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Topological disorder triggered by interaction-induced flattening of electron spectra in solids
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We address the intervention of classical-like behavior, well documented in experimental studies of strongly
correlated electron systems of solids that emerge at temperatures T far below the Debye temperature TD.
We attribute this unexpected phenomenon to spontaneous rearrangement of the conventional Landau state
beyond a critical point at which the topological stability of this state breaks down, leading to the formation
of an interaction-induced flat band adjacent to the nominal Fermi surface. We demonstrate that beyond the
critical point, the quasiparticle picture of such correlated Fermi systems still holds, since the damping of
single-particle excitations remains small compared with the Fermi energy TF = p2

F /2me. A Pitaevskii-style
equation for determination of the rearranged quasiparticle momentum distribution n∗(p) is derived, which applies
to explanation of the linear-in-T behavior of the resistivity ρ(T ) found experimentally.
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Currently,“topological” has become one of the most com-
monly used terms in condensed-matter physics, surpassing
“quantum critical point.” It is sufficient to mention such
collocations as topological order, topological transition, and
topological insulator. On the other hand. over decades the
mathematical literature has featured, along with more tra-
ditional types of chaotic behavior, relevant discussions of
topological entropy (TE) and topological chaos, which exhibit
positive entropy S [1–4] (see also the Supplemental Material
(SM) [5] and sources [6–11] cited therein). In the present pa-
per, addressing strongly correlated electron systems of solids
including cuprates and graphene, we investigate possible exis-
tence of a finite entropy S > 0 at temperatures T much lower
than the Debye value TD identifying the boundary between
classical and quantum regimes.

Seemingly, this option would be obviated by the Nernst
theorem requiring S(T ) to vanish upon reaching T = 0.
However, recent developments warrant a revision of this
conventional stance. The first symptoms appeared in measure-
ments [12,13] of the thermal expansion coefficient α(T ) =
−V −1∂V/∂T = V −1∂S/∂P of the strongly correlated heavy-
fermion superconductor CeCoIn5, which has a tiny critical
value Tc = 2.3 K at which superconductivity terminates.
Although experimental results are indeed consistent with
obedience of the Nernst theorem requiring α(0) = 0, it is
nevertheless of paramount significance that at extremely low
temperatures T > T +

c = Tc + 0, where the system is already
in the normal state, experiment has established the perplexing
behavior

α(T ) = α0 + α1T . (1)

The nonzero offset α0 � 0.5 × 10−5/K exceeds values found
in ordinary metals at these temperatures by a huge factor of

order 103 − 104. This implies that an analogous classical-like
offset S0, associated with α0 by the relation α0 = ∂S0/∂P,
is present in the entropy itself—pointing unambiguously to
the presence of disorder in the regime of extremely low T >

T +
c � TD.

Another experimental challenge is associated with the
low-temperature, non-Fermi-liquid (NFL) behavior of the
normal-state resistivity ρ(T ) of the same CeCoIn5 metal
at various pressures P, which, according to Fermi liquid
(FL) theory, should obey the formula ρ(T ) = ρ0 + A2T 2. In-
stead, at P < P∗ � 2 GPa, experiment [14] has revealed the
classical-like strange-metal behavior

ρ(T ) = ρ0 + A1T, (2)

shown in Fig. 1. It is as if classical physics already pre-
vails at T +

c < T � TD. This remarkable linear-in-T behavior
of ρ(T ) is currently observed in diverse systems (see, e.g.,
Refs. [15–17]). In some cases, the slope A1 experiences a
noticeable jump [18] (see below).

Even more bizarre behavior has surfaced in recent studies
[19] of the resistivity of twisted bilayer graphene (TBLG) as a
function of twist angle θ , as depicted in Fig. 2. Profound vari-
ations of A1(θ ) are seen, especially toward the so-called magic
angle θm, where the A1 term increases by more than three
orders of magnitude, as does the residual resistivity ρ0(θ ),
echoing a tenfold variation of ρ0 as a function of pressure P,
as shown in Fig. 1. Since ρ0 must be a parameter-independent
quantity [20] if the impurity population remains unchanged,
its documented behavior defies explanation within the stan-
dard FL approach.

