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Edge-state dynamics in coupled topological chains
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We study time-dependent electrical properties of the Su-Schrieffer-Heeger (SSH) chain and coupled SSH
chains on a substrate. Focusing on the midgap edge state dynamics we consider the abrupt transition from the
normal to the SSH chain and determine characteristic timescale needed for topological states to develop. We have
found that the midgap state is formed from the inside peaks of the normal chain density of states. For a ladderlike
system we show that the edge SSH state vanishes in time or oscillates between neighboring sites. Moreover, for
nonadiabatical time-dependent perturbations the midgap state can partially leak to other sites leading to induced
topological states inside the trivial chain. We also analyze the mean-field correlation effects between the coupled
chains revealing the induced Friedel oscillations in nontrivial chains.

DOI: 10.1103/PhysRevB.102.195429

I. INTRODUCTION

Science and engineering in past decades revealed a ten-
dency of making things smaller and smaller. Quantum wires
and atomic ribbons are the thinnest possible electric conduc-
tors [1–4] and they comprise basic blocks in nanoelectronics.
Such low-dimensional systems reveal also many interesting
quantum effects, such as conductance oscillations [5,6], spin-
charge separation [7], charge-density waves [8], Majorana
topological states [9,10], and others.

The study of topological quantum matter is one of the most
attractive topic in low-dimensional physics. A Su-Schrieffer-
Heeger (SSH) model is a simple tight-binding model in
describing band topology in one-dimensional condensed-
matter systems [11–17]. The SSH model has time-reversal,
particle-hole symmetry, and it supports two distinct topolog-
ical phases. The manifestation of the topological nontrivial
nature in SSH systems is spectrally isolated midgap states
localized at the system boundaries. These states are visible
in the system density of states (DOS) and they are robust
against local perturbations since they are related to the bulk
environment (in contrast to conventional defect states which
are sensitive to perturbations) [18]. Additional topological
physics appear in extended SSH chains with more than two-
site periodicity (larger unit cells) [19,20]. For long-range
SSH models the site-site tunnelings include also next-
nearest-neighbor hoppings or others couplings [11,21–24].
By expanding the standard SSH chain to a double-chain
structure in a magnetic field one obtains the Creutz lad-
der model (cross-linked two-leg ladder system) or modified
Harper model [25–27]. In ladderlike systems it is also possible
to observe topological Majorana states [28]. Further expan-
sion of a ladder leads to the ribbon SSH geometry or to strictly
two-dimensional topological structures [29,30]. In contrast to
equilibrium systems topological phases can be also induced
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by time-dependent external fields, e.g., the Floquet topologi-
cal insulators [14,31–34]. Also a laser impulse applied to the
SSH chain can generate high harmonics which depend on the
system topological phase [35]. Moreover coherent destruction
of tunneling in one-dimensional (1D) systems can appear as
well [31,36,37].

There are a few experimental realizations of 1D topological
systems. Very promising materials are stable atomic chains
or atomic ribbons which can be grown epitaxially on recon-
structed silicon surfaces, such as Si(335), Si(557), or others
[1–4]. In such systems the scanning tunneling microscope
(STM) measurement of the current-voltage characteristics or
the conductance allows one to obtain the local density of
states (LDOS) and distinguish different topological phases
[38]. Additionally, with state-of-the-art fabrication technology
it is possible to prepare 1D chains with gate-defined quantum
dot (QD) in two-dimensional electron gas or chains of dopant
atoms in silicon with STM [39,40]. In optics, the emerging
field of topological photonics aims to fundamentally explore
dynamical effects in 1D topological systems [41,42]. Using
a photonic realization of the SSH chain it is possible to ob-
serve midgap nontrivial states of the SSH chain. Also, the
extended SSH model with four-site periodicity were realized
in a momentum lattice with ultracold Rb atoms [19]. In such
systems topological properties can be estimated from the
quench dynamics. Moreover, the Creutz ladder was realized in
a driven 1D optical lattice on ultracold fermionic atoms [25].
This technique allows for arbitrary dynamical control over
the tunneling phases, tunneling amplitudes or on-site energies
[41,43]. Note that also 1D mechanical systems can manifest
topological SSH properties [44,45] where the unit cell stands
for two acoustic resonates or micromechanical junctions.

Electron transport properties of topological chains have
been so far explored mainly in equilibrium (static) cases.
Since new experimental techniques allow us to investigate
atomic chains under time-dependent perturbations it would
be desirable to obtain their time response on quenches and
other perturbations. Thus far, such studies have been mostly
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focused on time- or space-dependent probability density of
the boundary modes [46–48], whereas the energy-dependent
spectral density dynamics of the edge states has been often
overlooked. The time evolution of such functions gives deeper
insight into the whole on-site energetic structure showing
dynamical transitions between the bulk and the topological
states. LDOS peaks can be interpreted as the system quasi-
particle states and their behavior in time and energy domains
is crucial for comprehensive studies of these systems. Simi-
larly, dynamical phenomena of the coupled chains in different
topological phases can be analyzed by the spectral density
functions at both chains as they contain information about the
edge states, gap structure, and normal (bulk) states evolution
simultaneously. In this paper we consider such topological
hybrid structures and, in particular, we would like to answer
the questions: How fast does the edge state respond to an
instantaneous or continuously changed perturbations? How
is it built or destroyed in time? Moreover, it is desirable to
analyze how fast such states could leak/penetrate into non-
topological subsystems. In our studies we precisely address
these questions and we concentrate on the spectral density
function of the SSH chain and analyze its modifications due
to the abrupt or adiabatical change in the topological phase.
This process takes place when the nearest-neighbor couplings
between sites change in time leading to transformation from
the normal chain (characterized by uniform couplings) to the
topological SSH chain (characterized by different intracell
and intercell couplings). For a single atomic chain also other
modifications of the couplings are studied, such as the tran-
sient effects after breaking the chain where suddenly new
edge states appear in the energy gap region. We address the
timescale typical for development of the edge states in topo-
logical chains. Moreover, we consider different combinations
of coupled atomic chains including normal chain—SSH chain
or two coupled SSH chains in different topological phases. For
the double-chain structures we investigate evolution in time of
the edge topological state between both chains and electron
occupancy dynamics due to the Coulomb repulsion. Analytic
results for such complex systems are hardly available but for
some simplifications they are discussed in the paper.

As we are able to analyze full time dynamics of the spectral
density function we have shown in the paper that topological
edge states are formed directly from the inside peaks of the
normal chain DOS and the timescale of this process strongly
depends on the surface underneath the chain (which is dis-
cussed in Figs. 2–4 ). More importantly, time dynamics for
the coupled chains of the same topological phases shows that
the system energy gap is always closed for awhile after the
quench (cf. Fig. 6), however, for the hybrid two-chain system
composed of different phases the zero-energy state partially
leaks to the nontrivial phase and it exists simultaneously at
two different sites of this system (Fig. 10). It should be also
emphasized the importance of the results discussed in Fig. 11
of this paper. We have found that in the presence of the
Coulomb repulsion between both chains the induced Friedel
oscillations in the SSH chain can be observed.

The paper is organized as follows. In Sec. II, we describe
the theoretical model and the calculation method. In Sec. III,
the main results of the paper are discussed for a single SSH
chain on a substrate (Sec. III A), coupled chains in different

FIG. 1. Model of two coupled atomic chains of the length N that
can be in different topological phases with the couplings W,V and
W ′,V ′, respectively. Vx is the chain-chain coupling, and UC stands
for the Coulomb repulsion between charged sites.

topological phases (Sec. III B), SSH ladderlike chains in the
presence of the Coulomb interactions (Sec. III C). Section IV
gives a short summary.

