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Superconductivity is a macroscopic quantum phenomenon that requires electron pairs to delocalize over large
distances. A long-standing question is whether superconductivity can exist even if the electrons’ kinetic energy
is completely quenched, as is the case in a flat band. This is fundamentally a nonperturbative problem, since
the interaction energy scale is the only relevant energy scale, and hence it requires going beyond the traditional
Bardeen-Cooper-Schrieffer theory of superconductivity, which is perturbative by nature. In this work, we study
a two-dimensional model of an isolated narrow band at partial filling with local attractive interactions, using
numerically exact quantum Monte Carlo calculations. We focus on the case where the flat bands are topologically
nontrivial, and hence the single-particle wave functions that span these bands cannot be completely spatially
localized. Our calculations unambiguously demonstrate that the ground state is a superconductor; strikingly, the
critical temperature scales nearly linearly with the interaction strength. Above the superconducting transition
temperature, we find a broad pseudogap regime that exhibits strong pairing fluctuations and a tendency towards
electronic phase separation. Introducing a small nearest-neighbor attraction suppresses superconductivity en-
tirely and drives the system to phase separate. We discuss the possible relevance of superconductivity in this
unusual regime to the physics of flat band moiré materials.
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Introduction. What is the highest attainable superconduct-
ing temperature Tc in a given system? This decades-old
question has become pressing with the discovery of su-
perconductivity in two-dimensional materials with moiré
superlattices [1–5], which offer unprecedented control over
the electronic band structure and density. It is natural to ask
what sets Tc in these systems, as a step towards optimizing it
further. In general, Tc is limited by two different energy scales:
the pairing scale associated with Cooper pair formation, and
the phase ordering (or phase coherence) scale, set by the
superconducting phase stiffness [6]. Optimizing one energy
scale often comes at the expense of the other. For exam-
ple, in the paradigmatic attractive Hubbard model, increasing
the interaction strength beyond a certain limit decreases the
phase ordering temperature; the optimal Tc is achieved when
the attractive interaction U and the electronic bandwidth W
are comparable, and the maximum attainable Tc is about
0.02W [7,8].

Intriguingly, it has been suggested that in certain cases,
superconductivity can survive even in the limit where the
active electronic bands become perfectly flat [9–13]. As long
as the interaction strength is much smaller than the gap be-
tween the active narrow band and the other bands, one expects
Tc to be proportional to U , which is effectively the only energy
scale in the problem. The phase stiffness need not vanish even
as the bandwidth vanishes, as long as the single-particle states
cannot all be tightly localized [14,15], as in, e.g., topological
bands. Note that in this case, upon projecting the problem to
the active flat bands, the recently proven upper bound on the
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phase stiffness [16] in terms of the bandwidth of the isolated
band does not apply, unless contributions from the remote
bands are also included [17]. Interestingly, in several moiré
systems where superconductivity is found, the active bands
have been argued to have a topological character [18–24].

Within Bardeen-Cooper-Schrieffer (BCS) mean-field the-
ory, lower bounds on the phase stiffness in a topological band
have been proven [25–28]; however, in the limit of a flat
band, the problem is inherently strongly coupled and BCS
mean-field theory is generally uncontrolled [29]. In particular,
all sorts of competing electronic orders may arise (such as
charge order and electronic phase separation), and suppress
the superconducting Tc. While studies of superconductivity in
flat bands have been performed [25,30–33], superconductivity
with Tc ∝ U has never been rigorously demonstrated in a
solvable model. In addition, the nature of the normal (non-
superconducting) state out of which such a superconductor
may arise has not been clarified.

