Note on Wess-Zumino-Witten models and quasiuniversality in 2+1 dimensions

Adam Nahum

Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

(Received 7 August 2020; accepted 4 November 2020; published 30 November 2020)

We suggest the possibility that the two-dimensional $SU(2)_k$ Wess-Zumino-Witten (WZW) theory, which has global SO(4) symmetry, can be continued to $2 + \epsilon$ dimensions by enlarging the symmetry to SO($4 + \epsilon$). This is motivated by the three-dimensional sigma model with SO(5) symmetry and a WZW term, which is relevant to deconfined criticality. If such a continuation exists, the structure of the renormalization group flows at small ϵ may be fixed by assuming analyticity in ϵ . This leads to the conjecture that the WZW fixed point annihilates with a new, unstable fixed point at a critical dimensionality $d_c > 2$. We suggest that $d_c < 3$ for all k, and we compute d_c in the limit of large k. The flows support the conjecture that the deconfined phase transition in SU(2) magnets is a "pseudocritical" point with approximate SO(5), controlled by a fixed point slightly outside the physical parameter space.

DOI: 10.1103/PhysRevB.102.201116

This Rapid Communication makes a conjecture about renormalization group (RG) flows in nonlinear sigma models (NL σ Ms) with Wess-Zumino-Witten (WZW) terms in 2 + ϵ dimensions. It is speculative, since we do not provide a concrete definition of these models in noninteger dimensions. But we point out that assuming the existence of such a continuation in ϵ leads to interesting conclusions. The WZW fixed point survives up to a critical ϵ , at which it annihilates with a new, unstable fixed point that did not exist in two dimensions (2D). This critical ϵ_c can be calculated easily only at large k, where k is the WZW level, but we conjecture that for all k the annihilation occurs in between 2D and 3D. Our motivation is the case $\epsilon = 1$, which is the SO(5)-symmetric NL σ M for a five-component unit vector, in 3D. This is a useful effective field theory for various interesting phase transitions [1-3] that show numerical evidence of emergent SO(5) [4–8]. The scenario obtained here supports, and gives another way of thinking about, the "quasiuniversal" or "pseudocritical" RG flows conjectured previously for these models [9,10], since the fixed point annihilation at $d_c \leq 3$ suggested by this calculation provides a mechanism for slow RG flows in d = 3. We return to this at the end.

The Euclidean action for the $SU(2)_k$ WZW model in 2D, in terms of an SU(2) matrix $g(x_1, x_2)$, is [11–15]

$$S = \frac{1}{2\lambda^2} \int d^2 x \operatorname{Tr}(\partial_{\mu} g^{-1})(\partial_{\mu} g) + ik \Gamma.$$
 (1)

Γ is the WZW term, written in terms of an extension $g(x_1, x_2, x_3)$ of the field to a fictitious 3D "bulk" as $\Gamma = \frac{\epsilon_{\mu\nu\lambda}}{12\pi} \int d^3x \operatorname{Tr}(g^{-1}\partial_{\mu}g)(g^{-1}\partial_{\nu}g)(g^{-1}\partial_{\lambda}g)$. The field lives on the sphere *S*³, and can be written as a four-component unit vector Φ using the Pauli matrices: $g = \Phi_0 \mathbb{I} + i \sum_{a=1}^{3} \Phi_a \sigma^a$. Therefore this is also the standard O(4) sigma model, with the addition of the WZW term, which reduces the internal symmetry to SO(4) = [SU(2)_L × SU(2)_R]/\mathbb{Z}_2. For a given

 $k \in \mathbb{Z}$, the theory has an unstable, trivial fixed point at $\lambda^2 = 0$, and a stable, nontrivial one at $\lambda^2_* = 4\pi/|k|$ [11,15].