Moreover, in high-temperature superconducting, over-
doped copper oxides, where Tc(x) terminates at critical doping
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FIG. 1. Upper panel: Values of the residual resistivity ρ0 (left
axis, open squares) and the index n in the fit ρ(T ) = ρ0 + AT n (right
axis, solid squares) versus pressure P. Bottom panel: Temperature
coefficient of resistivity A (left panel, open squares) and specific-heat
coefficient γ (right panel, solid squares and solid triangles).

value xc with nearly linear dependence on xc − x (see Fig. 3),
the quite remarkable doping independence

A1(x)/Tc(x) = const, (3)

has been discovered [21,22], a feature shared with Bechgaard
salts [23]. As emphasized in Ref. [22], this feature points to
the presence of a hidden phase, emergent at xc simultaneously
with the superconducting state.

Explanation of the strange-metal behavior Eq. (2) observed
ubiquitously at low T has become one of the most intensely
debated theoretical problems of modern condensed-matter
theory. Analysis of proposed scenarios in a recent review
article [24] has concluded that none of these is capable of

FIG. 2. NFL resistivity ρ(T ) measured in TBLG devices at dif-
ferent twist angles.

FIG. 3. Dependence of the factor A1 in the resistivity ρ(T ) (red
circles, right axis) and the critical temperature Tc (blue squares, left
axis) of overdoped La2−xSrxCuO4 films on the doping x measured
from its critical value xc = 0.26 [21]. Red and blue lines show the
best linear fits to the data, which support the conclusion that A1(x) ∝
Tc(x), indicative of behavior inconsistent with conventional theory.

explaining all the relevant experimental findings. In partic-
ular, candidates based on a quantum-critical-point scenario
fall short. As witnessed by the phase diagrams of CeCoIn5,
cuprates, and graphene, there are no appropriate ordered
phases adjacent to the strange-metal region; the effects of
associated quantum fluctuations are small.

In this situation, we turn to a different scenario, based on
the formation of a fermion condensate (FC) [25–33]. Analogy
with a boson condensate (BC) is evident in the respective den-
sities of states ρFC(ε) = nFCδ(ε) [25] and ρBC(ε) = nBCδ(ε),
where nFC and nBC are the FC and BC densities. To be
more specific, the essence of the phenomenon of fermion
condensation lies in a swelling of the Fermi surface, i.e., in
emergence of an interaction-induced flat portion ε(p) = 0
of the single-particle spectrum ε(p) that occupies a region
p ∈ 
 where the real quasiparticle momentum distribution
[hereafter denoted n∗(p)] departs drastically from the Landau
step nL(p) = θ (−ε(p)).

The trigger for such a profound rearrangement of the
Landau state lies in violation of its necessary stability con-
dition (NSC), which requires positivity of the change δE =∑

p ε(p)δnL(p) of the ground-state energy E under any vari-
ation of the nL(p) compatible with the Pauli principle [28]. In
Landau theory with ε(p) = vF (p − pF ), this NSC is known
to hold as long as the Fermi velocity vF remains positive. Be-
yond a critical point where it breaks down, the Fermi surface
becomes multiconnected. This aspect is a typical topological
signature. Accordingly, the word topological in the term topo-
logical chaos has a twofold meaning, such that the associated
bifurcation point can be called a topological critical point
(TCP). Frequently, as in a neck-distortion problem addressed
by I. M. Lifshitz in his seminal article [34], the corresponding
topological rearrangement of the Fermi surface is unique.
However, this is not the case in dealing with the TBLG prob-
lem, where nearly-flat-band solutions are found, a distinctive
feature of those being related to the passage of the Fermi ve-
locity through zero at the first magic twist angle θ (1)

m [35–38].
A variety of options for violation of the topological stability of
the TBLG Landau state then arise. In contrast, within the FC
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scenario, introduction of e − e interactions leads to the advent
of interaction-induced flat bands which replace the nearly flat
bands found in Refs. [35–38]. Technically, this procedure is
reminiscent of the Maxwell construction in statistical physics,
where the isotherm in the Van der Waals pressure-volume
phase diagram is in reality replaced by a horizontal line. An
analogous situation is inherent in cuprates and other strongly
correlated electron systems of solids. Importantly, in the fa-
miliar temperature-doping phase diagram, it is the TCP that
separates the well-understood FL behavior from the behavior
associated with topological chaos, which is responsible for the
strange-metal regime.