In order to address these fundamental questions, we study
a sign-problem free lattice electronic model [Fig. 1(a)] with
partially filled, flat bands [Fig. 1(b)] with Chern numbers
C = ±1 in the regime of strong attractive interactions using
the numerically exact, unbiased determinant quantum Monte
Carlo method [34,35]. It has recently been pointed out that
the isolated flat bands in magic-angle twisted bilayer graphene
can be decomposed into a total of four C = 1 and four C = −1
bands [36]. Moreover, in a particular solvable limit [37], these
Chern bands are tied to a particular sublattice polarization.
While the model we study here hosts only two flat C = ±1
bands and does not directly describe the low-energy physics
of any particular material, our study serves as a proof-of-
principle for addressing many of the questions raised above,
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FIG. 1. (a) Lattice model with π flux through every plaquette,
two orbitals (A and B), and first, second, and fifth nearest-neighbor
hopping of amplitude t1, t2, and t5. (b) Top (bottom): band disper-
sions for t5 = 0.0 (−0.1) with “flatness ratios” F = 0.2 (0.009).
The lower bands have Chern numbers C = +1 (−1) for spin-up
(spin-down) particles. Red (blue) indicates high (low) energy. (c) The
superconducting Tc (in blue) and the “pseudogap temperature,” Tp

[in red, defined through the maximum in the spin susceptibility; see
panel (d)] as a function of U . Solid and dashed lines correspond to the
band structures shown in (b), with F = 0.2 and 0.009, respectively.
(d) The orbital and spin magnetic susceptibilities for the dispersive
(flat) band with U = 1 (U = 3).

paving the way for constructing more realistic models for
future studies.

We summarize our main findings as follows: (i) For purely
on-site interactions, the ground state is an s-wave supercon-
ductor, and in the limit where the electronic bandwidth W is
much smaller than U , there is a broad regime of parameters
where Tc ∝ U [Fig. 1(c)]. (ii) Above Tc, a broad “pseudogap”
regime is found, characterized by the opening of a spin gap
[Figs. 1(c) and 1(d)] and a gap to single-electron excitations
(Fig. 3) without long-range superconductivity. This regime is
characterized by two competing tendencies towards supercon-
ductivity and towards electronic phase separation (the latter is
signaled by an enhanced electronic compressibility), as a con-
sequence of an approximate emergent SU(2) symmetry at low
energies [32]. (iii) Adding a small nearest-neighbor attraction
breaks the SU(2) symmetry and drives an instability to phase
separation, thereby destroying superconductivity (SC).

Model. We consider the Hamiltonian H = Hkin + Hint, de-
fined on a two-dimensional (2D) square lattice:

Hkin =
[
−t1

∑
〈i, j〉,σ

eiφσ
i j c†

i,σ c j,σ − t2
∑

〈i, j〉2,σ

s〈i, j〉2 c†
i,σ c j,σ

−t5
∑

〈i, j〉5,σ

c†
i,σ c j,σ + H.c.

]
− μ

∑
i

ni, (1)

Hint = −U

2

∑
i

(ni − 1)2. (2)

(a)

(c) (d)
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FIG. 2. The superfluid stiffness Ds(T ) [Eq. (4)] for the (a) flat-
band (F = 0.009, U = 3) and (b) dispersive (F = 0.2, U = 1)
cases, and different system sizes. The black line denotes the universal
BKT jump, Ds = 2T/π . (c) and (d) Ds(T ) for various coupling
strength U on the largest simulated lattice. In (c), Ds(T )/U curves
for different U ’s collapse onto each other when plotted vs T/U ,
confirming that U is effectively the only energy scale in the flat-band
case. The shaded area marks the collapsed function in both (c) and
(d) to guide the eye for comparison.

Here, c†
i,σ (ci,σ ) are fermion creation (annihilation) opera-

tors, ni = ∑
σ c†

iσ ciσ is the local density, and t1, t2, and t5
denote the first, second, and fifth nearest-neighbor hopping
parameters [see Fig. 1(a)], respectively. The single-particle
Hamiltonian is a generalization of the model introduced in
Ref. [38], designed to give flat bands with Chern numbers
C = ±1. The arrows along the t1 bonds in Fig. 1(a) mark the
direction associated with φ

↑
i j = +π

4 , and the solid (dashed)
second-neighbor bonds (whose strength is t2) have a positive
(negative) sign s〈i, j〉2 . The red bonds denote t5. The density
can be tuned by the chemical potential, μ. The phases satisfy
φσ

i j = −φ−σ
i j , such that time-reversal symmetry is preserved

(a)

(b)

FIG. 3. The quantity βG̃(k), that serves as a proxy for the spec-
tral function near the Fermi energy [see Eq. (5) and the following
discussion], as a function of k. The green lines denote the Fermi
surface in the noninteracting case. In (a), U = 1 and the temperatures
are T = 0.25, 0.06, 0.03; in (b), U = 3 and T = 0.4, 0.1, 0.05.
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and φ
↑
i j = ±π

4 such that each plaquette encloses π flux. U > 0
is the strength of a local attractive interaction.