The construction generalizes to d dimensions, giving the NL σ M for a (d + 2)-component "spin," with a WZW term and SO(d + 2) symmetry (see, e.g., Ref. [16]),

$$S_d = \frac{1}{\lambda^2} \int (\partial \Phi)^2 + \frac{2\pi i k \epsilon_{a_1 \cdots a_{d+2}}}{\operatorname{area}(S^{d+1})} \int \Phi_{a_1} \partial_{x_1} \Phi_{a_2} \cdots \partial_u \Phi_{a_{d+2}}.$$
(2)

The most interesting case for us in the above hierarchy of theories is S_3 , the SO(5) sigma model in d = 3. In d = 1 the standard kinetic term is irrelevant at low energies, and dropping it leaves the usual coherent-state path integral for a spin of size k/2 [17]. The d = 0 case is an integral: Writing $\Phi_0 + i\Phi_1 = e^{i\theta}$, the action is $S_0 = ik\theta$, and the "correlator" is $\langle e^{im\theta} \rangle = \delta_{m,k}$.

These theories, often with symmetry-breaking anisotropy terms, have many applications to critical phenomena. These applications can usually be understood heuristically from the fact that S_{ℓ} is the effective theory on an appropriate ℓ dimensional defect (built by fixing the configuration of $d - \ell$ components of Φ) in the *d*-dimensional theory S_d . For example, we may construct a hedgehoglike configuration for *d* components of Φ . The effective theory at this defect is S_0 for the remaining two components. The above expression for $\langle e^{im\theta} \rangle$ then shows that such defects are forbidden except at the loci of insertions of $e^{i\theta(x)}$. This is connected to the fact that an anisotropic version of S_3 describes the 3D O(3) model with hedgehog defects forbidden [2,6,18–20].

Motivated by this hierarchy of field theories, let us entertain the possibility that the fixed points present in 2D can be tracked to $2 + \epsilon$ dimensions. Whether this can be made precise is less clear than in the case without a WZW term, where the $2 + \epsilon$ expansion is standard, because the structure of the topological term depends on the dimensionality [21].

FIG. 1. Topology of flows, as a function of dimension. The smudge $(d \gtrsim d_c)$ indicates slow RG flow, without a fixed point.

Nevertheless, if we assume the continuation exists, the flows at small ϵ can be fixed very simply using known results in 2D and assuming analyticity of the RG equations in ϵ . This is inspired by the treatment of the O(*n*) model close to n = d = 2 in Ref. [22].

In two dimensions the one-loop beta function is [11]

$$\frac{d\lambda^2}{d\ln L} = \frac{\lambda^4}{2\pi} \left[1 - \left(\frac{\lambda^2 k}{4\pi}\right)^2 \right].$$
 (3)

The one-loop approximation is justified at large |k| because the fixed point is at $\lambda^2 = O(k^{-1})$, so that the entire action is multiplied by a large parameter of order k [11]. For k of order 1 we should use an unknown exact β function, but with the same topology of flows. We write this schematically as

$$\frac{d\lambda^2}{d\ln L} = \beta_k^{(0)}(\lambda^2). \tag{4}$$

We now go to $d = 2 + \epsilon$, assuming the RG equations are analytic in ϵ ,

$$\frac{d\lambda^2}{d\ln L} = \beta_k^{(0)}(\lambda^2) + \epsilon \,\beta_k^{(1)}(\lambda^2) + \mathcal{O}(\epsilon)^2.$$
(5)

In the limit of small λ^2 we have, trivially,

$$\beta_k^{(0)}(\lambda^2) = \frac{\lambda^4}{2\pi} + \mathcal{O}(\lambda^6), \quad \beta_k^{(1)}(\lambda^2) = -\lambda^2 + \mathcal{O}(\lambda^4). \quad (6)$$

This is already enough to fix the topology of the RG flows when ϵ is small: see Fig. 1, third panel. At $\epsilon = 0$ we have a marginally unstable fixed point at $\lambda^2 = 0$ and a stable one at λ_*^2 . The latter remains stable and isolated for small ϵ [but, if the signs predicted by the perturbative expressions are valid, it shifts towards the origin by $\mathcal{O}(\epsilon)$, and its irrelevant RG eigenvalue moves slightly towards zero]. In contrast, the perturbation splits the fixed point at $\lambda^2 = 0$ into a stable fixed point at $\lambda^2 = 0$ and an *unstable* fixed point at $\lambda_{**}^2 \simeq 2\pi\epsilon$. This splitting in the vicinity of $\lambda^2 = 0$ is similar to the O(N) NL σ M without a WZW term; in both cases the unstable fixed point governs a transition between phases with broken/unbroken symmetry. Here, however, the universality class of the fixed point at λ_{**}^2 is different, as is that of the unbroken phase.