We begin analysis with the reminder that in superconduct-
ing alloys that obey Abrikosov-Gor’kov theory [39,40], the
damping γ acquires a finite value due to impurity-induced
scattering, implying failure of the basic postulate γ /ε(p) < 1
of Landau theory. Nonetheless, the FL quasiparticle formal-
ism, in which the pole part Gq of the single-particle Green’s
function G = (ε − ε0

p − �)−1 has the form

Gq(p, ε) = 1 − nL(p)

ε − ε(p) + iγ
+ nL(p)

ε − ε(p) − iγ
, (4)

is still applicable [41].
Beyond the TCP where interaction-induced flat bands

emerge, further alteration of the pole part Gq occurs, its form
becoming [25–29]

Gq(p, ε) = 1 − n∗(p)

ε − ε(p) + iγ (ε)
+ n∗(p)

ε − ε(p) − iγ (ε)
, (5)

with γ > 0 and occupation numbers 0 < n∗(p) < 1 charac-
terizing the FC. Their difference from nL(p), which resides
solely in the 
 region, is to be determined through solution
of a nonlinear integral Landau-Pitaevskii style equation (cf.
Refs. [42–44]) of the theory of fermion condensation, viz.,

∂ε(p)

∂p
= ∂ε0(p)

∂p
+ 2

∫
f (p, p1)

∂n∗(p1)

∂p1

d3p
(2π )3

. (6)

Here f (p, p1) is the spin-independent part of the Landau
interaction function. The free term includes all contributions
to the group velocity that remain in the f = 0 limit.

A salient feature of the T = 0 FC solutions is the identical
vanishing of the dispersion of the spectrum ε(p) in the 
 re-
gion. At T > 0, the FC spectrum acquires a small dispersion,
linear in T [27]:

ε(p, T ) = T ln
1 − n∗(p)

n∗(p)
, p ∈ 
. (7)

Experimental verification of this effect through ARPES mea-
surements is crucial for substantiation of the FC concept under
consideration.

Equation (6) is derived from the formal relation δ� =
(UδG) [with δG(p, ε) = G(p − eA, ε) − G(p, ε)] of varia-
tional many-body theory for the self-energy in terms of the
subset of Feynman diagrams U of the two-particle scattering
amplitude that are irreducible in the particle-hole channel,
hence regular near the Fermi surface. Assuming gauge invari-
ance of the theory, one finds [44,45]

−∂G−1(p, ε)

∂p
= p

me
−

(
U (p, ε; k, ω)

∂G(k, ω)

∂k

)
. (8)

The round brackets in this equation imply integration and
summation over intermediate momenta and spins with a
proper normalization factor. Implementation of a slightly
refined universal quantitative procedure [30,31] for renormal-
ization of this equation allows it, irrespective of correlations,
to be recast in closed form, as if one were dealing with a gas
of interacting quasiparticles. [The word gas is appropriate,
since Eq. (6) contains only the single phenomenological am-
plitude f of quasiparticle-pair collisions.] A salient feature
of this procedure is that Eq. (6) holds both in conven-
tional FLs and in electron systems of solids moving in the
periodic external field of the crystal lattice. This follows
because solely gauge invariance was assumed in its deriva-
tion, which therefore holds for crystal structures as well.
In short, the widespread impression that the FL approach
is inapplicable to crystal structures is groundless. We em-
phasize once more that the FL renormalization procedure
works properly irrespective of the magnitude of the ratio
γ /ε(p) (see Sec. 2 of the SM [5] for specifics, and especially
references [39,41–43,46]).