II. MODEL AND THEORETICAL DESCRIPTION

The physical model we consider in this paper consists of
a single atomic chain or coupled chains at the substrate as
is schematically shown in Fig. 1. Each chain is composed
of N single-electron sites with the nearest-neighbor cou-
plings, W, V, W ′, V ′, Vx, and the Coulomb interaction UC

(repulsion). All parameters can change in time. The couplings
along both chains can by uniform (as in the normal regular
chain) or can vary periodically inside and between the primi-
tive cell as in the SSH chain. For intracell couplings greater
than intercell couplings we get a topological chain in the
nontrivial phase, i.e., with topological midgap states at both
chain ends (called here SSH1), otherwise we obtain a chain in
the trivial topological phase without end states (SSH0).

The Hamiltonian of the system depends of the chain geom-
etry and, in general, it can be written in the following form:

H =
M∑

i=1

εia
†
i ai +

M∑
i=1

∑
�ki

(
ε�ki

a†
�ki

a�ki
+ V�ki,i

a†
ki

ai + H.c.
)

+
M∑
i, j

Vi, j (t )a†
i a j +

M∑
i, j

UC
i, j (t )n̂in̂ j, (1)

where M is the total number of sites in the system, a†, a are the
creation and annihilation electron operators at the appropriate
sites, n̂i = a†

i ai is the particle number operator, εi and ε�k stand
for the single-electron energies in the chain or in the substrate,
respectively (the substrate is considered as M-separate elec-
trodes). Electron transitions between the surface and the sites
are established by the couplings V�k,i and Vi, j correspond to
the nearest-neighbor tunneling between the chain sites (the
coupling between chains corresponds to Vi, j = Vx and is site
independent). The last term in the Hamiltonian UC

i, j n̂in̂ j stands
for the site-site Coulomb repulsion, and it is assumed that
this interaction is captured within the mean-field (Hartree-
Fock) approximation which renormalizes the single-electron
energies in the Hamiltonian, i.e., εi → εi + UC

i, jn j , where n j

is the expectation value of n̂ j . This approach is justified as
the Coulomb interaction in many quantum structures is small
[such as in Pb chains on the Si(335) surface], thus, noninter-
acting eigenstates of the quantum structure are related to those
of small UC . In the opposite limit (large UC) the energetic
structure of the system is split with the Coulomb blockade
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gap, but if we neglect many-body complex effects, such as the
Kondo effect, it is reasonable to focus on a single Coulomb
band. Thus, the spin index in our calculations is suppressed as
both spin directions are independent.

In order to describe time response of the system on external
perturbations the evolution operator method is used in our
calculations [49,50]. The charge occupation of the ith site can
be expressed in terms of the appropriate matrix elements of
the evolution operator (for details see Appendix A),

ni(t ) =
M∑

j=1

n j (t0)|Ui, j (t, t0)|2 +
∑
j,�k j

n�k j
(t0)|Ui,�k j

(t, t0)|2, (2)

and the current flowing from the surface electrode is obtained
from the time derivative of the total number of electrons in
this reservoir,

j1(t ) = −e
d

dt
N1(t ) = −e

d

dt

∑
�k1

n�k1
(t ), (3)

where n�k1
(t ) is expressed similarly to Eq. (2) and nα (t0) is the

initial occupancy of state α. In the interaction representation
the evolution operator matrix elements satisfy the following

equation of motion:

i
∂

∂t
U (t, t0) = V̂ (t )U (t, t0), (4)

where V̂ (t ) = U0(t, t0)V (t )U †
0 (t, t0), U0(t, t0) =

T exp (i
∫ t

t0
dt ′H0(t ′)) and T is the time-ordering operator.

Here V (t ) and H0(t ) are the coupling part and the
on-site energy part of the total Hamiltonian, respectively
(H0 = ∑

α εαa†
αaα ). In the calculations we put the initial

time t0 = 0 (i.e., the couplings are zero for t < t0), and
all dynamical effects are analyzed for the system which
already reaches its equilibrium state so the initial occupations
of the chain sites do not play any role, thus, we assume
ni(t0) = 0. In such a case the chain occupancies can be
written as ni(t ) = ∑

j,�k j
n�k j

(0)|Ui,�k j
(t )|2. The summation over

the wave vectors with the initial band fillings n�k j
(0) is, as

usual, replaced by the integral over the energy with the Fermi
function f (ε), i.e., ni(t ) = ∫

dε
∑

j f (ε)Dj (ε)|Ui,�k j
(t )|2 =∫

dε f (ε)LDOSi(ε, t ), where Dj (ε) is the jth electrode band-
width and LDOSi(ε, t ) is the spectral density function (the
local DOS) at the ith site. The evolution operator Ui,�k j

(t ) can
be found from Eq. (4), and after some algebra (see Appendix
A) the differential equation on this function takes the form

i
∂Ui,�k j

(t )

∂t
=

∑
i′

Vii′e
i(εi′ −εi )t exp

[
iUC

∫ t

0
dt ′̃ni′ (t

′) − ñi(t
′)
]
Ui′,�k j

(t )

−Vi�k j
e

i(εi−ε�k j
)t

exp

[
iUC

∫ t

0
dt ′̃ni(t

′)
]

− |Vi�k j
|2

∫ t

0
dt ′D(t − t ′)eiεi (t−t ′ ) exp

[
iUC

∫ t

t ′
dt1ñi(t1)

]
Ui,�k j

(t ′), (5)

where ñi(t ) = ∑
j′ n j′ and j′ runs over all neighboring sites (from the ith site) for which there is UC repulsion between electrons,

UC
i j = UC . The time-dependent current, Eq. (3), is also expressed by means of the evolution operator matrix elements, see

Eq. (A5), and can be written as follows (e = 1):

j1(t ) = −2 Im

⎧⎨⎩∑
�k1

n�k1
(0)V�k1

ei(ε�k1
−ε1 )t exp

[
−iUC

∫ t

0
dt ′̃ni(t

′)
]
U1,�k1

(t )

⎫⎬⎭ − 2 Re

{∑
�ki

n�ki
(0)|V�k1

|2U1,�ki
(t )

×
∫ t

0
dt ′D∗

1(t − t ′)eiεi (t ′−t ) exp

[
iUC

∫ t

t ′
dt1ñi(t1)

]
U ∗

1,�ki
(t ′)

}
, (6)

where D(t ) = ∫
dε D(ε)eiεt is the time Fourier transform of the lead DOS, D(ε). Note that the knowledge of Ui,�k j

(t ) is necessary
to obtain the chain occupancies, spectral density function, or the currents. In general, analytical expressions for these quantities
do not exist, and the problem should be resolved numerically. However, some analytical solutions are possible in the wideband
approximation as well as for regular and symmetrical chains which will be discussed later in the paper. Assuming the wideband
approximation, the influence of the substrate can be captured by the site-dependent spectral density �i j , which diagonal elements
play the crucial role and are energy independent: �ii(ε) = 2π

∑
�k |Vi�k|2δ(ε − ε�k ) = �i. The off-diagonal terms rapidly vanish

with the site-site distance and in the paper are negligible, thus, the surface electrode can be considered as a set of equivalent
leads such that each chain site is coupled with its own electrode �i. Within this approach one can obtain the time integral in the
last term in Eq. (5) which equals i �i

2 Ui,�k j
(t ). In this case the relation for the current, Eq. (6), can be written as follows:

j1(t ) = −2 Im

⎧⎨⎩∑
�k1

n�k1
(0)V�k1

ei(ε�k1
−ε1 )t exp

[
−iUC

∫ t

0
dt ′̃ni(t

′)
]
U1,�k1

(t )

⎫⎬⎭ − �1n1(t ). (7)
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Note that similar equations for other currents ji(t ) can
be derived which should be resolved using the set of
differential equations, Eq. (5), together with the relations
for ni(t ).