The likely situation is that, at some $d_c(k)$, the unstable fixed point which is moving away from the origin collides and annihilates with the stable fixed point which is moving

FIG. 2. RG eigenvalues *y* for stable (lower branch) and unstable (upper) fixed points as a function of ϵ at large *k*.

towards the origin—so that in high dimensions there is no fixed point for real λ^2 . At $d = d_c(k)$ we have a marginally stable fixed point (Fig. 1).

We can be more concrete when k is large. Consider the scaling $k \gg 1$ with ϵk of order 1. The relevant regime is where λ^2 is of order ϵ . The leading terms are then

$$\frac{d\lambda^2}{d\ln L} = -\epsilon\lambda^2 + \frac{\lambda^4}{2\pi} \left[1 - \left(\frac{\lambda^2 k}{4\pi}\right)^2 \right].$$
 (7)

We see that the annihilation described above indeed occurs, and the critical dimensionality is

$$d_c(k) = 2 + \frac{4}{3\sqrt{3} \times k}.$$
(8)

Figure 2 shows the RG eigenvalues of the stable and unstable fixed points for $d < d_c$.

When $d \gtrsim d_c$ we have pseudocritical RG flows. Slow flow for $\lambda^2 \sim \frac{4\pi}{\sqrt{3k}}$, where the flows are approximately

$$\frac{d\delta\lambda^2}{d\ln L} \simeq -\frac{4\pi (d-d_c)}{\sqrt{3}k} - \frac{(\delta\lambda^2)^2}{2\pi},\tag{9}$$

yields the exponentially large correlation length $\xi \sim \exp \frac{3^{1/4}\pi\sqrt{k}}{\sqrt{2(d-d_c)}}$, as in other theories with a fixed point annihilation [9,23–30]. Reference [10] argued that in such a situation, expanding the RG equations for irrelevant couplings in $d - d_c$ shows that quasiuniversality (independence of UV couplings) holds on long scales, to exponentially good precision in $[d - d_c]^{-1/2}$, despite the fact that λ^2 drifts: Different microscopic models travel along the same quasiuniversal flow line in theory space. For $d \gtrsim d_c$ we also have complex, SO(d + 2)-symmetric fixed points with Im $\lambda^2 \propto \sqrt{d - d_c}$. Complex fixed points have been explored recently in Refs. [31–35].

In the context of deconfined criticality we are interested in 3D models that in the UV have a smaller symmetry than SO(5). If d_c is close enough to 3 to give a large ξ in 3D, and assuming that the four-index symmetric tensor of SO(4 + ϵ) is irrelevant at d_c [4,10] (this is the case at large k, where scaling dimensions are close to those in 2D), then the above flows will lead to a pseudocritical phase transition with approximate emergent SO(5), by the scenario discussed in Refs. [10,36]. This scenario is consistent with simulations, and, since it does not require a unitary 3D fixed point, with conformal bootstrap [37–41]. It is also consistent with what we know about various dual gauge theories for deconfined criticality [9,10], including recent ϵ -expansion [42–45] and large N [46] results. The endpoint of the quasiuniversal flow line is the ordered phase ($\lambda^2 = 0$): In the application to deconfined criticality this means that at the very longest scales the emergent symmetry gets spontaneously broken, giving artificial SO(5) "Goldstone modes" with a very small mass [36,47].

Though speculative, the present lowest-order expansion supports this scenario. If a consistent framework for expanding to higher orders in ϵ [48] can be defined, then this would be one way to put the pseudocriticality scenario for SO(5) on firm ground. The above also suggests examining numerically the 3D models with k > 1 (or rather related sign-free lattice models which could be based on those relevant to the k = 1 case [6,7,9,49]), to test for pseudocriticality there.