We are now in a position to consider the connection be-
tween the customary iterative procedure for solving the basic
FC Eq. (6) and the topological chaos problem addressed in
many mathematical articles (see, especially, Refs. [1,4]). In
the standard iterative scheme, the jth iteration n( j)(p), with
j = 0, 1, 2, ..., is inserted into the right side of Eq. (6) to
generate the next iteration of the single-particle spectrum,
ε ( j+1)(p), and this process is repeated indefinitely to finally
yield a convergent result whose TE is equal to 0. However,
beyond the TCP, such a procedure fails, since the iterations
n( j)(p) then undergo chaotic jumps from 0 to 1 and vice versa,
generating noise, identified with some TE. To evaluate the
spectrum quantitatively, in Ref. [31] the iterative discrete-time
map was reconstructed in such a way that the discrete time t j

replaces the iteration number j. Subsequent time averaging of
relevant quantities, adapted from formulas of classical theory,
allows one to find a specific self-consistent solution. Its promi-
nent feature is the development of an interaction-induced flat
portion in the single-particle spectrum ε(p) that embraces the
nominal Fermi surface (for exemplification, see Sec. 1 of the
SM [5]). Another distinctive signature of the set of specific
FC solutions of Eq. (6) lies in the occurrence of a nonzero
entropy excess S∗, emergent upon their substitution into the
familiar combinatoric formula for evaluation of the entropy.
This yields [25,31,32,47]

S∗ = −2
∑

p

[n∗(p) ln n∗(p) + (1 − n∗(p)) ln(1 − n∗(p))],

(9)
where summation is running over the FC region, and, in turn, a
NFL nonzero value α∗ of the coefficient of thermal expansion.
Because the presence of a nonzero S∗ would contradict the
Nernst theorem S(T = 0) = 0 if it survived to T = 0, the FC
must inevitably disappear [25,32,47] at some very low T . One
well-elaborated scenario for this metamorphosis is associated
with the occurrence of phase transitions, such as the BCS
superconducting transition emergent in the case of attraction
forces in the Cooper channel, or an antiferromagnetic transi-
tion, typically replacing the superconducting phase in external
magnetic fields H exceeding the critical field Hc2.
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At H < Hc2, a nonzero BCS gap �(0) in the single-particle
spectrum E (p) =

√
ε2(p) + �2 does provide for nullification

of S(T = 0). This scenario applies in systems that host a FC
as well, opening a specific route to high-Tc superconductivity
[25,48,49]. Indeed, consider the BCS equation for determin-
ing Tc:

D(p) = −2
∫

V (p, p1)
tanh ε(p1,Tc )

2Tc

2ε(p1, Tc)
D(p1)dv1. (10)

Here D(p) = �(p, T → Tc)/
√

Tc − T plays the role of an
eigenfunction of this linear integral equation, while V (p, p1)
is the block of Feynman diagrams for the two-particle scatter-
ing amplitude that are irreducible in the Cooper channel. Upon
insertion of Eq. (7) into this equation and straightforward
momentum integration over the FC region, one arrives at a
non-BCS linear relation

Tc(x) = c(x) TF , (11)
where c(x) = λ η(x), with λ denoting the effective pairing
constant and η(x) the FC density. This behavior is in accord
with the experimental Uemura plot [38,50].

As discussed above, the entropy excess S∗ ∝ η comes
into play at temperatures T +

c < T � TD so as to invoke a
T -independent term α0 in the coefficient of thermal expan-
sion, which, in that regime, serves as a signature of fermion
condensation [32,47]. Accordingly, execution of extensive
low-T measurements of the thermal expansion coefficients
in candidate materials would, in principle, provide means
(i) to distinguish between flat bands that do not entail
excess entropy S∗ and the interaction-induced exemplars,
and (ii) to create a database of systems that exhibit pro-
nounced NFL properties, in aid of searches for new exotic
superconductors.

