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Exceptional points in Fermi liquids with quadrupolar interactions
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We show the existence of non-Hermitian degeneracies, known as exceptional points, in the collective mode
spectrum of Fermi liquids with quadrupolar interactions. Through a careful analysis of the analytic properties of
the dynamic quadrupolar susceptibility, we show that, in the weak attractive region, two stable collective modes
coalesce to an exceptional point. We completely characterize this singularity, explicitly showing its topological
properties. Experimental signatures are also discussed.
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Introduction. Open quantum systems play a central role in
most applications of quantum mechanics [1]. An important
theoretical tool to describe dissipative quantum systems is the
modeling of locally nonconservative systems by effective non-
Hermitian Hamiltonians [2–4]. These types of Hamiltonians
have several counterintuitive properties. Perhaps one of the
most striking ones is the appearance of non-Hermitian degen-
eracies [5] known as exceptional points (EPs) [6,7].

When a non-Hermitian Hamiltonian continuously depends
on external parameters, it could happen that, for certain values
of the parameters, two or more eigenvalues coalesce to an
EP. However, this is not a usual degeneracy, as observed
in Hermitian systems. In an EP, not only do the eigen-
values coincide but also the eigenvectors become linearly
dependent [8], reducing in this way the dimension of the
subspace associated with the degenerated eigenvalue. This
singularity of the Hilbert space has remarkable topological
consequences [9–13]. The relation between EPs and dynam-
ical phase transitions was recognized early in theoretical as
well as experimental works [14–17].

In recent years, exciting findings of EPs are showing up
in very different contexts, strengthening the broad interest in
this subject; from nuclear [18] and atomic physics [19–21]
to Bose-Einstein condensates [22] and strongly correlated
fermion systems [23], passing through microwave cavi-
ties [24] and SWAP gates in spin systems [16,25]. Moreover,
the topological properties of EPs were experimentally studied
in metamaterial setups [26,27].

In this Rapid Communication, we report the existence of
exceptional points in the spectrum of collective excitations of
Fermi liquids [28] with higher-order Landau parameter inter-
actions. Fermi liquids with quadrupolar interactions caught
the attention of the condensed matter community because it
is the simplest model supporting an isotropic-nematic transi-
tion [29]. Nematic fluctuations play a crucial role in several
strongly correlated systems, such as cuprates and Fe-based
superconductors and a variety of quantum Hall effects [30].

Collective excitations of Fermi liquids with quadrupolar in-
teractions have been studied in different regimes [29,31–35].
Here, we explicitly show the appearance of a non-Hermitian

singularity for weak quadrupolar attraction. We completely
characterize this exceptional point, by analyzing the Hilbert
space structure and its topological properties. Finally, we dis-
cuss some possible experimental setups.

Model. We consider the simplest model of bidimensional
spinless fermions with local quadrupolar interactions. The
Hamiltonian is

H =
∫

d2r
{
ψ†(r)ε(∇)ψ (r) + F2

4
Tr[Q2(r)]

}
, (1)

where ψ (r) is a spinless fermionic field operator. The
bare dispersion relation is given by ε(∇), where ∇ is the
two-dimensional gradient operator. F2 is the quadrupolar
coupling constant. The quadrupolar fermionic density Qi j =
ψ†(r)[∇i∇ j − (δi j/2)∇2]ψ (r), with i = 1, 2, is a symmetric
traceless tensor of rank 2, invariant under π rotations.

Collective modes are encoded in the dynamic quadrupolar
susceptibility (DQS) χi jlm(ω, q) = 〈Qi j (−ω,−q)Qlm(ω, q)〉.
DQS have been intensively studied [29,31,36,37] in the
vicinity of a quantum critical point, where non-Fermi-liquid
behavior is expected. Conversely, in this Rapid Communi-
cation we study the dynamic response in the Fermi-liquid
regime. Since the quadrupolar moment has two degrees of
freedom, the susceptibility has essentially two independent
polarizations, the longitudinal χ+

