
PHYSICAL REVIEW B 102, 201104(R) (2020)
Rapid Communications

Quantum phase diagram of a Moiré-Hubbard model
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We theoretically study a generalized Hubbard model on Moiré superlattices of twisted bilayers, and find very
rich filling-factor-dependent quantum phase diagrams tuned by interaction strength and twist angle. Strong long-
range Coulomb interaction in the Moiré-Hubbard model induces Wigner crystals at a series of fractional filling
factors. The effective lattice of the Wigner crystal is controlled by the filling factor, and can be triangle, rectangle,
honeycomb, kagome, etc., providing a single platform to realize many different spin models on various lattices
by simply tuning carrier density. In addition to Wigner crystals that are topologically trivial, interaction-induced
Chern insulators emerge in the phase diagram. This finding paves a way for engineering interaction-induced
quantum anomalous Hall effect in Moiré-Hubbard systems where the corresponding single-particle Moiré band
is topologically trivial.
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Introduction. Twisted bilayers with a long-period Moiré
pattern provide versatile platforms to study strongly cor-
related physics, as many-body interactions are effectively
enhanced in narrow Moiré bands. It has been theoretically pro-
posed that a generalized Hubbard model can be simulated in
twisted bilayers based on group-VI transition metal dichalco-
genides (TMDs) [1,2], which have fewer low-energy degrees
of freedom compared to twisted bilayer graphene [3–5] and
therefore, allow quantum simulations of model Hamiltonians.
Recent experiments [6–11] performed using a variety of tech-
niques on twisted bilayer TMDs found compelling evidence
of correlated insulators (CIs) not only at integer filling factors
(i.e., one electron or hole per Moiré cell) but also at a series of
fractional filling factors. The CIs at the integer filling factors
are driven primarily by the on-site repulsion in the Hubbard
model, while those at fractional filling factors are interpreted
as generalized Wigner crystals [6,9–11] induced by the long-
range Coulomb repulsion. The observed abundant correlated
insulating states in twisted bilayer TMDs call for thorough
theoretical investigations of this intriguing two-dimensional
(2D) Moiré-Hubbard system.

In this Rapid Communication, we theoretically study a
generalized Hubbard model on triangular Moiré lattice re-
alized in twisted bilayer TMDs. We show that the quantum
phase diagram at a given fractional filling factor contains a
rich set of competing phases that can be tuned by the twist
angle θ and the dielectric environment. We also find that the
phase diagram depends nontrivially on the filling factor. When
interaction is much greater than the kinetic energy, Wigner
crystals generally form to minimize the long-range Coulomb
interaction. The effective lattices of Wigner crystals depend
sensitively on the filling factor, and can be triangle, rectangle,
honeycomb, kagome, etc. After the electron spin degree of
freedom is taken into account, spin models on distinct lattices
can be simulated in this system by simply tuning the car-
rier density, leading to a variety of charge- and spin-ordered

phases. In competition with these states derived from Wigner
crystals, interaction-induced Chern insulators also appear in
the phase diagram, which is remarkable since the noninteract-
ing band structure in the model is topologically trivial. Here
Chern insulators arise spontaneously from effective fluxes
that are spontaneously generated either by nontrivial spin tex-
ture or by interaction-induced complex hopping phases. We
elaborate our results by presenting calculated rich quantum
phase diagrams at representative fractional filling factors, and
discuss their experimental implications.

Model. We study a Moiré-Hubbard model defined as fol-
lows:

H =
∑

s

∑

i, j

ts(Ri − R j )c
†
i,sc j,s

+ 1

2

∑

s,s′

∑

i, j

U (Ri − R j )c
†
i,sc

†
j,s′c j,s′ci,s, (1)

where Ri represents the position of site i in a triangular lattice
formed in the Moiré pattern [Fig. 1(a)], s is the spin index,
and t and U are, respectively, the hopping parameter and
the interaction strength. As proposed in Refs. [1,2,12], the
model in Eq. (1) can be simulated in twisted TMD heter-
obilayers as well as homobilayers. For definiteness, we use
twisted homobilayer WSe2 (tWSe2) as the model system in
this work, and Eq. (1) is then constructed following our previ-
ous work [12] for low-energy holes in the first Moiré valence
band at ±K valleys. Here we use c†

i,s to represent the hole
operator, and s =↑ and ↓ are locked to +K and −K valleys,
respectively. We define a filling factor ν as (1/N )