III. RESULTS AND DISCUSSION

Here we analyze electron transport properties of a single
chain and coupled atomic chains on a surface focusing on the
time evolution of the occupancies, spectral density functions
(LDOS), or the currents for different chain geometry. We carry
out the quench to the system by suddenly or adiabatically
changing some hopping parameters. In our calculations we
assume the temperature T = 0 K, and the energy reference
point stands for the Fermi energy of the surface electrode,
which implies EF = 0. Moreover, equal on-site energies for
all sites are considered εi = ε0, and the parameters are chosen
to fit the realistic parameters measured in experiments. In our
calculations we use the effective chain-lead coupling �i = �

as the energy unit, then for � = 0.1 eV, the coupling V = 4
corresponds to V = 0.4 eV, the time unit is h̄/� � 10−15 s,
and the current unit becomes 2e�/h̄ � 50 μA.

A. Single atomic chain

We start by addressing the time-evolution effect of the
normal atomic chain which evolves (is transformed) to the
topological one and consider a linear chain on a surface for
which some analytical expressions can be derived for the
uncorrelated case UC = 0. The transition from the normal to
topological chain is forced by changing in time the hopping
integrals inside the chain.

For a finite 1D system composed of N equal sites in the
stationary case one can obtain analytical results, e.g., for the
conductance [51]. The Hamiltonian of the SSH chain has chi-
ral symmetry which gives rise to a symmetric energy spectrum
and for periodic boundary conditions the results can be also
derived analytically [17]. The situation is more complicated
for time-dependent transport properties, especially for a chain
on a noninsulating substrate. To calculate the time-dependent
on-site spectral density function one needs Ui,�k j

(t ) matrix
elements which can be found using the Laplace transform
technique (see Appendix B). After some algebra we find the
solution, e.g., for U1,�k j

(t ), which is necessary in the spectral
density function LDOS1(ε),

U1,�k j
(t ) =

(−i) jV j−1Vj,�k j

N− j∏
j1=1

(
s0 + �

2
+ 2iV cos

j1π

N − j + 1

)
N∏

j1=1

(
s0 + �

2
+ 2iV cos

j1π

N + 1

) exp
(
i
(
ε0 − ε�k j

)
t
)

+
N∑

j1=1

(−i) jV j−1Vj,�k j

N− j∏
j2=1

(
s j1 + �

2
+ 2iV cos

j2π

N − j + 1

)

[s j1 − i(ε0 − ε�k j )]
N∏

j2=1, j2 �= j1

(
s j1 + �

2
+ 2iV cos

j2π

N + 1

) exp

(
−�

2
t

)
exp

(
−2 iV cos

j1π

N + 1
t
)
, (8)

where s0 = i(ε0 − ε�k j ) and s j = −�
2 − 2iV cos jπ

N+1 . Note that the above function oscillates in time (even far from the initial

time t0) and is responsible for time dynamics of the system. The spectral density function is expressed by |U1,�k j
(t )|2 elements,

which also oscillates in time, but for large t (far from the perturbation) it reads

|U1,�k j
(t → ∞)|2 =

V 2( j−1)V 2
j,�k j

N− j∏
j1=1

[(
ε0 − ε�k j

+ 2V cos
j1π

N − j + 1

)2

+
(

�

2

)2]
N∏

j1=1

[(
ε0 − εk j + 2V cos

j1π

N + 1

)2

+
(

�

2

)2] , (9)

and is time independent. There are N product terms in the
denominator of the above relation, which minima determine
the spectral density peaks. Note that analytical formulas for
the current or site occupancies are possible in this case, but
they do not have short transparent form.

To study the time-response effects in our calculations we
use Eq. (8) for Ui,�k j

(t ) (for regular chains) or resolve numer-
ically the set of differential equations Eq. (5) for arbitrary
time-dependent chains. In the beginning we analyze in Fig. 2
the transition effect form the normal chain (described by uni-

form couplings) to the topological one in the nontrivial phase
(SSH1) for the chain length N = 8 placed on the surface. The
left, middle, and right panels show the time evolution of the
spectral density function at the first, second, and third chain
sites, respectively, and the transition takes place at t = 20 (i.e.,
far from the transient effects observed for the initial time).
Before this time the chain spectral density is fixed (does not
change in time) and for i = 1 is expressed by Eq. (9). It is
expected that at this site, just after the quench, the energy
gap should be opened and simultaneously the midgap state
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FIG. 2. LDOS time evolution of the normal chain (V = W = 2)
composed of N = 8 sites on the surface for sudden change of the
couplings to the SSH parametrization in the nontrivial phase (W =
0.5, V = 2.0) at t = 20. Other parameters are ε0 = 0, �i = � =
1, UC = 0. Red, yellow, green, and blue colors represent the LDOS
values equal to 0.6, 0.4, 0.2, and 0.1, respectively.

should appear. We would like to analyze how this edge state
is formed in time: Is it built directly from the normal states,
or do these states disappear and then the midgap state arises?
To answer this question we have to consider the full time-
and space-dependent LDOS because the occupation number
or topological invariants cannot resolve this problem. As one
can see at t = 20 the LDOS at each site is rebuilt in time and
the energy gap of the width ±2η appears along the chain with
the midgap topological states at both chain ends (in our case
we have W = 1.25 − η and V = 1.25 + η with η = 0.75). A
careful inspection on the time evolution of LDOS shows that
the topological state does not appear just after the quench but
it needs few time units to be fixed (about ten time units). More
important, during this process the states evolve continuously
(without delocalization), and in the first stage the midgap state
is built from the central DOS peaks of the normal chain (two
peaks join together just after t = 20). At the same time two
next peaks localized at ε = ±2 are bent towards the zero
energy (band center) and after some next period of time they
reach our topological state. The energy-dependent spectral
functions of the interchain sites are characterized by two main
sidebands (greenlike regions, Fig. 2, middle and right panels
for t > 20) with the energy gap between them. However, in
contrast to the topological state these bands are formed in a
different way: The central LDOS peaks of the normal chain
(around the Fermi level) do not support these sidebands, but
they vanish very fast after the quench (better visible in the
right panel) and the sidebands are smoothly built only from
the most outer LDOS peaks.