Very recently, the FC scenario has gained tentative sup-
port from ARPES measurements performed in monolayer
graphene intercalated by Gd, which have revealed the pres-
ence of a flat portion in the single-particle spectrum [51].
However, verification of the correspondence between the flat
bands detected in the bilayer system TBLG [19,35,36,38,52–
54] and the interaction-driven variety considered here requires
a concerted analysis of kinetic properties, especially of com-
prehensive experimental data on the low T resistivity ρ(T ) =
ρ0 + A1T + A2T 2.

Numerous theoretical studies of the NFL behavior of ρ(T )
based on the FC concept have been performed. Directing the
reader to Refs. [47,55,56] for details, we summarize their
pertinent results in the relation

ρ0(x, P, θ ) = ρi + a0η
2(x, P, θ ), A1(x, P, θ ) = a1η(x, P, θ ),

(12)

where ρi is the impurity-induced part of ρ and a0, a1 are
factors independent of input parameters. This expression
properly explains the data shown in Figs. 1 and 2. Indeed,
we see that in systems having a FC, the residual resistivity
ρ0 depends critically on the FC density η, which changes
under variation of input parameters such as doping x, pressure
P, and twist angle θ—an effect that is missing in the over-
whelming majority of extant scenarios for the NFL behavior
of the resistivity ρ(T ). Comparison of Eq. (12) with Eq. (11)
shows that the theoretical ratio A1(x)/Tc(x) is indeed doping

independent, in agreement with the challenging experimental
results shown in Fig. 3. Moreover, assuming that the FC pa-
rameter η(x) varies linearly with xc − x, which is compatible
with model numerical calculations based on Eq. (6), the cor-
responding result obtained from Eq. (12) is consistent with
available experimental data [56].

Turning to the issue of classical-like Planck dissipation
[57], we observe that such a feature is inherent in systems
that possess a specific collective mode, transverse zero-sound
(TZS), which enters provided m∗/me > 6 [58]. (Notably, in
LSCO this ratio exceeds 10 [59], while in CeCoIn5 it is of
order 102 [60]). In the common case where the Fermi surface
is multiconnected, some branches of the TZS mode turn out to
be damped, thereby ensuring the occurrence of a linear-in-T
term in the resistivity ρ(T ). This is broadly analogous to the
situation that arises for electron-phonon scattering in solids
in the classical limit T > TD. (See also Sec. 3 of the SM [5]
and Refs. [58,60–62].) As a result, FC theory predicts that a
break will occur in the straight line ρ(T ) = ρ0 + A1T at some
characteristic Debye temperature TTZS [55,63], in agreement
with experimental data on Sr3Ru2O7 [60]. However, in the
case TTZS < Tc, often inherent in exotic superconductors such
as CeCoIn5 [14] and TBLG (M4 device) [54], this break
disappears and the behavior of ρ(T ) is fully reminiscent of
that in classical physics.

In contrast, a current scenario of Patel and Sachdev (PS) for
Planckian dissipation [64] attributes the NFL behavior Eq. (2)
of ρ(T ) to the presence of a significant random component
in the amplitude of the interaction between quasiparticles
near the Fermi surface. However, such a mechanism is hardly
relevant to the physics of cuprates. Indeed, in their phase
diagrams, the strange-metal regions located above respective
high-Tc domains are commonly adjacent to the familiar FL
ones, whose properties obey Landau FL theory, in which
the interaction amplitudes are free from random components.
Hence the PS model can be a toy model at best. Otherwise,
boundaries of the high-Tc regions must simultaneously be
points of phase transitions between FL phases and phases
with random behavior of the interaction amplitudes, which is
unlikely.

In conclusion, we have demonstrated that the concept of
topological chaos is capable of explaining the NFL, classical-
like behavior of strongly correlated electron systems that
is emergent at temperatures T far below the Debye value
TD, where such behavior hitherto seemed impossible. The
origin of the topological chaos, especially well pronounced
in graphene, is shown to be associated with the presence
of interaction-induced flat bands. The theoretical predictions
are consistent with experimental findings, as documented in
Figs. 1–3.
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