It is convenient to define the vectors a1 ≡ (1, 1) and a2 ≡
(1,−1); k then denotes momenta in the Brillouin zone dual to
the lattice spanned by a1, a2 [see Fig. 1(a)]. Hkin can be written
as

Hkin =
∑

k

�
†
k Ĥk�k, Ĥk = B0,k1 + Bk · τ, (3)

where �
†
k = (c†

k,A c†
k,B) and τ ≡ (τx, τy, τz ) are the Pauli ma-

trices that act on the sublattice index (A, B).
This leads to two bands, εk = B0,k ± |Bk| [39]. For the

remainder of this study, we fix our hopping parameters t1 =
1, t2 = 1/

√
2 and measure all quantities in units of t1. For

t5 = 0, the gap between the two bands is 	gap = 4 and the
bandwidth of the lower band is W = 0.828 [Fig. 1(b)]; the
“flatness ratio,” F ≡ W/	gap = 0.2. We can tune the band-
width of the lower Chern band by varying t5. The flatness
ratio is minimized by t5 = 1−√

2
4 where the bandwidth for the

lower band, W ≈ 0.035, while the gap remains at 	gap = 4,
such that F = 0.009. For most of our study, we focus on (a)
F = 0.2 and (b) F = 0.009 for a range of values between
U = 1–4, and the case of quarter-filling (ν = 1/4), corre-
sponding to a half-filled (lower) Chern band.

Superconductivity. In order to diagnose the possible onset
of SC, we compute the phase stiffness Ds. We evalu-
ate the paramagnetic current-current correlation function,
�xx(q, iωm = 0), at zero external Matsubara frequency and
use the relation [7,40]

Ds = 1
4 [−Kx − �xx(q = 0)]. (4)

Here, Kx = 〈[∂2H/∂A2
x]Ax=0〉 is the diamagnetic current con-

tribution, where Ax is a vector potential in the x direction,
introduced via minimal coupling. The 1/4 prefactor is due
to charge-2 Cooper pairs [39]. We plot Ds(T ) as a func-
tion of temperature in Figs. 2(a) and 2(b). The chemical
potential μ(T ) is tuned such that ν = 1/4. In 2D, Tc can be
determined from the Berezinskii-Kosterlitz-Thouless (BKT)
condition Tc = πD−

s /2, where D−
s ≡ Ds(T →T −

c ). The black
solid line denotes the curve Ds = 2T/π , the intersection of
which with Ds(T ) gives Tc. The Tc values extracted from
Ds(T ) are consistent with an independent analysis of the
superconducting correlation length ξSC/L presented in the
Supplemental Material [39] (see, also, Ref. [1] therein).

The slightly negative Ds values found at high temperatures
are associated with Trotter errors, and we have checked that
they decrease in magnitude towards zero upon decreasing the
imaginary time step 	τ . We have also confirmed the absence
of a few possible competing orders such as a charge density
wave, a bond density wave, or magnetic states [39].

The BKT transition temperature as a function of U is
shown in the inset of Fig. 1(c) for the two band structures with
F = 0.2, 0.009. Most strikingly, for the narrower band, Tc

depends almost perfectly linearly on U : Tc ≈ 0.025U . In the
case of the more dispersive band, Tc is higher than for the nar-
rower band, and has a downward curvature. As U increases,
the Tc’s of the two band structures approach each other. This
behavior can be understood in terms of two contributions to
the phase stiffness: (i) a geometric contribution originating

from the finite extent of the wave functions spanning the
topological bands, that does not vanish even in the W → 0
limit, and (ii) the conventional contribution originating from
the single-particle kinetic energy.