To study this dynamical process in more detail in Fig. 3
we analyze the charge occupation, currents, and LDOS at the
Fermi energy for the first four sites of the system for the
same parameters as in Fig. 2. We also compare dynamics of
the system for two different values of the on-site energies
ε0 = 0 (symmetrical case) and ε0 = 1 (asymmetrical case).
The transient (turn-on) effects appear in the system only
for very small t such that for t > 10 the system is in the
equilibrium state. For the symmetrical case all sites are half-
occupied (upper left panel), and they are almost unaffected
by the quench at t = 20. It results from the fact that sta-
tionary occupancies ni for the normal and topological chains

FIG. 3. Time-dependent charge occupancies, currents, and
LDOS at the Fermi level (upper, middle, and bottom panels, respec-
tively) for first four sites of the normal chain of length N = 8 (V =
W = 2) switched at t = 20 to the SSH1 nontrivial chain with the
couplings W = 0.5, V = 2.0 for different on-site energies ε0 = 0
(left panels) and ε0 = 1 (right panels).

are exactly the same for ε0 = 0, and the spectral density
changes symmetrically in time for positive and negative en-
ergies (as is shown in Fig. 2). It leads to constant occupancies
in the chain during the transition. However, even for constant
ni(t ), the charge could flow through the system, thus, it is
necessary to analyze the electron currents [obtained from
Eq. (7)]. It turns out that beyond the initial time the currents
do not flow from the substrate to the chain (middle left panel)
which confirms that electron charges are localized along the
chain and do not flow during the transition. In the bottom
panels of Fig. 3 we analyze the spectral density function
at the Fermi level. As one can see the LDOS at the first
site (with the midgap topological state) grows monotonically
just after the quench whereas other middle-chain sites reveal
small vanishing in time oscillations. However, the spectral
density LDOS1 does not change smoothly but reveals some
inflection points which are related to the creation process
of the midgap state discussed in Fig. 2. One can note that
the spectral density at the first site needs much longer time
to reach its equilibrium value (ten units) than the LDOS at
other sites. The studies of the reverse process (quench from
nontrivial to the trivial phase) leads to very similar results
with monotonically decreasing value of the local DOS at
the edge sites. However, the midgap state changes just after
the quench and is not frozen, cf. Ref. [48] due to the chain-
surface coupling which is responsible for the rate of the
transition.

For the non-symmetrical case (ε0 �= EF , right panels) the
physics of the chain transition is much reacher. Now the
occupancies along the normal chain (i.e. before the quench)
form a kind of charge waves in the system [8,52]. Next, for
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FIG. 4. Electron occupancies (upper panels) and LDOS at the
Fermi level (bottom panels) of the first four sites in the normal
chain (V = W = 2) switched to the nontrivial topological chain
(W = 0.5, V = 2.0) at t = 100 for N = 8, �1 = �N = 1, �i = 0
for ε0 = 0 (left panels) and ε0 = 1 (right panels). The insets in the
upper panels show the left current j1(t ).

t > 20 the chain couplings are changed and the occupancies
at the middle-chain sites tend to some constant value, common
for all sites (almost half-occupied) because the energy gap
appears along the chain and the Fermi energy is still in this
energy gap region (ε0 = 1, EF = 0 and the energy gap width
is 3). However, the occupancy of the end site rapidly decreases
after the quench as now the midgap state is shifted towards
ε0 and there is a relatively low value of LDOS at the Fermi
level. The consequence of this asymmetry in the LDOS is
the current flowing from the substrate to the chain (middle
right panel). The largest quench current appears for the first
site because its occupancy rapidly decreases and the excess
charge flows out to the surface (the current is negative). Note
that other currents ji(t ) oscillate in time and can be positive
or negative depending on the occupancy modifications at a
given site. All currents flow only for a short period of time
after the quench (few time units) and then the system tends
to its equilibrium state, thus, the currents vanish. Also the
spectral functions at the Fermi level (right bottom panel) show
damping oscillations after the quench and tend to the same
asymptotic values for all middle sites and to the higher value
of the LDOS at the edge site (due to the midgap state).

The transition from the normal to the topological sys-
tem changes the structure of LDOS along the chain, but the
system reaches its steady state relatively fast (almost mono-
tonically or with small damping oscillations). For the chain
on a substrate each site is coupled with continuum states in the
lead underneath, and the oscillations are strongly suppressed.
However, it could be interesting to study the transition effect
for a chain on the insulating substrate. Thus, we consider the
chain in the L-R geometry, i.e., the chain is coupled only
with two (left and right) external electrodes via the edge sites
(�1 = �N = 1 and �i = 0). The results for symmetrical (ε0 =
0) and nonsymmetrical (ε0 = 1) spectral density functions
are shown in Fig. 4, left and right panels, respectively, and
the transition takes place at t = 100. In this case the system
needs much more time to go beyond the transient effects—the
sites are charged up to t � 80 (upper panels) whereas for

the noninsulating surface this time was ten times smaller.
Now lead electrons have to pass through all chain sites to
occupy the middle sites. As before, for the symmetrical case
the occupancies do not change during the transition and the
current does not flow in the system (left upper panel). How-
ever, for the nonsymmetrical case the occupancies change
their values after the quench (right upper panel) especially at
the edge site and oscillate with small damping amplitudes.
These oscillations are also visible on the spectral density
functions at the Fermi level (bottom panels)—they vary in
time with slowly damping oscillations for both symmetrical
as well as nonsymmetrical cases. During these oscillations a
new spectral density function is formed at each site similar
to the noninsulating surface discussed in Fig. 2—the main
difference is that for the insulating surface the spectral density
does not change smoothly but it oscillates even for hundreds
of time units after the quench with slowly vanishing ampli-
tude. However, it is worth noting that the surface coupling �i

is responsible for the half-width of the LDOS peaks, thus,
the asymptotic occupancies are almost not sensitive to this
coupling strength. We have also considered different chain
lengths N , and the results remain still valid. However, we have
found that the LDOS oscillations can reveal quantum beats
which are size dependent (not shown here). It turns out that
these beats behave in the same way as the survival probability
obtained for 1D Majorana modes [46].

Electrical properties of stationary atomic chains are well
known, e.g., topological states of such systems are protected
against external perturbations and survive when the chain is
coupled with the substrate [18]. However, it is desirable to
check if this protection is still present for time-dependent
perturbations especially just after the quench. To study this
effect we consider the SSH1 chain with the midgap edge states
and at a given time t = 20 suddenly break the chain into two
smaller parts (the chain is broken between the eighth and the
ninth sites). This situation is schematically shown in Fig. 5
(upper scheme). The relevant spectral density functions at
four chosen sites are shown in the lower panels. One can
observe that topological state at the first site is unchanged
in time, thus, it is protected against such perturbations. We
can also note that internal sites are slightly affected by this
destructive process (middle and right panels in Fig. 5) and,
e.g., even the last but one site from the perturbation (LDOS7)
remains almost unchanged for t > 20. Also the occupancies
do not change in time in this case because all spectral density
functions are symmetrical versus the Fermi energy. What is
important, just after the breaking one observes time formation
of the topological midgap states at the eighth (bottom panel)
and ninth sites in the chain as these sites became new edges for
two separated topological chains. These states are smoothly
formed from the bulk sidebands of the topological chain. It is
worth noting that in this case the perturbation is sharp but the
states are not smashed over the energy scale (no decoherence
effects) and the LDOS at new edge sites smoothly changes in
time by bending the sidebands towards the Fermi energy.