∑
i,s c†

i,sci,s,
which counts the number of holes per Moiré cell (N is the
total number of Moiré sites in the system). The charge neutral-
ity point of the semiconducting twisted bilayer corresponds
to ν = 0. For simplicity, we assume that no external out-of-
plane displacement field is applied to WSe2, and then the
model in Eq. (1) respects emergent spin SU(2) symmetry
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FIG. 1. (a) The effective triangular lattice formed in the Moiré
pattern. (b) The single-particle Moiré band εs(k) of Eq. (1) at θ = 3◦,
where s can be ↑ or ↓. The dashed line marks the contour at the
van Hove energy. (c) The correlated insulating gap at representative
rational filling factors ν.

and C6 point-group symmetry. An important advantage of the
Moiré platform is that both the hopping parameters and the
interaction strength are highly tunable. Generally speaking,
the Moiré bandwidth becomes narrower at smaller twist an-
gle (larger Moiré period) and many-body interaction effects
become more prominent [1,2,13]. We show the twist-angle
dependence of t and U in the Supplemental Material [14] (see,
also, Refs. [15,16] therein). In the calculation of U , we project
a screened Coulomb interaction (e2/ε)(1/r − 1/

√
r2 + d2)

to the low-energy Moiré states, where ε is the background
dielectric constant that is tunable by the dielectric environ-
ment and d/2 is the distance between the Moiré system and
a nearby metallic gate. We take ε as a free parameter and
d , which is also experimentally controllable, to be 60 nm in
calculations.

We perform self-consistent mean-field (MF) Hartree-Fock
studies of the Moiré Hubbard model at representative filling
factors with a variety of initial ansatze that range from Wigner
crystals (which can be derived from the classical Coulomb
model [14]) to topological states. At a given fractional filling
factor, we generally find multiple solutions to the Hartree-
Fock equation, and their energetic competitions give rise to
rich quantum phase diagrams. An overview of our results is
illustrated in Fig. 1(c) showing the interaction-induced gap
EG at rational ν with a denominator up to 4. In our theory,
the CI at the integer filling ν = 1 is a Mott insulator, and
its gap is primarily determined by the on-site repulsion [12].
CIs at fractional fillings often require the presence of off-site
repulsion and generally have smaller charge gaps. The relative
trend of our calculated EG in Fig. 1 as a function of ν agrees
well with a recent experiment in Ref. [9], which provides
confidence in the validity of our theory.

FIG. 2. (a) The quantum phase diagram at ν = 1/2 as a function
of θ and ε. Some phases are illustrated in (b)–(d). (b) In the AF and
FM phases, A and B sublattices are dominantly occupied, while C and
D sublattices are less occupied. In the AF phase, spin polarization
is antiparallel on A and B, but vanishes on C and D. In the FM
phase, all sites have parallel spin polarization but different densities.
In the tetrahedron phase, the four sublattices have equal density but
different spin orientations that extend a solid angle of 4π . (c) and
(d) show the kagome phases with C2z and T symmetry breaking,
respectively.

ν = 1/2. The quantum phase diagram at ν = 1/2 is shown
in Fig. 2(a), which displays six symmetry-breaking phases
(besides a normal state without symmetry breaking) as a
function of θ and ε. When interaction is strong (small ε),
a Wigner crystal with a stripe charge-density wave (CDW)
forms [Fig. 2(b)], and hosts a coupled-chain spin Heisen-
berg model. Our MF results show that the Heisenberg model
has an antiferromagnetic (AF) exchange coupling, as an AF
phase has a lower energy compared to the ferromagnetic (FM)
phase for small ε. When interaction decreases by increasing
ε, the stripe CDW gradually weakens and the FM phase
becomes energetically more favorable. Therefore, charge and
spin orderings are closely related. By further decreasing the
interaction strength, CDW can completely disappear but the
FM ordering can remain, which leads to a FM metallic phase.