2 (ω, q) and the transversal
polarization χ−

2 (ω, q). These quantities have been computed
using different approximation approaches [29,31–33,38]. In
the limit of small momentum q � kF , where kF is the Fermi
momentum, the result is [31] (please see the Supplemental
Material [39] for a detailed description of the calculation)

χ±
2 (ω, q) = χ0

0 (s) ± χ0
4 (s)

1 − F2
[
χ0

0 (s) ± χ0
4 (s)

] , (2)

where

χ0
2� =

[
−δ�,0 + K0(s)

(
1 − K0(s)

1 + K0(s)

)�]
, (3)

with K0(s) = s/
√

s2 − 1. Equation (3) with � = 0, 2 are the
bare density and quadrupolar susceptibilities, respectively.
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FIG. 1. Collective modes from the longitudinal polarized com-
ponent of the DQS χ+

2 (s). In the upper panel we plot Re[s(F2)] while
in the lower panel we depict Im[s(F2)].

Equation (2) has the usual structure of an effective interaction
in the traditional random phase approximation (RPA). Due to
the locality of the quadrupolar interaction (i.e., F2 does not
depend on q), the DQS is not a function of ω and q inde-
pendently. Instead, it depends on the dimensionless variable
s = ω/qvF , where ω is the frequency and qvF is the maximum
energy of a particle-hole excitation with momentum q = |q|
and Fermi velocity vF = |vF|. It is worth mentioning that in
the computation of Eq. (2), rotational invariance and particle-
hole symmetry were imposed.

Collective modes. The DQS is an analytic function of s,
having poles and cuts. It has branch points at s = ±1; the
threshold of Landau damping ω = ±vF q. We will focus on
the longitudinal polarization χ+

2 (s) since, as we will show, this
component displays an EP. Collective modes are computed
by solving the algebraic equation F2[χ0

0 (s) + χ0
4 (s)] = 1. We

have numerically solved it for F2 running from the strong
attractive (F2 = −1) to the strong repulsive regime (F2 > 1).
We display the result in Fig. 1. In the upper panel, we show
the real part of the collective modes as function of F2, while
in lower panel we show the imaginary part. In the repulsive
region (F2 > 0), we observe a stable (real) mode that tends
to s = 1 when F2 → 0. This is the quadrupolar equivalent
of the Landau zero sound. In addition, a damped mode also
appears in the same region. The stable mode is continuously

extended to the weak attractive region F2 � 0. However, in
this regime, there is another stable mode with a divergent
behavior, s → +∞ when F2 → 0−. The existence of such
a mode was reported in Ref. [33]. Interestingly, there is a
special point, F c

2 , where both stable modes meet together.
For F2 < F c

2 , these modes become damped, as can be clearly
seen in the lower panel of Fig. 1. We can also observe an
overdamped mode (purely imaginary) in all of the attractive
region. This mode is the precursor of the isotropic-nematic
phase transition that occurs at F2 = −1 and has already been
extensively studied [29,31].

Exceptional point. In order to analytically characterize the
singularity at F2 = F c

2 , we first observe that s(F c
2 ) � 1, being

well separated from the cut s2 < 1. On the other hand, the
singularity is sufficiently close to s = 1, allowing us to try
a series expansion of χ+

2 (s) in the neighborhood of s = 1.
For simplicity, let us work with the inverse of the DQS,
L+(s) = [χ+

2 (s)]−1. Expanding this quantity in terms of the
variable

√
(s − 1)/2, we find the following expansion (please

see Supplemental Material [39] for details of the calculation),

L+(s) = −F2 +
√

s − 1

2
+ 5

(
s − 1

2

)
+ O[(s − 1)3/2]. (4)

Longitudinal quadrupolar fluctuations δQ+(s, q) are governed
by the effective action

Seff =
∫

dωd2q

(2π )3
L+(s)|δQ+(s, q)|2. (5)

The collective modes are given by the roots of L+(s) = 0.
Using Eq. (4), we obtain

s± = 1

25
{(26 + 10F2) ±

√
20F2 + 1}. (6)

s±(F2) has a square-root singularity (branch point) at F c
2 =

−1/20. At this point, both zeros are degenerated, s±(F c
2 ) =

51/50. We depict the real and imaginary part of s±(F2) in
Fig. 2. Thus, the approximation made in Eq. (4) for |s − 1| �
1 correctly captures the presence of the degeneracy point ob-
served in the numerical computation of Fig. 1. The square-root
singularity is a typical signature of an exceptional point [40].