B. Coupled atomic chains

Thus far, we have analyzed midgap state dynamics in a
single atomic chain. However, in real systems such a chain
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FIG. 5. LDOS time evolution at the first, second, seventh, and
eighth sites for the nontrivial chain composed of N = 16 sites on the
surface (W = 0.5, V = 2.0) broken at t = 20 between the eighth
and the ninth sites as is indicated in the upper scheme ε0 = 0,

�i = 1.

is fabricated in the vicinity of other regular chains, such as
on vicinal surfaces Si(335) or Si(557) where two or more
parallel chains can be observed at each terrace [1,4]. On the
other hand coupled chains are more stable and perspective in
nanoelectronics than a single atomic chain which can easily
break. In real experiments the site-site hoppings can be mod-
ified by changing the distances between atoms (e.g., using
the STM technique, varying the substrate temperature, using
piezoelectric substrates, or in optical lattices). Alternatively,
one can use a linear QD system where all couplings between
dots can be fully controlled by external electrodes. Thus, it
is desirable to investigate the electronic properties of coupled
chains on a surface, in particular, to determine time dynamics
of topological states in the presence of neighboring chains
being in the same or other topological phase.

First, in Fig. 6 we consider two coupled chains in the same
topological phases, i.e., SSH0-SSH0 or SSH1-SSH1. For such
ladderlike systems we analyze the spectral density dynamics
for two sites LDOS1 and LDOS2 (which are the same for both
chains). The coupling Vx changes in time linearly (quenchlike
changes) from zero (at t = 10) to Vx = 10 (at t = 11) and
before the quench (t < 10) both chains are in their initial
topological phases, i.e., the trivial phase with the energy gap
along the whole chain (SSH0) or in the nontrivial phase with
the midgap edge states (SSH1). It is interesting that for the
SSH0-SSH0 system after the quench the sidebands of the
LDOS observed for t < 10 split in time by the value ±Vx and
they form four separated sidebands (indicated by the arrows).
During this process the energy gap is closed for awhile as the
sidebands cross together—see the bluelike horizontal stripes
around ε = 0 for t � 10. Note that for the small value of Vx

the splitted sidebands do not cross each other and the energy
gap is not closed in that case. This effect is confirmed by the

FIG. 6. LDOS time evolution of two first sites LDOS1, LDOS2

(left and right panels) for SSH0-SSH0 and SSH1-SSH1 coupled
chains with V = 2, W = 4 (SSH0) and V = 4, W = 2 (SSH1). The
coupling between chains is switched on linearly from zero (at t = 10)
to Vx = 10 (at t = 11), �i = 1, ε0 = 0, N = 10.

energy spectra calculations shown in the upper panel in Fig. 7
for the SSH0-SSH0 system. The spectrum has a reflection
symmetry through the Fermi energy in the gap due to the
particle-hole symmetry. One can see that for small hopping
Vx the energy gap still exists then it is closed for intermediate
values of Vx and for larger hoppings it opens again. It is the
reason that during the large jump of this parameter the system
is not transformed immediately to the energy gap region, but

FIG. 7. Quasienergy spectra of two coupled atomic chains as a
function of the chain-chain hopping Vx for two SSH0 chains (upper
panel), two SSH1 chains (middle panel), and for SSH0-SSH1 chains
of the length N = 24. The other parameters as the same as in Fig. 6.
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for a moment the energy gap is closed. Note, however, that
quasienergy spectra do not give us as wide perspective on the
quantum states dynamics as the time- and space-dependent
LDOS function. Similar behavior of the LDOS dynamics we
observed for all sites in the SSH0-SSH0 system as well as
for all intersites of the SSH1-SSH1 system (e.g., right bottom
panel in Fig. 6). At these sites there are no topological states
at the Fermi level—the energy spectrum for the SSH1-SSH1

geometry is shown in the middle panel in Fig. 7 and the
gap existence for large Vx is evident. Note that there are also
further gaps in the energy spectra beyond the Fermi level
and for the nontrivial phase additional states in the middle of
these gaps can exist [38]. The most interesting is the midgap
topological state dynamics (left bottom panel in Fig. 6). Here
the edge state slowly vanishes and reveals damping oscil-
lations in the energy gap region. Moreover, only two main
sidebands are formed at the edge site and these sidebands are
accrued from the midgap state by “periodical emission” of the
main state towards the sidebands. The emission process takes
place when the midgap state reaches maximal values during
its oscillations in time. It leads to a nice symmetrical picture
with periodical spectral density oscillations in the energy gap
region and this effect will be discussed later.

Next we consider two coupled chains that are in dif-
ferent topological phases. The system is composed of the
SSH1 (nontrivial phase) and SSH0 (trivial phase) chains.
In Fig. 8 we show the LDOS at the first two sites of
the SSH1 (left panels) and SSH0 (right panels) topological
chains which are coupled at t = 10. We consider differ-
ent time rates of this coupling: It is switched on very
slowly [adiabatically, panels (a)], average [panels (b)], and
rapidly [fast quench, panels (c)] as is indicated in the upper
inset. For adiabatically changed coupling Vx we observe the
monotonically vanishing (without oscillations) topological
state at the edge site of the nontrivial SSH1 chain [left (a)
panel], and for t � 55, which corresponds to Vx � 6, this state
disappears. It is confirmed by the quasienergy spectrum for
this system shown in Fig. 7, bottom panel, where the bulk
energy gap of the SSH0-SSH1 system with the midgap state
closes for Vx � 6 and opens again without the appearance of
any topological state for larger Vx. Thus, the system changes
its topology from the nontrivial phase to the trivial one. Inter-
estingly, that in the trivial chain at the second site, additional
midgap state appears in the spectral density for the coupled
chains. This state is visible only for a short period of time
(which corresponds to Vx < 6), and for larger t it smoothly
vanishes. The appearance of this induced state in the SSH0

chain is correlated with the intensity of the edge state in the
SSH1 chain—one can say that the topological state leaks for
a moment to the trivial chain. It is important that this process
holds between nondirectly coupled sites in both chains and
there is still an energy gap in their neighboring sites at the
Fermi level [middle (a) panels]. To confirm this conclusion
we analyze in more detail the LDOS at the Fermi energy as a
function of time and in Fig. 9(a), one can see that the midgap
topological state (purple curve) slowly vanishes for t > 10
and at the same time the induced state in the trivial chain
appears (orange curve). For a longer time (larger Vx value)
the energy gap closes (around t = 50) and opens again with
the trivial phase without topological states.

FIG. 8. Time evolution of the LDOS at two sites i = 1, 2 of ini-
tially decoupled chains of the length N = 10 in different topological
phases (SSH0 with V = 2, W = 4 and SSH1 with V = 4, W = 2).
The chains are coupled at t = 10 and Vx (t ) changes in time as is
indicated in the upper inset according to the (a), (b), or (c) curve,
respectively.

More interesting physics appears for nonadiabatical pertur-
bations where the chain-chain hopping rapidly change in time
[(b) and (c) panels in Fig. 8]. Topological edge states in the
SSH1 chain vanish with time [left (b) panel] and the midgap
state in the trivial SSH0 chain (at the second site) is observed
during the fast linear change of Vx which is shown in the right
(b) panel. For this change there is still a short period of time
for which Vx corresponds to the nontrivial SSH phase and
the induced topological state can appear for a moment. This
dynamical process is also visible in Fig. 9, (b) panel where the
spectral density functions at the Fermi level are shown for the
first two sites of both chains. As before, the topological state
vanishes in time (purple curve), but now small oscillations of
LDOS are evident. Note that rate-dependent oscillations after

195429-8



EDGE-STATE DYNAMICS IN COUPLED TOPOLOGICAL … PHYSICAL REVIEW B 102, 195429 (2020)

FIG. 9. LDOS at the Fermi energy at two sites (i = 1 and i = 2)
for the same system as in Fig. 8: SSH0-SSH1 chains coupled together
at t = 10 for different Vx changes (a), (b), and (c), respectively. All
parameters are the same as in Fig. 8.