We can consider other, related deformations of the WZW model. At the order to which we have worked, changing the

- [1] A. Tanaka and X. Hu, Many-Body Spin Berry Phases Emerging from the π -Flux State: Competition between Antiferromagnetism and the Valence-Bond-Solid State, Phys. Rev. Lett. **95**, 036402 (2005).
- [2] T. Senthil and M. P. A. Fisher, Competing orders, nonlinear sigma models, and topological terms in quantum magnets, Phys. Rev. B 74, 064405 (2006).
- [3] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A. Fisher, Deconfined quantum critical points, Science 303, 1490 (2004).
- [4] A. Nahum, P. Serna, J. T. Chalker, M. Ortuño, and A. M. Somoza, Emergent SO(5) Symmetry at the Néel to Valence-Bond-Solid Transition, Phys. Rev. Lett. 115, 267203 (2015).
- [5] H. Suwa, A. Sen, and A. W. Sandvik, Level spectroscopy in a two-dimensional quantum magnet: Linearly dispersing spinons at the deconfined quantum critical point, Phys. Rev. B 94, 144416 (2016).
- [6] G. J. Sreejith, S. Powell, and A. Nahum, Emergent SO(5) Symmetry at the Columnar Ordering Transition in the Classical Cubic Dimer Model, Phys. Rev. Lett. **122**, 080601 (2019).
- [7] M. Ippoliti, R. S. K. Mong, F. F. Assaad, and M. P. Zaletel, Halffilled Landau levels: A continuum and sign-free regularization for three-dimensional quantum critical points, Phys. Rev. B 98, 235108 (2018).
- [8] Z.-X. Li, S.-K. Jian, and H. Yao, Deconfined quantum criticality and emergent SO(5) symmetry in fermionic systems, arXiv:1904.10975.
- [9] A. Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M. Somoza, Deconfined Quantum Criticality, Scaling Violations, and Classical Loop Models, Phys. Rev. X 5, 041048 (2015).
- [10] C. Wang, A. Nahum, M. A. Metlitski, C. Xu, and T. Senthil, Deconfined Quantum Critical Points: Symmetries and Dualities, Phys. Rev. X 7, 031051 (2017).
- [11] E. Witten, Non-Abelian bosonization in two dimensions, Commun. Math. Phys. 92, 455 (1984).
- [12] A. Polyakov and P. B. Wiegmann, Theory of nonabelian goldstone bosons in two dimensions, Phys. Lett. B 131, 121 (1983).

dimension to $2 + \epsilon$ has the same effect on the RG flows as changing the power of momentum q in the kinetic term to $|q|^{2-\epsilon}$. This raises the question of whether we can study quasiuniversality in the 3D model, while avoiding the WZW term in noninteger dimensions, by imposing a dispersion of the form $|q|^{3-\delta}$ with $\delta > 0$. It also raises the question of whether we can obtain pseudocriticality, fixed point annihilation, complex fixed points, etc., in the *one*-dimensional (0+1D) model with a WZ term, by taking a coupling that is long ranged [50,51] in time, $\sim |t - t'|^{-(2-\delta)}$, and varying δ . This model is relevant to the dynamics of a spin coupled to a bath [52–54]. We hope to return to these issues elsewhere.

Note added. Recently, I became aware of independent work by Ma and Wang reaching the same essential conclusions [55].

I thank J. Chalker, P. Draper, F. Essler, J. March-Russell, M. Scherer, and T. Senthil for useful discussions. I thank R. Ma and C. Wang for sharing results prior to publication. This work was supported by a Royal Society University Research Fellowship.