The dynamics described by Eq. (4) is nonlocal in time.
However, since the degeneracy is separated from the cut, we
can further expand L+(s) in the neighborhood of s = s±. In
addition, we observe that the local character of the interac-
tion imposes that L+(s) only depends on the dimensionless
variable s. Thus, we can consider quadrupolar fluctuations
δQ+(s), ignoring any momentum dependence not scaling with
s. The consequence is that all collective modes in this ap-
proximation have a linear dispersion relation ω ∼ vF q. This
is a good approximation for weak interactions. However, it
breaks down in the strongly attractive regime (F2 ∼ −1),
where nonlocal interactions F2(q) are essential [31]. With
these considerations, we arrive at the effective action

Seff =
∫

ds{(s − ε1) (s − ε2) + w2}|δQ+(s)|2, (7)

where ε1 = (1/25)(27 + 10F2), ε2 = (1/25)(25 + 10F2), and
w = (1/25)

√
20|F2| are real positive numbers in the vicinity

of the EP. The zeros of the Lagrangian are given of course by
Eq. (6).
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FIG. 2. Solutions of L+(s±) = 0, given by Eq. (6) as a function
of the parameter F2. The upper panel shows the real part of s±, while
lower one depicts the imaginary part. The point F2 = −1/20, where
both eigenvalues coalesce and the imaginary part emerges, is the
exceptional point.

In order to rewrite the effective action in the Hamiltonian
formalism (first order in time), we introduce a two-component
vector field δQ+ = (δQ1, δQ2). In terms of this field, the
effective action reads (please see Supplemental Material [39]
for details)

Seff =
∫

ds(δQ+)†(sI − Heff )δQ+, (8)

where I is the 2 × 2 identity matrix and the effective Hamil-
tonian is

Heff =
(

ε1 iw
iw ε2

)
. (9)

It is straightforward to verify that, integrating out the vector
component δQ2, we obtain the effective action of Eq. (7) for
the field δQ1. Therefore, the dynamics near the singularity
is driven by a 2 × 2 symmetric effective Hamiltonian (non-
Hermitian), which determines the properties of the EP [41].

Hilbert space and topology. The Hilbert space spanned
by the basis ψ± and its dual, spanned by φ±, are in general
different in non-Hermitian Hamiltonian systems. They are
defined by

Heffψ± = s±ψ±, (10)

H†
effφ± = s∗

±φ±. (11)

Biorthogonality requires 〈φi|ψ j〉 = δi j with i, j = ±. Since
the effective Hamiltonian is symmetric, the dual space is
spanned by φ± = ψ∗

±. Solving Eq. (10), we find

ψ± = c±
(

1
−i√
1−z

[1 ∓ z1/2]

)
, (12)

where c± are complex normalization constants. We have in-
troduced the variable z = 1 + 20F2, in order to have the EP
at z = 0. As anticipated, not only does s+ = s− at the EP,
but the eigenvectors collapse to ψEP

± = c±(1,−i). This fact
produces that 〈φEP|ψEP〉 = 0, which is evidently in conflict
with biorthogonality. In this way, the EP is a singularity in
the structure of the Hilbert space [8]. This singularity in-
duces remarkable topological properties. To show this, let us
compute the geometric phase that the wave function picks
up when the EP is winded in parameter space. For this,
we analytically continue z to the complex plane and define
the Berry phase as γ = i