the quench were also observed for the Majorana probability
mode where these oscillations increase as the rate of quench
becomes larger [47] and for small rates these oscillations are
hardly observed. Similarly, the induced midgap state in the
SSH0 chain appears for a moment with small oscillations.
For larger t the energy gap is open again (trivial phase), and
this induced state vanishes in time. Moreover, in this case the
LDOS at the neighboring sites (in SSH1—the second site, and
in SSH0—the first site) have small nonzero values after the
quench and they also oscillate in time. It means that the SSH1

topological state is now transferred also to the neighboring
sites. However, for the abrupt change in Vx [sudden change
from zero to a finite large value, panel (c) in Fig. 8] the
system is transformed directly to the trivial phase and it never
takes intermediate values of Vx. Thus, it is not obvious that
the topological induced state could appear in the trivial chain
during the quench. To answer this intriguing question we
study this effect in the (c) panel and find that after the quench
the system tends to the trivial phase [as was discussed in (a)

FIG. 10. Time evolution of the LDOS at i = 1 and i = 2 sites of
atomic chains composed of N = 8 sites each being in different topo-
logical phases (SSH0 and SSH1). At t = 10 chains are immediately
connected [similarly as in Fig. 8, (c)] Vx = 3 and all other parameters
are the same as in Fig. 8. Yellow, green, and blue colors represent the
LDOS values equal to 0.4, 0.2, and 0.1, respectively.

and (b) panels], however, we observe that the midgap states
appear for a short period of time at the Fermi level in both
chains. These induced states do not vanish monotonically, but
they reveal oscillations in time. The oscillations are strictly
correlated with the vanishing topological state oscillations in
the nontrivial SSH1 chain and are analyzed in more details
in Fig. 9, (c) panel. As one can see now the oscillations of
LDOS(EF ) at the SSH0 sites are in the same phase (blue and
orange curves) and in the SSH1 sites are in phase (purple
and green curves). However, there are alternating (antiphase)
oscillations between sites in both chains, thus, the maximal
values of LDOS(EF ) at first SSH chain are correlated with
minimal values of LDOS(EF ) at the second chain (Rabi-like
oscillations). These vanishing oscillations can be considered
as the topological state migration from site to site, which
was investigated, e.g., along the Majorana wire [47] after the
quench. In our case this effect appear between two sites from
different chains (fast oscillations). There are also visible long-
period oscillations which are related to the zero-energy state
migration along the chain and depend on the energy gap and
the sideband energies. These oscillations last relatively long in
time, Fig. 8, bottom panels, thus, it makes possible to detect
these induced topological states in double-chain structures.

It is also interesting to analyze the SSH0-SSH1 system for
a smaller change in the chain-chain coupling parameter Vx

such that after the change the system still remains in the same
topological phase. Surprisingly small, but a sudden change
leads to unexpected results. In Fig. 10 we show LDOS dy-
namics at the first two sites of the SSH0 and SSH1 chains for
a sudden quench at t = 10, and for Vx = 3 (thus, for t > 10
the system is in the nontrivial phase, cf. the energy spectrum
in Fig. 7, bottom panel). In this case the edge midgap state
(left upper panel) vanishes for a short period of time just after
the quench. During this time zero-energy states appear at the
neighboring sites. It is important that through these sites the
SSH1 topological state is partially transferred to the SSH0
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trivial chain (right bottom panel). For a longer time there are
two midgap states in the system: (i) at the edge site in SSH1

and (ii) at the second site in SSH0. The intensity of the SSH1

topological state decreases in comparison with its value before
the quench (from a high value represented by a yellowlike
color to the lower one—green color) because it leaks to the
trivial SSH0 chain. It is also worth noting that the electron
occupancies of all sites in both chains do not change in time
during this quench as the system is fully symmetrical.

To conclude, we have found that rapid change in Vx in the
coupled SSH0-SSH1 system induces topological states in the
trivial chain. As a main result we have observed that the SSH
topological state can be partially transferred inside the system
and exist simultaneously at different sites. It seems reasonable
as for the coupled chains the unit cell is not longer the two-site
primitive cell (as in the usual SSH chain) but is a four-site cell
composed of two sites from the SSH0 and two sites from the
SSH1 chains. Thus, the topological state of the coupled chains
is still present at the end cell and can leak inside the cell.

C. Coulomb repulsion between atomic chains

Electron charge in a finite-length atomic chain can be dis-
tributed uniformly along the chain or can form charge waves
called the Friedel oscillations [8,52]. These oscillations are the
consequence of asymmetry of the spectral density functions
at each site with respect to the Fermi energy. Note that charge
oscillations are strongly suppressed in topological chains due
to the energy gap in such systems. However, for a double-
chain structure the charge waves along a given chain can be
reproduced in the second one (in the same phase or in an-
tiphase oscillations) in the presence of the Coulomb repulsion,
but it is doubtful if these oscillations can appear in topological
chains.

To answer this question in Fig. 11 we analyze the occu-
pancies along two coupled chains (upper panel) obtained for
t → ∞ and UC = 0 (thin curves) as well as in the presence
of electron-electron repulsion UC = 5 between both chains
(thick curves). The charge waves in the normal chain at the
substrate satisfy the condition for the period of three sites [52]
(εi = −V, UC = 0)—upper panel, thin broken green curve.
In the vicinity of this chain there is a nontrivial topologi-
cal chain SSH1 with half-occupied sites (red solid line) and
topological edge states. As one can see for nonzero UC (thick
lines) electrons in both chains repeal each other which leads,
in general, to decreasing in the occupations in the normal and
in the topological chains. However, charge oscillations in the
normal chain are still observed, and they induce the Friedel os-
cillations along the topological chain. This effect is surprising
and important for the studies of topological materials as there
is an energy gap at the Fermi level in the SSH1 chain. Note that
high occupancy values in the normal chain stronger reduce
charge values in the topological chain at the corresponding
sites leading to the antiphase oscillations in this chain. It is
also interesting that electron occupancy at the first site in the
topological chain more rapidly decreases in comparison with
the other site occupancies. It is a consequence of nontrivial
midgap state at this site which in the presence of electron-
electron repulsion is renormalized by the value of UCn1(nor),
where n1(nor) is the charge occupancy at the first site in the

FIG. 11. Electron occupancies along the normal chain (broken
green curves) and along the SSH1 chain (solid red curves) of
the length N = 10 for UC = 0 (thin curves) and UC = 5 (thick
curves)—upper panel. The bottom panel shows time-dependent oc-
cupancies at i = 1–3 sites in both chains for a sudden change of the
Coulomb repulsion UC = 0 for t < 18 and UC = 5 for t � 18. The
other parameters are V = 4, W = 1, εi = 0 (topological chain) and
V, W = 4, εi = −V (normal chain). The lines in the upper panel are
plotted for better visualization.

normal chain. Thus, even for small UC the spectral density
function is shifted towards higher energies and the electron
occupancy at the first site drastically decreases whereas at
other sites in the chain the changes are smaller due to the
energy gap at the Fermi level.

