, unstable fixed point at a critical dimensionality dc > 2. We suggest that dc < 3 for all k, and we compute
dc in the limit of large k. The flows support the conjecture that the deconfined phase transition in SU(2) magnets
is a “pseudocritical” point with approximate SO(5), controlled by a fixed point slightly outside the physical
parameter space.
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This Rapid Communication makes a conjecture about
renormalization group (RG) flows in nonlinear sigma models
(NLσMs) with Wess-Zumino-Witten (WZW) terms in 2 + ε

dimensions. It is speculative, since we do not provide a con-
crete definition of these models in noninteger dimensions. But
we point out that assuming the existence of such a continu-
ation in ε leads to interesting conclusions. The WZW fixed
point survives up to a critical ε, at which it annihilates with a
new, unstable fixed point that did not exist in two dimensions
(2D). This critical εc can be calculated easily only at large k,
where k is the WZW level, but we conjecture that for all k the
annihilation occurs in between 2D and 3D. Our motivation is
the case ε = 1, which is the SO(5)-symmetric NLσM for a
five-component unit vector, in 3D. This is a useful effective
field theory for various interesting phase transitions [1–3]
that show numerical evidence of emergent SO(5) [4–8]. The
scenario obtained here supports, and gives another way of
thinking about, the “quasiuniversal” or “pseudocritical” RG
flows conjectured previously for these models [9,10], since the
fixed point annihilation at dc � 3 suggested by this calculation
provides a mechanism for slow RG flows in d = 3. We return
to this at the end.

The Euclidean action for the SU(2)k WZW model in 2D,
in terms of an SU(2) matrix g(x1, x2), is [11–15]

S = 1

2λ2

∫
d2x Tr(∂μg−1)(∂μg) + ik �. (1)

� is the WZW term, written in terms of an exten-
sion g(x1, x2, x3) of the field to a fictitious 3D “bulk” as
� = εμνλ

12π

∫
d3x Tr(g−1∂μg)(g−1∂νg)(g−1∂λg). The field lives

on the sphere S3, and can be written as a four-component unit
vector 	 using the Pauli matrices: g = 	0I + i

∑3
a=1 	aσ

a.
Therefore this is also the standard O(4) sigma model, with
the addition of the WZW term, which reduces the internal
symmetry to SO(4) = [SU(2)L × SU(2)R]/Z2. For a given

k ∈ Z, the theory has an unstable, trivial fixed point at λ2 = 0,
and a stable, nontrivial one at λ2

∗ = 4π/|k| [11,15].
The construction generalizes to d dimensions, giving the

NLσM for a (d + 2)-component “spin,” with a WZW term
and SO(d + 2) symmetry (see, e.g., Ref. [16]),

Sd = 1

λ2

∫
(∂	)2 + 2π ikεa1···ad+2

area(Sd+1)

∫
	a1∂x1	a2 · · · ∂u	ad+2 .

(2)

The most interesting case for us in the above hierarchy of
theories is S3, the SO(5) sigma model in d = 3. In d = 1
the standard kinetic term is irrelevant at low energies, and
dropping it leaves the usual coherent-state path integral for
a spin of size k/2 [17]. The d = 0 case is an integral: Writing
	0 + i	1 = eiθ , the action is S0 = ikθ , and the “correlator” is
〈eimθ 〉 = δm,k .

These theories, often with symmetry-breaking anisotropy
terms, have many applications to critical phenomena. These
applications can usually be understood heuristically from
the fact that S� is the effective theory on an appropriate �-
dimensional defect (built by fixing the configuration of d − �

components of 	) in the d-dimensional theory Sd . For ex-
ample, we may construct a hedgehoglike configuration for
d components of 	. The effective theory at this defect is S0

for the remaining two components. The above expression for
〈eimθ 〉 then shows that such defects are forbidden except at the
loci of insertions of eiθ (x). This is connected to the fact that an
anisotropic version of S3 describes the 3D O(3) model with
hedgehog defects forbidden [2,6,18–20].

Motivated by this hierarchy of field theories, let us enter-
tain the possibility that the fixed points present in 2D can
be tracked to 2 + ε dimensions. Whether this can be made
precise is less clear than in the case without a WZW term,
where the 2 + ε expansion is standard, because the structure
of the topological term depends on the dimensionality [21].
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FIG. 1. Topology of flows, as a function of dimension. The
smudge (d � dc) indicates slow RG flow, without a fixed point.

Nevertheless, if we assume the continuation exists, the flows
at small ε can be fixed very simply using known results in 2D
and assuming analyticity of the RG equations in ε. This is in-
spired by the treatment of the O(n) model close to n = d = 2
in Ref. [22].

