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Band structure and end states in InAs/GaSb core-shell-shell nanowires
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Quantum wells in InAs/GaSb heterostructures can be tuned to a topological regime associated with the
quantum spin Hall effect, which arises due to an inverted band gap and hybridized electron and hole states. Here,
we investigate electron-hole hybridization and the fate of the quantum spin Hall effect in a quasi-one-dimensional
geometry, realized in a core-shell-shell nanowire with an insulator core and InAs and GaSb shells. We calculate
the band structure for an infinitely long nanowire using k · p theory within the Kane model and the envelope
function approximation, then map the result onto a Bernevig-Hughes-Zhang model which is used to investigate
finite-length wires. Clearly, quantum spin Hall edge states cannot appear in the core-shell-shell nanowires which
lack one-dimensional edges, but in the inverted band gap regime we find that the finite-length wires instead host
localized states at the wire ends. These end states are not topologically protected; they are fourfold degenerate
and split into two Kramers pairs in the presence of potential disorder along the axial direction. However, there is
some remnant of the topological protection of the quantum spin Hall edge states in the sense that the end states
are fully robust to (time-reversal preserving) angular disorder, as long as the bulk band gap is not closed.

DOI: 10.1103/PhysRevB.102.195434

I. INTRODUCTION

The InAs/GaSb material system has attracted interest due
to its broken band gap alignment [see Fig. 1(a)], with large
overlap of conduction bands (CBs) and valence bands (VBs),
leading to hybridized electron-hole states in low-dimensional
systems. The system has previously been studied in quantum
wells (QWs) [1–3], often sandwiched between AlSb barriers
[see Fig. 1(b)]. Compared to the broken band gap alignment in
bulk (an interface between two semi-infinite material layers),
confinement in the QW moves the CBs up and the VBs down,
which can restore a band gap. However, if confinement is not
large enough to give a conventional band gap, hybridization of
the CBs and VBs can still cause an effective band gap to open
up. We define such a hybridization gap as a band gap where
the VB band edge lies above the CB band edge. InAs/GaSb
QWs are known for exhibiting the quantum spin Hall effect in
this inverted regime [1,2] and hence are topological insulators
[4]. The topological insulators host edge states which are spin
and momentum locked, carrying spin currents in two opposite
directions. These states are robust to perturbations as long as
time reversal symmetry is not broken.

In addition to the QWs, InAs/GaSb core-shell nanowires
(NWs) have been investigated both experimentally and theo-
retically [5–15]. Core-shell NWs with one shell are grown by
several groups today [8–16], and NWs with two shells can be
grown [16], e.g., with the aim of passivating the outer InAs
layer [14].
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In this work we study cylindrical core-shell-shell NWs,
where an insulator core is radially overgrown with one InAs
layer and one GaSb layer [see Fig. 1(c)]. This system is in
class AII, which lacks a topological phase in one dimension
(1D) [17]. However, a core-shell-shell NW, as depicted in
Fig. 1(c), is not strictly 1D [and in the limit of an infinite
radius it tends to a two-dimensional (2D) QW system]. Using
the k · p Kane model, we show that the hybridization gap seen
in the QW persists in the NW we consider for suitable InAs
and GaSb shell thicknesses. Using a Bernevig-Hughes-Zhang
(BHZ) model [18] with parameters taken from fitting to the
k · p band structures, we study a finite NW and conclude that
the core-shell-shell NWs can host end states. However, even
though these end states originate from the QW edge states,
they are different since the edge states gap out when we “roll
up” the QWs. The NW end states are not robust to axial
disorder, in contrast to the topologically protected edge modes
in QWs. However, the end states are robust to (time-reversal
preserving) disorder in the angular direction of the NW.

This paper is organized as follows: in Sec. II we present the
Kane model, the BHZ model, and the discretization scheme
we use to calculate the spectra and the wave functions of
the NW and QW systems. In Sec. III we present the results
together with a discussion. Section IV contains a brief con-
clusion.