The dependence of Tc on U is hence markedly different
both from the conventional weak-coupling BCS behavior,
Tc ∼ We−W/U , and from the strong-coupling behavior found
in the attractive Hubbard model, Tc ∼ W 2/U . To shed more
light into the origin of this behavior, we present in Figs. 2(c)
and 2(d) scaling plots of Ds/U as a function of T/U for
different values of U . For the narrower band [panel (c)], the
curves collapse. This can be understood by considering the
limit W � T � 	gap. Since the upper band can effectively
be projected out in this regime, the superfluid density must be
of the form Ds = U f (T/U, ν), where f is a scaling function
that depends only on the Bloch wave functions of the lower
band. Fixing ν gives a scaling collapse of the form observed
in Fig. 2(c). For the more dispersive case [panel (d)] the
curves do not collapse. As U increases, however, the F = 0.2
curves converge towards the shaded form, which is the scaling
function for F = 0.009.

Normal-state properties. Let us now examine the properties
of the normal (nonsuperconducting) state for T > Tc. In the
limit where the bare band is very narrow, the key question
is whether the normal state should be understood in terms of
coherent quasiparticle excitations whose bandwidth is set by
the interaction strength, or as an incoherent liquid of Cooper
pairs [41,42]. As described below, our findings are consistent
with the latter scenario: as F decreases, a broad “pseudogap”
regime appears above Tc, characterized by the opening of a
gap for spin and single-particle excitations. The pseudogap
regime further displays strong superconducting fluctuations
and a tendency towards phase separation.

In order to probe the single-electron spectral function,
A(k, ω) = −π−1Im G(k, ω), we recall that the imaginary-
time Green’s function, G(k, τ ) = ∑

α=A,B〈c
αk(τ )c†

αk(0)〉, for
0 < τ < β has the following property [43]:

G(k, τ ) =
∫ ∞

−∞
dω

e−ω(τ−β/2)

2 cosh(βω/2)
A(k, ω). (5)

Thus, G̃(k) ≡ G(k, τ = β/2) is the integrated spectral weight
around the Fermi level over a width of ∼T . In particular,
limT →0 βG̃(k) = πA(k, ω = 0). Figures 3(a) and 3(b) show
the evolution of G̃(k) as a function of decreasing tempera-
ture from T ∼ 4Tc down to T ∼ Tc/2 for two parameter sets,
(F ,U ) = (0.2, 1) and (0.009, 3).

For the more dispersive band [Fig. 3(a)], G̃(k) is peaked
near the noninteracting Fermi surface (but is significantly
broadened). Moreover, even in the SC state at T ∼ Tc/2,
when the Fermi surface develops a SC gap, the remnant of
the gapped Bogoliubov spectrum continues to remain visible
near the original Fermi surface. On the other hand, for the
flatter band at stronger coupling, G̃(k) is completely feature-
less across Tc, showing no sign of coherently propagating
quasiparticles nor a well-defined Fermi surface. Hence, su-
perconductivity here cannot be understood as a Fermi surface
instability.
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(a) (b)

FIG. 4. (a) The reciprocal pairing and charge susceptibilities
are shown for F = 0.2, U = 1t1 (solid) and F = 0.009, U = 3t1

(dashed). (b) Same as (a) but with an additional nearest-neighbor
interaction Hint,nn [see Eq. (8)], with V = 0.2t1.

The normal state is further characterized by its charge,
magnetic (Zeeman and orbital), and pairing susceptibilities,
defined as

χÔ = L−2
∫ β

0
dτ 〈Ô(τ )Ô(τ = 0)〉, (6)

χorb = lim
q→0

q−2
[
�t

xx(q) − �l
xx(q)

]
, (7)

with Ô being the total z component of the spin (Sz =∑
j c†

jσ
zc j), charge [N = ∑

j (n j − ν)], and s-wave pairing
(	 = ∑

j c j,↑c j,↓ + H.c.), respectively. For the orbital mag-
netic susceptibility, we use the notation �t

xx(q) = �xx(qx =
0, qy = q) and �l

xx(q) = �xx(qx = q, qy = 0) for the trans-
verse and longitudinal components [39].