In addition to these relatively simple charge- and spin-
ordered phases, we also find three more exotic phases in
Fig. 2(a): one tetrahedron phase and two kagome phases. In
the tetrahedron phase, there is spin ordering but no charge
ordering. The spin texture on the four magnetic sublattices
forms a tetrahedron, which leads to a real-space Berry flux
of π for electronic motion along each triangular plaquette.
We numerically verify that the tetrahedron phase is a Chern
insulator with a Chern number of |C| = 1. This phase arises
because our noninteracting Moiré band at ν = 1/2 is close
to the van Hove energy, and the corresponding Fermi surface
is close to nesting [Fig. 1(b)], which leads to an instability
towards noncollinear ordering [17]. In agreement with this
weak-coupling picture, we find that the tetrahedron phase
appears at relatively weak interactions.

In the two kagome phases shown in Figs. 2(c) and 2(d),
charge ordering leads to an effective kagome lattice where
one out of four triangular sites are nearly unoccupied, and the
other three sites each have a site occupancy ∼2/3 and nearly
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FIG. 3. (a) The quantum phase diagram at ν = 1/3. Two of the
phases are illustrated in (b) and (c).

full spin polarization. This spin- and charge-ordered kagome
phase would host Dirac cones in the mean-field quasiparticle
band structure at the Fermi energy, if there was no additional
symmetry breaking. However, the Dirac cones can be gapped
out by further breaking either twofold rotation C2z symmetry
or time-reversal T symmetry.

In the C2z-breaking kagome phase, the interaction-
renormalized effective hopping parameters from a site to its
nearest neighbors on opposite directions become different but
remain real [Fig. 2(c)], which leads to a valence bond solid
insulator that is topologically trivial. In the other phase with
T breaking, the effective hopping parameters acquire complex
phases with a pattern shown in Fig. 2(d). This T -breaking
kagome phase with spontaneously induced fluxes of φ in the
triangles and −2φ in the hexagons is analogous to the Haldane
model on honeycomb lattice [18], and is a Chern insulator
with |C| = 1 [14]. The topological kagome phase arising from
a generalized Hubbard model on a triangular lattice has not
been reported previously and provides a new mechanism to
realize quantum anomalous Hall effect in a realistic experi-
mental system.

ν = 1/3. In the quantum phase diagram at ν = 1/3 shown
in Fig. 3(a), the Wigner crystal with a

√
3 × √

3 CDW is ro-
bust up to very large ε, and 120◦ AF order with a 3 × 3 period
develops on top of this Wigner crystal [Fig. 3(b)]. For weak
interactions, we find two metallic phases in addition to the
normal state: (1) a FM metallic phase with spin polarization
but no CDW; (2) an AF metallic phase [Fig. 3(c)] with a 3 × 3
CDW, where sites with dominant occupancy form an effective
honeycomb lattice and host collinear AF ordering.

ν = 2/3. The Wigner crystal at ν = 2/3 is dual to that at
ν = 1/3, and forms a honeycomb lattice (Fig. 4), where spins
develop collinear AF order in the strong interaction limit as
expected from an effective Heisenberg model. By decreasing
interaction, there is a transition from AF to FM spin orderings
with the same

√
3 × √

3 CDW, and then to FM without CDW,
and finally to the normal state. We note that topological states
derived from the Haldane model [18] can be Hartree-Fock so-
lutions at both ν = 1/3 and 2/3, but they are not energetically
favorable within our explored parameter space [14].

ν = 1/4. At ν = 1/4, there are two types of Wigner crys-
tals: (1) a 2 × 2 triangular phase; and (2) a stripe phase with a
2 × √

3 rectangular superlattice, where the former appears in
most of the parameter space in the phase diagram [Fig. 5(a)]
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FIG. 4. (a) The quantum phase diagram at ν = 2/3. (b) AF and
FM phases on an effective honeycomb lattice.

and the latter forms for small ε and large θ . In both phases,
the effective spin exchange interaction is weak because of the
large separation (small hopping) between the primarily occu-
pied sites, and therefore, AF and FM spin orderings closely
compete in energy. We also find a Chern insulator state at
ν = 1/4 that is analogous to the ν = 1/2 kagome phases with
T symmetry breaking, but it is energetically unfavorable [14].

ν = 3/4. We find seven symmetry-breaking phases in the
phase diagram at ν = 3/4, as shown in Fig. 6(a). For ε < 5,
we find two types of Wigner crystals: (1) a kagome lattice
[Fig. 6(b)] for θ < 4.2◦, and (2) an antistripe lattice [Fig. 6(d)]
for θ > 4.2◦, which are, respectively, dual to the 2 × 2 tri-
angular and 2 × √

3 stripe Wigner crystals at ν = 1/4. We
find that AF spin ordering has lower energy compared to FM
spin ordering on both the kagome and antistripe lattices for
ε < 5. It is important to note that both lattices with AF spin
exchange couplings are frustrated and can host a large number
of degenerate classical magnetic ground states, which could
lead to quantum spin liquid states when quantum fluctuations
in the spin sector are taken into account.