II. METHOD

We use a Kane model [19] to obtain the band structures
of the QWs and the NWs. The Kane Hamiltonian is given by
[19–21]

H =
(

H4×4 0
0 H4×4

)
+ HSOC, (1)
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with

H4×4 = εv (k)

(
0 0
0 13×3

)

+

⎛
⎜⎜⎝

HCC iPkx iPky iPkz

† kxLkx + kyMky + kzMkz kx
N
2 ky + ky

N
2 kx kx

N
2 kz + kz

N
2 kx

† † kxMkx + kyLky + kzMkz ky
N
2 kz + kz

N
2 ky

† † † kxMkx + kyMky + kzLkz

⎞
⎟⎟⎠,

(2)

with

HCC = Ec + kxAkx + kyAky + kzAkz, (3)

εv (k) = Ev − �SOC

3
+ h̄2

2m0
k2, (4)

and

HSOC = �SOC

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 −i 0 0 0 0 1
0 i 0 0 0 0 0 −i
0 0 0 0 0 −1 i 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 i 0
0 0 0 −i 0 −i 0 0
0 1 i 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)

Here, Ec is the bottom of the CB and Ev the top of the VB,
so that the bulk band gap is Eg = Ec − Ev . The Hamiltonian
is written in the CB-VB and spin basis,

{|S ↑〉, |PX ↑〉, |PY ↑〉, |PZ ↑〉,
|S ↓〉, |PX ↓〉, |PY ↓〉, |PZ ↓〉}, (6)

where the CB states {|S〉} are given by s orbitals and the VB
states {|P〉} are given by p orbitals. The parameters used in the
Kane Hamiltonian are given in terms of Luttinger parameters
and the electron vacuum mass m0 as

P =
√

h̄2

2m0
EP,

L = − h̄2

2m0
(γ1 + 4γ2) + P2

Eg
,

M = − h̄2

2m0
(γ1 − 2γ2),

N = −6
h̄2

2m0
γ3 + P2

Eg
,

A = h̄2

2m0
. (7)

To be able to compare to works on InAs/GaSb QWs,
we use the parameters from Ref. [22], in accordance with
Refs. [23,24]. The parameter values are given in Table I. We
consider the QWs and the NWs to be grown in the [111]
direction. To obtain the Kane Hamiltonian in this crystallo-
graphic direction, we must impose a rotation of the coordinate
system of the Hamiltonian [25]. This process is discussed in

Ref. [5] and follows Refs. [25–27]. The NWs are modeled to
be cylindrical, but we point out that the difference in electronic
structure compared with NWs with hexagonal cross sections
is expected to be small, especially for the relatively large
radii we consider [27]. We solve the Schrödinger equation
for the Kane Hamiltonian within the envelope function ap-
proximation to include the effect of the different materials
and geometries. The envelope function approximation is em-
ployed by substituting kn → −i∂n in Eq. (1) for the directions
n where translational symmetry is broken. We then use a basis
function expansion of the envelope functions ψ . In the calcu-
lations for the QW, a plane wave basis is used in the growth
direction z. In the calculations for the NWs, assumed to be
cylindrical, we assume plane waves in the growth direction z
and expand ψ in a basis consisting of approximations to the
Bessel functions far from the origin in the radial direction [28]
r,

fm,n(r, θ ) = η(m, n)
1√
r

sin
( R − r

Rc − R
mπ

)
einθ , (8)

where η(m, n) is a normalization factor. In the calculations the
basis expansions are truncated after convergence is reached.

For computational reasons, we consider the core-shell-
shell NW to be hollow, in the sense that the inner core consists
of vacuum, as in Fig. 1(c). However, in a real experimental
structure the full core could be filled with AlSb without affect-
ing the energy dispersion for the states around the gap. One
can also imagine another insulator core (or possibly vacuum)
instead of this filled AlSb core. In this case, we expect that
the results will not change qualitatively because, as we will
see, the wave functions around the gap penetrate very little
into the AlSb layer. In the NW system we use one inner AlSb
barrier, as in Fig. 1(c), while for the QW calculations we use
AlSb barriers on both sides of the structure [see Fig. 1(b)]. We
choose these configurations because this is how the structures
would most likely be grown. In addition, these configurations

TABLE I. The parameters used in the Kane model. The VB
offsets between the materials are given by EGaSb/InAs = 0.56 eV and
EAlSb/InAs = 0.18 eV.