The spin and orbital magnetic susceptibilities are presented
in Fig. 1(d). The spin susceptibility, χSz , shows a clear sup-
pression below a characteristic temperature scale, indicating
the onset of a spin gap. We define the “pseudogap tempera-
ture” Tp as the location of the maximum of χSz (T ), shown in
Fig. 1(c) as a function of U , and is found to be substantially
above Tc at strong coupling. χorb is positive (paramagnetic)
at high temperature, but drops sharply and becomes large
and negative (diamagnetic) at a temperature above Tc. The
sign change in χorb occurs at T ≈ 0.05U [Fig. 1(d)]. This
behavior can be understood as the consequence of the onset
of pairing fluctuations, which give a diamagnetic contribution
to the orbital susceptibility.

Finally, we present the reciprocal pairing and charge sus-
ceptibilities, χ−1

	 , χ−1
N , in Fig. 4(a). For a broad range in

temperature below 	gap and above Tc, the pairing suscep-
tibility appears to follow a Curie-Weiss law χ	 ∼ (T −
�)−1. Strikingly, the charge susceptibility χN is also strongly
enhanced in the same temperature regime. This signals a
tendency towards phase separation, driven by the same at-
tractive interaction that is responsible for superconductivity.
Phase separation is ultimately preempted by superconductiv-
ity, and χN saturates below Tc. The enhancement of χN with
decreasing temperature is particularly strong for the narrower
band. This can be understood as a consequence of an emer-
gent SU(2) symmetry in the limit F → 0 and U/	gap → 0
[32,39]. Here, the BCS wave function is an exact ground state.
The SU(2) symmetry relates the superconducting suscepti-
bility to the charge susceptibility; hence, χ	 = χN , and both
diverge in the limit T → 0.

In our system, the SU(2) symmetry is weakly broken, due
to both the finite U/	gap and the nonzero bandwidth [39].
This tilts the balance in favor of superconductivity, render-
ing Tc finite and saturating χN . Interestingly, in the case of
the more dispersive band, χN continues to be temperature
dependent even for T < W = 0.828t1. This is reminiscent
of the behavior observed in the repulsive Hubbard model at
intermediate temperatures [44,45].

The close competition between superconductivity and
phase separation suggests that the superconducting state is
fragile. To demonstrate this, we studied the effect of adding
nearest-neighbor interactions to our original Hamiltonian,

Hint,nn = −V
∑
〈i, j〉

(ni − 1)(n j − 1). (8)

Figure 4(b) shows χ−1
	 (T ), χ−1

N (T ) for V = 0.1U = 0.2t1.
The nearest-neighbor interaction drives a finite-temperature
instability towards phase separation, signaled by χ−1

N → 0,
that preempts the superconducting transition. This fragility of
the superconducting state is a consequence of the approximate
SU(2) symmetry; the nearest-neighbor attraction breaks the
symmetry and favors phase separation. Note that this is a
strong-coupling effect, not attainable within a BCS treatment
of the problem.

Discussion and outlook. We have demonstrated explic-
itly that superconductivity is possible in the limit of nearly
flat bands in the presence of local attractive interactions. In
this strong-coupling regime, the interaction strength is the
dominant energy scale; consequently, Tc ∝ U . Moreover, su-
perconductivity emerges from a pseudogap regime, where
single-particle and spin excitations are gapped, and supercon-
ducting as well as particle number fluctuations are strongly
enhanced. The close competition between the tendencies to-
wards superconductivity and phase separation is a result of
an emergent SU(2) symmetry that relates the two. The low-
energy physics can be captured by a nonlinear sigma model
(NLSM), supplemented by a small anisotropic term that fa-
vors either SC or phase separation [39].

Clearly, an essential ingredient for superconductivity in the
flat-band regime is the geometric character of the band; it
is crucial that the wave functions spanning the band are not
completely localizable [25,26]. The minimal spatial extent
of the wave functions, set by the “quantum metric” of the
band [15], ultimately determines the kinetic energy of the
Cooper pairs. An interesting open question, worthy of further
investigations, is to what extent is band topology essential for
superconductivity in this regime.

Finally, we speculate about the relevance of the physics
discussed here to superconductivity in two-dimensional moiré
materials. In these systems, superconductivity is indeed found
in extremely narrow, topologically nontrivial bands. It would
be interesting to look for a pseudogap regime above the su-
perconducting Tc, characterized by strong pairing fluctuations
and an enhanced electronic compressibility. Incidentally, in-
direct signatures of a possible pseudogap above Tc have been
reported in twisted bilayer graphene [46].
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