For ε > 5, we find a FM phase on the kagome lattice,
and the associated CDW gradually melts as ε increases, and
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FIG. 5. (a) The quantum phase diagram at ν = 1/4. (b) 120◦ AF
and (c) FM spin structures on the 2 × 2 triangular Wigner crystal.
(d) Collinear AF and (e) FM spin structures on the 2 × √

3 stripe
Wigner crystal.
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FIG. 6. (a) The quantum phase diagram at ν = 3/4. (b) AF and
(c) FM spin structures on a kagome Wigner crystal. (d) AF spin struc-
ture on an antistripe Wigner crystal. The AF spin structures shown in
(b) and (d) are mean-field results, and may not be the actual ground
states because of fluctuations. (e) 120◦ AF state without charge-
density wave. (f) and (g) Sites with spin-up (down) polarization form
triangular (kagome) lattice. In (f), C2z symmetry is spontaneously
broken, which leads to a valence bond solid insulator. In (g), T sym-
metry is spontaneously broken due to interaction-induced effective
flux, which leads to a Chern insulator.

finally vanishes, leading to a FM 1 × 1 phase without CDW.
In competition with this FM 1 × 1 phase, there is a 120◦
AF phase that has only spin-density wave but no CDW, as
illustrated in Fig. 6(e).

Finally, we find two collinear AF phases that are derived
from the kagome phases at ν = 1/2. Noting that 3/4 = 1/4 +
1/2, we can construct collinear AF phases with effective fill-
ing factors of 1/4 for the spin ↑ sector and 1/2 for the spin
↓ sector. Spin ↑ and ↓ states, respectively, occupy sites on
kagome and triangular lattices that are dual to each other. On
the kagome lattice formed by spin ↓ states, C2z or T symmetry
can be further broken, as in the case of ν = 1/2, leading to
the two AF phases illustrated in Figs. 6(f) and 6(g) that are
respectively topologically trivial and nontrivial [14].

Discussions. Our MF results should be taken to be qualita-
tive instead of quantitative, as Hartree-Fock theory generally

overestimates the tendency towards ordering. However, the
advantage of MF theory is that it allows construction of a very
large family of possible ground state candidate phases. We
envision that more sophisticated numerical approaches can
be applied to the Moiré Hubbard model, which could verify
intriguing phases such as Chern insulators predicted by our
theory and unveil more exotic phases, for example, spin liquid
states on the effective kagome lattice at ν = 3/4, but such
numerical methods are extremely computationally demanding
and therefore, detailed results as functions of filling factors,
interaction strength, and twist angle as provided in our work
are challenging. It is useful to mention here for compari-
son that the MF theory applied on the standard 2D minimal
square-lattice on-site Hubbard model only finds a few phases
(AF, FM, paramagnet, and spiral) as functions of interaction
and filling [19,20]. Due to space limit, we only present phase
diagrams at rational ν with a denominator up to 4, but we
do also find correlated insulators at other fractional filling
factors.

The predicted rich phase diagrams can lead to very rich
experimental phenomena, because different phases can be
accessed by tuning experimentally controllable parameters
(e.g., θ and ε). Current experiments [6–11] were all performed
using hexagonal boron nitride as encapsulating material.
The corresponding dielectric constant ε is about 5–10. For
this range of ε, our calculations show that ground states
at the fractional filling factors are Wigner crystals. The ef-
fective lattice of Wigner crystals can spontaneously break
threefold rotational symmetry, particularly in stripe phases
at ν = 1/2 and 1/4, which can be probed optically using
linear dichroism [10]. To realize the predicted Chern in-
sulators at ν = 1/2 and 3/4, weaker interaction (i.e., ε >

10) is desirable, which can be engineered by changing the
dielectric environment, for example, using an encapsulating
material with a higher dielectric constant and reducing the
distance from the sample to the metallic gate. Experimen-
tal observation of such interaction-induced Chern insulators
in a system with topologically trivial single-particle bands
would greatly enhance the scope of quantum anomalous Hall
effect.
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