InAs GaSb AlSb

Eg (eV) 0.41 0.8128 2.32
EP (eV) 22.2 22.4 18.7
γ1 19.67 11.80 4.15
γ2 8.37 4.03 1.01
γ3 9.29 5.26 1.75
�SOC (eV) 0.38 0.752 0.75
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FIG. 1. (a) Band diagram for the InAs/GaSb/AlSb material sys-
tem. Sketches showing (b) the quantum well structure and (c) the
core-shell-shell nanowire we consider.

avoid problems with spurious solutions (a removal of the AlSb
barriers causes the wave functions to oscillate in a nonphys-
ical way). The spurious solutions are unphysical solutions to
the Schrödinger equation for the Kane Hamiltonian that can
arise when employing the envelope function approximation
[20,21,25,29].

We use a BHZ model as a complement to the k · p cal-
culations in order to study end states of a finite NW and to
add disorder to the system. The reason that we use this model
to study a finite system is that it becomes too numerically
expensive to solve using our k · p model. The BHZ model
[1,18,30] is given by

H = HBHZ + HSIA, (9)

where

HBHZ =
(

h(k) 0
0 h∗(−k)

)
, (10)

with

h(k) =
(

ε(k) + M(k) Ak+
Ak− ε(k) − M(k)

)
(11)

and ε(k) = C − D(k2
x + k2

y ), M(k) = M − B(k2
x +

k2
y ), k± = kx ± iky. HBHZ is written in the basis

(|CB+〉, |VB+〉, |CB−〉, |VB−〉)T . |CB±〉 (|VB±〉)
corresponds to the lowest (highest) energy subband
originating from the CB (VB) in InAs (GaSb), and ±
denotes Kramers partners. Structural inversion asymmetry
(SIA) spin splitting, which is intrinsic in the k · p model, is
explicitly included here [1]:

HSIA =

⎛
⎜⎜⎝

0 0 −iR0k− 0
0 0 0 iT0k3

−
iR0k+ 0 0 0

0 −iT0k3
+ 0 0

⎞
⎟⎟⎠. (12)

FIG. 2. (a) Band structure for a QW calculated using k · p theory
with tAlSb = 10 nm, tInAs = 11 nm, and tGaSb = 5 nm for kx = 0.
(b) Band structure reproduced with the BHZ Hamiltonian for an
infinite QW system for kx = 0. The parameters used are given in
Table II.

Along with the linear-k (R0) term coupling CB-like states,
a cubic-k (T0) term coupling VB-like states has also been
included, following Ref. [30]. A second-order SIA term cou-
pling CB-like and VB-like states is also generally present,
but it has very little effect on the band structures we wish
to reproduce and is therefore omitted. We do not consider
bulk inversion asymmetry terms, as they are negligible for
InAs/GaSb QWs [31].

The Hamiltonian in Eq. (9) can be readily used to re-
produce the k · p band structure in the infinite QW system.
The finite QW can be studied by discretizing Eq. (9) on a
square lattice of finite dimensions and is found to host midgap
Kramers-degenerate topological edge states for a wide pa-
rameter range [1]. Considering the 2D QW in the y-z plane
instead and with periodic boundary conditions along the y
direction, the system is in a “rolled-up” geometry equivalent
to a cylindrical NW with the growth axis along z.

III. RESULTS

Figure 2(a) shows the band structure for a QW with tInAs =
11 nm and tGaSb = 5 nm, calculated using k · p theory. The
corresponding band structure from BHZ calculations is shown
in Fig. 2(b). The parameters (see Table II) for the BHZ model
are chosen to give a good match with the k · p band structure.
The band structures are in good agreement with previous
works [23] and show a hybridization gap. For an ordinary con-
finement gap to open up, the gap needs to close and reopen.
The QW is known to host topologically protected edge states
in this inverted regime.

We now shift our attention to the main subject of our study,
namely, InAs/GaSb core-shell-shell NWs. Figure 3(a) shows

TABLE II. BHZ parameters used in Fig. 2(b). The rest of the
parameters appearing in Eqs. (9)–(12) are set to zero.