It is also interesting to analyze time evolution of the charge
waves which are induced in the coupled chains of different
topology. In Fig. 11, bottom panel, we show the occupancies
at three sites of the normal chain (green broken curves) and
the SSH1 chain (red solid curves) for a sudden change in the
Coulomb repulsion at t = 18 (UC = 5). Before the Coulomb
quench the occupancies are time independent and their values
correspond to the steady case for UC = 0. Also for t → ∞ the
electron occupancies reach their stationary values, the same
as for UC = 5 in the upper panel (thick curves). Just after the
perturbation all occupancies change, and the time evolution of
ni shows vanishing oscillations. The period of these oscilla-
tions depends on the Coulomb repulsion and equals T = 2π

UC ni

(which in our case is T � 1.6). Thus, from the knowledge
of time-dependent charge oscillations one can estimate the
strength of the Coulomb interaction between the sites. It is
worth noting that although the occupancies in general de-
crease in the presence of UC , it is possible to inverse the
occupancies between the neighboring sites in both chains and,
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e.g., at the second sites i = 2 for UC = 0 the charge at the
normal chain is larger that in the SSH chain, but for nonzero
UC the opposite relation is satisfied. This process can lead
to the electron localization in topological chains due to the
Coulomb repulsion.

IV. CONCLUSIONS

We have studied nonequilibrium electrical properties of 1D
topological chains and coupled chains on a surface focusing
on the energy-dependent spectral density function. For a sin-
gle chain we have analyzed the transition process from the
normal chain to the SSH nontrivial chain where the midgap
edge state appears. It turns out that the timescale needed to
build this state strongly depends on the surface and for the
insulating substrate the system reaches its equilibrium state
after hundreds units of time from the quench. Moreover, we
have found that the edge state is formed dynamically from
the intersidebands of the normal chain (in the first stage after
the quench) and then next sidebands support this state after
some further period of time. Thus, the midgap state does not
appear immediately after the quench and is formed simul-
taneously with the bulk energy gap. We have also analyzed
topological chain which suddenly breaks. In this case the
midgap topological state as well as the local DOS at all sites
do not change in time except for two sites which comprise
new edges of two shorter chains. At these sites, which are
characterized by the energy gap, new midgap states are built
adiabatically in time from the LDOS sidebands.

We have also considered coupled atomic chains being in
the same or in different topological phases (SSH0 or SSH1)
and studied the time response of the spectral density functions
on abruptly or adiabatically changing of the chain-chain cou-
plings Vx. For the SSH0-SSH0 geometry the energy gap can
be closed (for small Vx) or is still present in the system (for
larger Vx), but the midgap topological state does not appear.
It is important that for the SSH1-SSH1 system the midgap
zero-energy state splits adiabatically into two sidebands for
small Vx or vanishes for larger Vx—in the last case the en-
ergy gap is open in the system. The most interesting case
we have observed for different phases of the coupled chains
SSH0-SSH1. We have found that for larger values of Vx the
system changes its phase (from nontrivial to the trivial one)
and the midgap topological state vanishes. However, for the
adiabatical change in Vx the topological SSH1 state partially
leaks to the trivial SSH0 chain, and both midgap states exist
simultaneously at two different sites. For abruptly changed Vx

the topological as well as the induced topological states vanish
in time with damping oscillations. These novel conclusions
have been obtained from the detail analysis of the full space-
and time-dependent LDOS, supported by the quasienergy
spectra, which give us a wider perspective on the midgap
topological states.

We have also investigated the electron correlation effects
between the coupled chains and the induced Friedel oscilla-
tions along the SSH chain were found in the vicinity of the
normal chain with standard charge waves. The induced out-
of-phase Friedel oscillations in topological structures stands
for a crucial point of the paper. These oscillations with very

low electron occupancy at both end sites can be the essential
feature of 1D topology in potential STM experiments.
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APPENDIX A: EVOLUTION OPERATOR CALCULATIONS

Here we give some details on the charge occupancy and
the current obtained within the evolution operator method
[49,50]. To derive the time-dependent occupations at a given
site ni(t ), one has to find the expectation value of the total
particle number operator n̂all , taken for the time-dependent
state vector related with this site |αi〉,

ni(t ) = 〈αi(t )| n̂all |αi(t )〉 . (A1)

The total particle number of the system can be written as
a sum over all electron states n̂all = ∑

j n̂ j + ∑
�k, j n̂�k j and

the unitary evolution operator describes time transformation
of the state vector from its initial state |αi(t0)〉 such that:
|αi(t )〉 = U (t, t0) |αi(t0)〉. Now the ith site occupancy can be
written in the following form:

ni(t ) = 〈αi(t0)|U †(t, t0)|
∑

j

n̂ j +
∑
�k, j

n̂�k j |U (t, t0) |αi(t0)〉 .

(A2)

Let us consider the first sum in the above equation with
n̂ j operators. Using the unit operator for this system which
contains all single-particle states at the initial time 1 =∑

α |α(t0)〉 〈α(t0)|, one can obtain the formula,∑
j

〈αi(t0)|U †(t, t0)|n̂ j |U (t, t0) |αi(t0)〉

=
∑

j

〈αi(t0)|U †(t, t0)|1|n̂ j |1|U (t, t0) |αi(t0)〉

=
∑

j

∑
α

∑
α′

〈αi(t0)|U †(t, t0) |α(t0)〉 〈α(t0)| n̂ j |α′(t0)〉︸ ︷︷ ︸
δα, jδα′ , j n j (t0 )

×〈α′(t0)|U (t, t0) |αi(t0)〉 =
∑

j

n j (t0)|Ui, j (t, t0)|2,

(A3)

which stands for the first term of Eq. (2). The second
term in Eq. (A2) includes the wave-vector summation∑

�k j 〈αi(t0)|U †(t, t0)|n̂�k j |U (t, t0) |αi(t0)〉 and using similar
calculations as above one finally obtains the second term in
Eq. (2). The electron occupancy of the electrode state �k1,
needed for the current calculations, Eq. (3), can be obtained
from the following relation [it can be derived in the same way
as Eq. (A3)]:

n�k1
(t ) =

M∑
j=1

n j (t0)|U�k1, j (t, t0)|2 +
∑
j,�k j

n�k j
(t0)|U�k1,�k j

(t, t0)|2.

(A4)
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Thus, for the initial occupations n j (t0) = 0, the current flow-
ing, e.g., through the first chain site, Eq. (3), is expressed by
the formula,

j1(t ) = −e
d

dt

∑
�k1

∑
j,�k j

n�k j
(t0)|U�k1,�k j

(t, t0)|2

=
∑
�k1

∑
j,�k j

2n�k j
(t0)Re

(
U ∗

�k1,�k j
(t, t0)

d

dt
U�k1,�k j

(t, t0)

)
.

(A5)

To find the equation for the evolution operator Uα,β (t ) one
can use Eq. (4), which can be written as follows: i ∂

∂t Uα,β (t ) =
〈α| V̂ (t )U (t ) |β〉. On the right-hand side we use the unity
operator and obtain the coupled set of differential equations,

i
∂Uα,β (t )

∂t
= 〈α| V̂ (t )|1|U (t ) |β〉

=
∑

j′
〈α| V̂ (t ) | j′〉 〈 j′|U (t ) |β〉︸ ︷︷ ︸

Uj′ ,β (t,t0 )

+
∑
j′,�k

〈α| V̂ (t ) |�k j′ 〉 〈�k j′ |U (t ) |β〉︸ ︷︷ ︸
U�k j′ ,β

(t,t0 )

. (A6)

The terms with V̂ (t ) are obtained using the Hamiltonian and
the relations below Eq. (4), and one can write

〈α| V̂ (t ) |β〉 = 〈α|U0(t, t0)|V (t )|U †
0 (t, t0) |β〉

= 〈α|U0(t, t0)|1|V (t )|1|U †
0 (t, t0) |β〉

= (U0)α,α (t, t0)(V (t ))α,β (U †
0 )β,β (t, t0), (A7)

where, e.g., (U0)α,α (t, t0) = exp (i
∫ t

0 dt ′ 〈α| H0(t ′) |α〉). In the
same way one can write the differential equations for other
evolution operator matrix elements, such as for U�k j′ ,β

(t, t0)
and insert their formal solutions into Eq. (A6) which finally
gives the integodifferential Volterra equation of the second
kind, Eq. (5).