- [13] V. G. Knizhnik and A. B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nucl. Phys. B 247, 83 (1984).
- [14] I. Affleck and F. D. M. Haldane, Critical theory of quantum spin chains, Phys. Rev. B 36, 5291 (1987).
- [15] P. Francesco, P. Mathieu, and D. Sénéchal, *Conformal Field Theory* (Springer, Berlin, 2012).
- [16] A. G. Abanov and P. B. Wiegmann, Theta-terms in nonlinear sigma-models, Nucl. Phys. B 570, 685 (2000).
- [17] P. B. Wiegmann, Superconductivity in Strongly Correlated Electronic Systems and Confinement Versus Deconfinement Phenomenon, Phys. Rev. Lett. 60, 821 (1988).
- [18] M.-h. Lau and C. Dasgupta, Numerical investigation of the role of topological defects in the three-dimensional Heisenberg transition, Phys. Rev. B 39, 7212 (1989).
- [19] M. Kamal and G. Murthy, New O(3) Transition in Three Dimensions, Phys. Rev. Lett. 71, 1911 (1993).
- [20] O. I. Motrunich and A. Vishwanath, Emergent photons and transitions in the O(3) sigma model with hedgehog suppression, Phys. Rev. B 70, 075104 (2004).
- [21] A framework for dimensional regularization of the 2D WZW model has been developed [56–61]. However, it does not retain Lorentz invariance in $d \neq 2$, so is not suitable for our purpose here.
- [22] J. L. Cardy and H. W. Hamber, O(n) Heisenberg Model Close to n = d = 2, Phys. Rev. Lett. **45**, 499 (1980).
- [23] B. Nienhuis, A. N. Berker, E. K. Riedel, and M. Schick, First- and Second-Order Phase Transitions in Potts Models: Renormalization-Group Solution, Phys. Rev. Lett. 43, 737 (1979).
- [24] J. L. Cardy, M. Nauenberg, and D. J. Scalapino, Scaling theory of the Potts-model multicritical point, Phys. Rev. B 22, 2560 (1980).
- [25] H. Gies and J. Jaeckel, Chiral phase structure of QCD with many flavors, Eur. Phys. J. C 46, 433 (2006).
- [26] D. B. Kaplan, J.-W. Lee, D. T. Son, and M. A. Stephanov, Conformality lost, Phys. Rev. D 80, 125005 (2009).

- [27] A. Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M. Somoza, Phase transitions in three-dimensional loop models and the CP^{n-1} sigma model, Phys. Rev. B **88**, 134411 (2013).
- [28] S. Giombi, I. R. Klebanov, and G. Tarnopolsky, Conformal QED_d, F-theorem and the ϵ -expansion, J. Phys. A: Math. Theor. **49**, 135403 (2016).
- [29] I. F. Herbut, Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation, Phys. Rev. D 94, 025036 (2016).
- [30] S. Gukov, RG flows and bifurcations, Nucl. Phys. B 919, 583 (2017).
- [31] V. Gorbenko, S. Rychkov, and B. Zan, Walking, weak firstorder transitions, and complex CFTs, J. High Energy Phys. 10 (2018) 108.
- [32] V. Gorbenko, S. Rychkov, and B. Zan, Walking, weak first-order transitions, and complex CFTs II. Two-dimensional Potts model at q > 4, SciPost Phys. **5**, 050 (2018).
- [33] H. Ma and Y.-C. He, Shadow of complex fixed point: Approximate conformality of q > 4 Potts model, Phys. Rev. B **99**, 195130 (2019).
- [34] S. Benvenuti and H. Khachatryan, QED's in 2+1 dimensions: Complex fixed points and dualities, arXiv:1812.01544.
- [35] A. F. Faedo, C. Hoyos, D. Mateos, and J. G. Subils, Holographic Complex Conformal Field Theories, Phys. Rev. Lett. 124, 161601 (2020).
- [36] P. Serna and A. Nahum, Emergence and spontaneous breaking of approximate O(4) symmetry at a weakly first-order deconfined phase transition, Phys. Rev. B **99**, 195110 (2019).
- [37] F. Kos, D. Poland, and D. Simmons-Duffin, Bootstrapping the O(N) vector models, J. High Energy Phys. 06 (2014) 091.
- [38] D. Simmons-Duffin (unpublished).
- [39] Y. Nakayama and T. Ohtsuki, Necessary Condition for Emergent Symmetry from the Conformal Bootstrap, Phys. Rev. Lett. 117, 131601 (2016).
- [40] D. Poland, S. Rychkov, and A. Vichi, The conformal bootstrap: Theory, numerical techniques, and applications, Rev. Mod. Phys. 91, 015002 (2019).
- [41] Z. Li, Solving QED₃ with conformal bootstrap, arXiv:1812.09281.
- [42] B. Ihrig, N. Zerf, P. Marquard, I. F. Herbut, and M. M. Scherer, Abelian Higgs model at four loops, fixed-point collision, and deconfined criticality, Phys. Rev. B 100, 134507 (2019).
- [43] L. Janssen and Y.-C. He, Critical behavior of the QED₃-Gross-Neveu model: Duality and deconfined criticality, Phys. Rev. B 96, 205113 (2017).