Parameter Value

A (meV nm) 30.5
B (meV nm2) −710
D (meV nm2) −450
M (meV) −4.6
R0 (meV nm) 10
T0 (meV nm3) 300
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FIG. 3. (a) Band structures calculated using the k · p model with Rc = 10 nm, tAlSb = 14 nm, tInAs = 11 nm, and tGaSb = 5 nm. (b) Band
structure calculated using the discretized BHZ model with RBHZ = 32 nm and no SIA terms included (R0 = T0 = 0). The rest of the parameters
are the same as in Fig. 2(b). (c) Same as (a), but with tInAs = 9.5 nm and tGaSb = 6.5 nm.

the band structure for such a core-shell-shell NW, calculated
using the Kane model, with tInAs = 11 nm, tGaSb = 5 nm,
RC = 10 nm, and tAlSb = 14 nm, so the thicknesses of InAs
and GaSb are the same as in Fig. 2(a). The band gap is only
Eg = 1 meV, compared to the larger value of Eg = 3.4 meV
for the QW (for the same thicknesses of InAs and GaSb).
The main reason for this smaller gap is that the confinement
effects are different in the NW system and possibly that in
the core-shell-shell NW the curvature effects also become im-
portant. The angular subbands are much closer in energy than
the radial ones, which makes sense if we compare the length
scales: the radial confinement is roughly tInAs + tGaSb = 16
nm, while confinement in the angular direction is of the mag-
nitude 2πR ≈ 250 nm. All subbands are twofold degenerate
because both time reversal and structural inversion symme-
tries are present.

In Fig. 3(b) we show a band structure calculated with
the discretized BHZ model, using the same parameters as in
Fig. 2(b), but with periodic boundary conditions along one
direction. To reflect the symmetries of the cylindrical NW
geometry, we set the SIA terms to zero (R0 = 0, T0 = 0).
We choose the value of the radius (RBHZ = 32 nm) to be in
between the inner and outer radii in the k · p calculations.
We believe that the main reason that the band structures in
Figs. 3(a) and 3(b) look so different is that the confinement
effects in the k · p calculations become very different in a
cylindrical geometry.

Figure 3(c) shows that we can obtain a band structure from
k · p calculations that is similar to the one in Fig. 3(b) by
changing the shell thicknesses of the InAs and GaSb shells
to tInAs = 9.5 nm and tGaSb = 6.5 nm. The core radius and the
AlSb shell thickness are RC = 10 nm and tAlSb = 14 nm, the
same as in Fig. 3(a). We note that the hybridization gap is
Ek·p

g = 1.9 meV, smaller than the hybridization gap EBHZ
g =

3.7 meV from the BHZ results.
Figure 4 shows the probability density in the radial di-

rection ρ j (r) = r|� j,kz=0(r)|2 = ∑8
i=1 |ψi, j,kz=0(r)|2 for two

different subbands j in Fig. 3(a), calculated using the Kane
model. The probability density for the lowest-lying subband
above the gap is plotted in blue and shows a state mostly
confined in the outer shell. The red line shows the probability
density for the topmost subband seen in Fig. 3(a). Even though
this subband looks like a pure CB state for small kz, we see

that the state has large weight in both the InAs and GaSb
shells. In general, most of the subbands around the band gap
have weight in both these outer shells or predominantly in the
GaSb shell. To find states confined in the InAs shell, one has
to study subbands much higher (∼50 meV) above the gap.

Next, we use the BHZ model with the fitted parameters to
study the fate of the QW’s edge states in the NW geometry.
This is meant in the sense that one can imagine arriving at
a finite NW geometry by rolling up a finite 2D QW system.
Coupling two of the edges causes the edge states to gap out.
However, we find that this leaves localized end states at both
NW ends. Figure 5(a) shows the energies of the end states
together with the more closely spaced bulk states using the
same parameters as in Fig. 3(b), but the system is now taken to
be finite in z (LNW = 1000 nm). One major difference between
the end states seen for the NW system compared to the edge
states in the QW is that the NW end states are doubly degen-
erate in each Kramers sector (fourfold degenerate in total),
while for the QW the edge states are only Kramers degenerate.
In Fig. 5(b) the probability density along the NW for the
zero angular momentum end state is plotted. For the chosen
NW length the weights of the wave functions in this fourfold-
degenerate subspace are highly localized at the NW ends.