∮
C d� · A, where the one-form A =

〈φ+|∇ψ+〉/〈φ+|ψ+〉 [42], C is a closed path, and ∇ is the
gradient in parameter space z. The equivalent definition with
φ− and ψ− eigenvectors provides the same result. Notice that
A is ill defined at the EP since, at this point, the denominator
is zero. The particular structure of the Hilbert space and its
dual allows us to rewrite the vector form as a total derivative
(locally a pure gauge), A = (1/2)∇ ln〈φ+|ψ+〉. Thus, the EP
is a branch point of the logarithm. Each time the phase of
〈φ+|ψ+〉 winds the branch point, the logarithm picks up a
2π i term. This property does not depend on the specific path,
provided the path encircles the EP. Thus, we can compute γ

considering a very small circumference around the EP. Using
Eq. (12), we find for |z| � 1, 〈φ+|ψ+〉 ∼ z1/2. Due to the
square-root singularity, the phase of 〈φ+|ψ+〉 is half the phase
of z. Therefore, taking the path C winding two times the EP,
the Berry phase γ = π , in agreement with results obtained for
general symmetric non-Hermitian Hamiltonians [43]. In this
way, in encircling the EP, it is necessary to wind four times
the singularity to return to the original state [44]. Recently,
this unique topology of EPs was experimentally confirmed in
metamaterial setups [26,27].

Experimental signatures. Information about the collective
excitations of strongly correlated systems can be obtained by
measuring momentum-resolved dynamic susceptibility in the
meV scale [45]. The detection of a stable mode near the usual
zero sound could be an indication of the presence of an EP.
Moreover, pump-probe spectroscopy [46–48] yields impor-
tant information on the dynamic response in the time domain.
An experimental signature can be obtained from χ+

2 (q, t ), by
Fourier transforming the DQS in the neighborhood of the EP.
For F2 > F c

2 , the retarded susceptibility is

Re[χ+
2 (q, t )] = 2vF q

[
sin(ω−t )

ω−

]
cos(ω+t )�(t ), (13)

where ω± = (s+ ± s−)vF q/2 and �(t ) is the Heaviside dis-
tribution. We clearly observe two well-separated timescales
since ω+/ω− � 1. At the EP, ω− = 0 and sin(ω−t )/ω− → t .
Thus, the signature of the EP is a growing linear modulat-
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Re

FIG. 3. Re[χ2(q, t )]/2vF q as a function of (vF q)t . The contin-
uous line is plotted with Eq. (13) by fixing F2 = F c

2 + 0.005. The
dashed line is the damped mode for F2 = F c

2 − 0.005. The linear
functions are the exact modulating function at the EP, F2 = F c

2 =
−1/20.

ing function of time, χ+
2 (q, t ) ∼ t cos(ω+t ). An approximate

linear modulation can be observed on a huge range of in-
termediate times, even when the coupling is not fine tuned
at F2 = F c

2 . On the other hand, for F2 < F c
2 , the dynamic

response dramatically changes since the modulation is ex-
ponentially damped χ+

2 (q, t ) ∼ exp {−|ω−|t} cos(ω+t ). We
depict these different regimes in Fig. 3. The abrupt change
in the dynamical response at the EP should also be cap-
tured in quantum quench setups [49]. Another interesting
possibility is to look for signatures on the AC electrical
conductivity [50].

Summary and discussion. We have shown the existence
of an EP in the collective mode spectrum of a Fermi liquid
with weak attractive quadrupolar interactions. We completely
characterize this singularity in terms of the Hilbert space
structure as well as through its topological properties. We
have also provided experimental signatures in the dynamical
response. More complex models of Fermi liquids could lead to
higher-dimensional singularities, such as exceptional lines or
surfaces [51,52]. For instance, if we consider isotropic density
interactions (F0) in addition to the quadrupolar ones [33],
we still find square-root singularities which, in the limit of
small F0, take the form s+ − s− = √

1 + 20F2 + 4F0. In this
way, the spectrum has an exceptional line parametrized by
F2 + F0/5 = −1/20.

Concluding, non-Hermitian singularities appear in the
spectrum of collective modes of Fermi liquids with higher
angular momentum attractive interactions. Specific properties,
such us the singularity location and dimensionality, are model
dependent. However, its existence, its topological properties,
and experimental signatures are robust results. It could be
important to investigate the influence of these singularities
in the single quasiparticle spectrum and its effect on charge
transport and other out-of-equilibrium properties.
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