- [44] B. Ihrig, L. Janssen, L. N. Mihaila, and M. M. Scherer, Deconfined criticality from the QED₃-Gross-Neveu model at three loops, Phys. Rev. B 98, 115163 (2018).
- [45] N. Zerf, P. Marquard, R. Boyack, and J. Maciejko, Critical behavior of the QED₃-Gross-Neveu-Yukawa model at four loops, Phys. Rev. B 98, 165125 (2018).
- [46] R. Boyack, A. Rayyan, and J. Maciejko, Deconfined criticality in the QED₃ Gross-Neveu-Yukawa model: The 1/N expansion revisited, Phys. Rev. B 99, 195135 (2019).
- [47] B. Zhao, P. Weinberg, and, A. W. Sandvik, Symmetry-enhanced discontinuous phase transition in a two-dimensional quantum magnet, Nat. Phys. 15, 678 (2019).
- [48] At large k both nontrivial fixed points (stable and unstable) are close to the origin. If we fix k and treat only ϵ as small, then it is the unstable fixed point that is accessible.
- [49] A. W. Sandvik, Evidence for Deconfined Quantum Criticality in a Two-Dimensional Heisenberg Model with Four-Spin Interactions, Phys. Rev. Lett. 98, 227202 (2007).
- [50] J. M. Kosterlitz, Phase Transitions in Long-Range Ferromagnetic Chains, Phys. Rev. Lett. 37, 1577 (1976).
- [51] E. Brézin, J. Zinn-Justin, and J. C. Le Guillou, Critical properties near σ dimensions for long-range interactions, J. Phys. A: Math. Gen. 9, L119 (1976).
- [52] W. Philip, G. Y. Anderson and D. R. Hamann, Exact results in the Kondo problem. II. Scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical models, Phys. Rev. B 1, 4464 (1970).
- [53] S. Sachdev, Quantum impurity in a magnetic environment, J. Stat. Phys. 115, 47 (2004).
- [54] M. Vojta, Impurity quantum phase transitions, Philos. Mag. 86, 1807 (2006).
- [55] R. Ma and C. Wang, Theory of deconfined pseudocriticality, Phys. Rev. B 102, 020407(R) (2020).
- [56] M. Bos, Dimensional regularization in the Wess-Zumino-Witten model, Phys. Lett. B 189, 435 (1987).
- [57] M. Bos, An example of dimensional regularization with antisymmetric tensors, Ann. Phys. **181**, 177 (1988).
- [58] Z.-M. Xi, Three-loop beta-function of the Wess-Zumino-Witten model, Phys. Lett. B 214, 204 (1988).
- [59] Z.-M. Xi, Dimensional regularization and three-loop beta function of the Wess-Zumino-Witten model, Nucl. Phys. B 314, 112 (1989).
- [60] B. de Wit, M. T. Grisaru, and P. Van Nieuwenhuizen, The WZNW model at two loops, Nucl. Phys. B 408, 299 (1993).
- [61] D. B. Ali and J. A. Gracey, Four loop wave function renormalization in the non-Abelian Thirring model, Nucl. Phys. B 605, 337 (2001).