The robustness of the end states can be checked by
including disorder effects in the NW discretized BHZ model.

FIG. 4. Probability density ρ(r) for the two subbands marked
with red in Fig. 3(a) for kz = 0: the first subband above the gap (blue
line) and the topmost subband seen in Fig. 3(a) (red line).
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FIG. 5. (a) End and bulk state energies for a NW of length
LNW = 1000 nm obtained from BHZ calculations. The zero angular
momentum end state is colored red, and the higher angular momen-
tum end states are blue, while the bulk states are black. The rest of
the parameters are the same as in Fig. 3(b). (b) Probability density
of the zero angular momentum wave function along the NW growth
axis.

First, we consider disorder in the axial (growth) direction
(V ax

dis ) and no disorder in the angular direction. For each set
of sites with the same axial coordinate z, identical disorder
terms H ax

dis(z) = a(z)V ax
dis14×4 are added to the correspond-

ing 4 × 4 on-site submatrices of the discretized version of
Eq. (9), where each a(z) is a random number from a uni-
form distribution in the interval [−1, 1]. For n sites in the z
direction, n random a(z) ≡ a(nd ) = an are chosen (d = 5 nm
is the lattice constant). The same set of an’s is used for
the different disorder strengths V ax

dis . In Fig. 6(a) we show
the evolution of the eigenvalues of Fig. 5(a) with increas-
ing disorder strength for a typical set of an’s (corresponding
to a single typical disorder realization). The color code is
the same as in Fig. 5(a). The most striking effect is the
splitting of the end states’ energies with increasing disorder.
Since the disorder is time reversal symmetry preserving, each
eigenvalue remains Kramers degenerate also for V ax

dis �= 0. The
Kramers-degenerate eigenvalues stemming from the splitting
of the zero angular momentum end state energy for a dis-
order strength of V ax

dis = 0.9 meV are marked with green and
magenta dots. The wave functions’ amplitudes squared along
the NW axis corresponding to the marked states are plotted in
Fig. 6(b). The states remain localized at the ends of the wire
for V ax

dis �= 0, and their energy splitting cannot be attributed to
wave functions overlapping due to the finite wire length. The
splitting is a signature of the lack of topological protection of
the end states.

Despite the above general conclusion, it turns out that some
aspects of topological protection remain for the end states of
the NW. This becomes evident if one considers a different
type of disorder. Figure 6(c) also shows the evolution of the

FIG. 6. (a) Evolution of the finite system eigenvalues with in-
creasing axial disorder obtained from the discretized BHZ model.
The color code is the same as in Fig. 5(a). The states stemming from
the splitting of the zero angular momentum end state are marked with
the green and magenta dots. (b) Probability density for the marked
states along the NW growth axis. (c) Evolution of the finite system
eigenvalues with increasing angular disorder. Apart from disorder,
the parameters are the same as in Fig. 5(a).

eigenvalues of Fig. 5(b) with increasing disorder strength,
but this time the disorder is in the angular direction (V ang

dis ),
and V ax

dis = 0. The discretized Hamiltonian is obtained with
a procedure similar to the axial disorder case, but here, the
disorder terms H ang

dis (y) = b(y)V ang
dis 14×4 are added to sites with

the same angular coordinate y. The end states do not split in
this case, and they remain fourfold degenerate, undisturbed by
disorder.

IV. CONCLUSIONS

We have studied InAs/GaSb core-shell-shell NWs by cal-
culating their electronic band structure and wave functions.
We find that, as in the case for QWs of the same materials, a
hybridization gap can exist and that the system hosts in-gap
end states in this inverted regime. The end states could be
probed experimentally by, for example, tunnel spectroscopy.
The end states are twofold degenerate within each Kramers
sector and gap out when subjected to axial disorder. However,
disorder in the radial direction leaves the end states unaf-
fected, as long as the bulk gap persists.
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