In two dimensions the one-loop beta function is [11]

dλ2

d ln L
= λ4

2π

[
1 −

(
λ2k

4π

)2
]
. (3)

The one-loop approximation is justified at large |k| because
the fixed point is at λ2 = O(k−1), so that the entire action is
multiplied by a large parameter of order k [11]. For k of order
1 we should use an unknown exact β function, but with the
same topology of flows. We write this schematically as

dλ2

d ln L
= β

(0)
k (λ2). (4)

We now go to d = 2 + ε, assuming the RG equations are
analytic in ε,

dλ2

d ln L
= β

(0)
k (λ2) + ε β

(1)
k (λ2) + O(ε)2. (5)

In the limit of small λ2 we have, trivially,

β
(0)
k (λ2) = λ4

2π
+ O(λ6), β

(1)
k (λ2) = −λ2 + O(λ4). (6)

This is already enough to fix the topology of the RG flows
when ε is small: see Fig. 1, third panel. At ε = 0 we have
a marginally unstable fixed point at λ2 = 0 and a stable one
at λ2

∗. The latter remains stable and isolated for small ε [but,
if the signs predicted by the perturbative expressions are
valid, it shifts towards the origin by O(ε), and its irrelevant
RG eigenvalue moves slightly towards zero]. In contrast, the
perturbation splits the fixed point at λ2 = 0 into a stable
fixed point at λ2 = 0 and an unstable fixed point at λ2

∗∗ �
2πε. This splitting in the vicinity of λ2 = 0 is similar to
the O(N ) NLσM without a WZW term; in both cases the
unstable fixed point governs a transition between phases with
broken/unbroken symmetry. Here, however, the universality
class of the fixed point at λ2

∗∗ is different, as is that of the
unbroken phase.

The likely situation is that, at some dc(k), the unstable
fixed point which is moving away from the origin collides
and annihilates with the stable fixed point which is moving

FIG. 2. RG eigenvalues y for stable (lower branch) and unstable
(upper) fixed points as a function of ε at large k.

towards the origin—so that in high dimensions there is no
fixed point for real λ2. At d = dc(k) we have a marginally
stable fixed point (Fig. 1).

We can be more concrete when k is large. Consider the
scaling k � 1 with εk of order 1. The relevant regime is where
λ2 is of order ε. The leading terms are then

dλ2

d ln L
= −ελ2 + λ4

2π

[
1 −

(
λ2k

4π

)2
]
. (7)

We see that the annihilation described above indeed occurs,
and the critical dimensionality is

dc(k) = 2 + 4

3
√

3 × k
. (8)

Figure 2 shows the RG eigenvalues of the stable and unstable
fixed points for d < dc.

When d � dc we have pseudocritical RG flows. Slow flow
for λ2 ∼ 4π√

3k
, where the flows are approximately

dδλ2

d ln L
� −4π (d − dc)√

3k
− (δλ2)2

2π
, (9)

yields the exponentially large correlation length
ξ ∼ exp 31/4π

√
k√

2(d−dc )
, as in other theories with a fixed point

annihilation [9,23–30]. Reference [10] argued that in such a
situation, expanding the RG equations for irrelevant couplings
in d − dc shows that quasiuniversality (independence of
UV couplings) holds on long scales, to exponentially
good precision in [d − dc]−1/2, despite the fact that λ2

drifts: Different microscopic models travel along the same
quasiuniversal flow line in theory space. For d � dc we
also have complex, SO(d + 2)-symmetric fixed points with
Im λ2 ∝ √

d − dc. Complex fixed points have been explored
recently in Refs. [31–35].

In the context of deconfined criticality we are interested
in 3D models that in the UV have a smaller symmetry than
SO(5). If dc is close enough to 3 to give a large ξ in 3D, and
assuming that the four-index symmetric tensor of SO(4 + ε)
is irrelevant at dc [4,10] (this is the case at large k, where scal-
ing dimensions are close to those in 2D), then the above flows
will lead to a pseudocritical phase transition with approximate
emergent SO(5), by the scenario discussed in Refs. [10,36].
This scenario is consistent with simulations, and, since it does
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not require a unitary 3D fixed point, with conformal boot-
strap [37–41]. It is also consistent with what we know about
various dual gauge theories for deconfined criticality [9,10],
including recent ε-expansion [42–45] and large N [46] results.
The endpoint of the quasiuniversal flow line is the ordered
phase (λ2 = 0): In the application to deconfined criticality this
means that at the very longest scales the emergent symmetry
gets spontaneously broken, giving artificial SO(5) “Goldstone
modes” with a very small mass [36,47].

Though speculative, the present lowest-order expansion
supports this scenario. If a consistent framework for expand-
ing to higher orders in ε [48] can be defined, then this
would be one way to put the pseudocriticality scenario for
SO(5) on firm ground. The above also suggests examining
numerically the 3D models with k > 1 (or rather related sign-
free lattice models which could be based on those relevant
to the k = 1 case [6,7,9,49]), to test for pseudocriticality
there.

We can consider other, related deformations of the WZW
model. At the order to which we have worked, changing the

dimension to 2 + ε has the same effect on the RG flows as
changing the power of momentum q in the kinetic term to
|q|2−ε . This raises the question of whether we can study quasi-
universality in the 3D model, while avoiding the WZW term in
noninteger dimensions, by imposing a dispersion of the form
|q|3−δ with δ > 0. It also raises the question of whether we
can obtain pseudocriticality, fixed point annihilation, complex
fixed points, etc., in the one-dimensional (0+1D) model with
a WZ term, by taking a coupling that is long ranged [50,51] in
time, ∼|t − t ′|−(2−δ), and varying δ. This model is relevant to
the dynamics of a spin coupled to a bath [52–54]. We hope to
return to these issues elsewhere.

Note added. Recently, I became aware of independent work
by Ma and Wang reaching the same essential conclusions [55].

I thank J. Chalker, P. Draper, F. Essler, J. March-Russell,
M. Scherer, and T. Senthil for useful discussions. I thank R.
Ma and C. Wang for sharing results prior to publication. This
work was supported by a Royal Society University Research
Fellowship.
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