APPENDIX B: LAPLACE TRANSFORM CALCULATIONS

In this Appendix we show some technical aspects for the
calculation of Eq. (8) for Ui,�k j

(t ) matrix elements. We start

from the differential equation, Eq. (5), written for the regular
chain of the same sites with vanishing Coulomb interactions
and within the wideband approximation, i.e.,

i
∂Ui,�k j

(t )

∂t
=

∑
i′

Vii′Ui′,�k j
(t ) − Vi,�k j

e
i(ε0−ε�k j

)t − i
�i

2
Ui,�k j

(t ).

(B1)

Now we use the Laplace transform technique for this equa-
tion, Fi j (s) ≡ L[Ui,�k j

(t )] = ∫ +∞
0 Ui,�k j

(t )e−st dt , and obtain the
following set of linear recursive equations on Fi j (s) elements,(

s + �i

2

)
Fi j (s) + iVi,i+1Fi+1, j (s) + iVi,i−1Fi−1, j (s)

=
−iVi,�k j

s − i(ε0 − ε�k j
)
δi j . (B2)

The formal solution of these Laplace transform functions can
be written as

Fi j (s) =
−iVi,�k j

s − i(ε0 − ε�k j
)
A−1

i j , (B3)

where Ai j = (s + �i
2 )δi j + iVi j (δi+1, j + δi, j+1) is the tri-

diagonal matrix (N × N dimension, AN ) for which the
determinant can be expressed by the Chebyshev polynomials
of the second kind. For the same couplings between sites
Vi j = V and �i = �, the Laplace transform elements take the
following form (e.g., for i = 1):

F1 j (s) =
(−i) jV j−1Vj,�k j

s − i(ε0 − ε�k j
)

det AN− j

det AN
, (B4)

where det AN = ∏N
j=1 (s + �

2 + 2iV cos jπ
N+1 ). Now, to obtain

the solutions in the time domain we have to calculate the
inverse Laplace transforms: Ui,�k j

(t ) = L−1{Fi j (s)}, which in
our case can be performed analytically as the determinant of
(B4) contains only the product terms of s variable. The final
result is given by Eq. (8).

[1] M. Kopciuszyński, P. Dyniec, M. Krawiec, P. Łukasik, M.
Jałochowski, and R. Zdyb, Pb nanoribbons on the si(553) sur-
face, Phys. Rev. B 88, 155431 (2013).

[2] J. N. Crain, J. L. McChesney, F. Zheng, M. C. Gallagher,
P. C. Snijders, M. Bissen, C. Gundelach, S. C. Erwin, and F. J.
Himpsel, Chains of gold atoms with tailored electronic states,
Phys. Rev. B 69, 125401 (2004).

[3] A. Baski, K. Saoud, and K. Jones, 1-d nanostructures grown on
the si(5 5 12) surface, Appl. Surf. Sci. 182, 216 (2001).

[4] M. Jałochowski, T. Kwapinski, P. Łukasik, P. Nita, and M.
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[18] M. Kurzyna and T. Kwapiński, Non-local electron transport
through normal and topological ladder-like atomic systems,
J. Appl. Phys. 123, 194301 (2018).

[19] D. Xie, W. Gou, T. Xiao, B. Gadway, and B. Yan, Topological
characterizations of an extended Su-Schrieffer-Heeger model,
npj Quantum Inf. 5, 55 (2019).

[20] V. M. Martinez Alvarez and M. D. Coutinho-Filho, Edge states
in trimer lattices, Phys. Rev. A 99, 013833 (2019).

[21] B. Pérez-González, M. Bello, Á. Gómez-León, and G. Platero,
Interplay between long-range hopping and disorder in topolog-
ical systems, Phys. Rev. B 99, 035146 (2019).

[22] B. Pérez-González, M. Bello, Álvaro Gómez-León, and G.
Platero, SSH model with long-range hoppings: topology, driv-
ing and disorder, arXiv:1802.03973.

[23] B.-H. Chen and D.-W. Chiou, An elementary rigorous proof
of bulk-boundary correspondence in the generalized Su-
Schrieffer-Heeger model, Phys. Lett. A 384, 126168 (2020).

[24] X.-L. Lü and H. Xie, Topological phases and pumps in the
Su-Schrieffer-Heeger model periodically modulated in time,
J. Phys.: Condens. Matter 31, 495401 (2019).

[25] J. H. Kang, J. H. Han, and Y. Shin, Creutz ladder in a resonantly
shaken 1d optical lattice, New J. Phys. 22, 013023 (2020).

[26] N. Sun and L.-K. Lim, Quantum charge pumps with topological
phases in a creutz ladder, Phys. Rev. B 96, 035139 (2017).

[27] J. Zurita, C. E. Creffield, and G. Platero, Topology and inter-
actions in the photonic creutz and creutz-hubbard ladders, Adv.
Quantum Technol. 3, 1900105 (2019).

[28] K. Pöyhönen, A. Westström, J. Röntynen, and T. Ojanen, Majo-
rana states in helical shiba chains and ladders, Phys. Rev. B 89,
115109 (2014).

[29] D. Obana, F. Liu, and K. Wakabayashi, Topological edge states
in the Su-Schrieffer-Heeger model, Phys. Rev. B 100, 075437
(2019).

[30] J. Arkinstall, M. H. Teimourpour, L. Feng, R. El-Ganainy, and
H. Schomerus, Topological tight-binding models from nontriv-
ial square roots, Phys. Rev. B 95, 165109 (2017).

[31] A. Gómez-León and G. Platero, Floquet-Bloch Theory and
Topology in Periodically Driven Lattices, Phys. Rev. Lett. 110,
200403 (2013).

[32] O. Balabanov and H. Johannesson, Robustness of symmetry-
protected topological states against time-periodic perturbations,
Phys. Rev. B 96, 035149 (2017).

[33] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological
characterization of periodically driven quantum systems, Phys.
Rev. B 82, 235114 (2010).

[34] T. Ochiai, Su-Schrieffer-Heeger-type Floquet network,
arXiv:1811.11984.

[35] C. Jürß and D. Bauer, High-harmonic generation in Su-
Schrieffer-Heeger chains, Phys. Rev. B 99, 195428 (2019).

[36] M. Bello, C. E. Creffield, and G. Platero, Long-range doublon
transfer in a dimer chain induced by topology and ac fields, Sci.
Rep. 6, 22562 (2016).

[37] J. Huneke, G. Platero, and S. Kohler, Steady-State Coherent
Transfer by Adiabatic Passage, Phys. Rev. Lett. 110, 036802
(2013).

[38] N. H. Le, A. J. Fisher, N. J. Curson, and E. Ginossar,
Topological phases of a dimerized fermi–hubbard model for
semiconductor nano-lattices, npj Quantum Inf. 6, 24 (2020).

[39] T. Hensgens, T. Fujita, L. Janssen, X. Li, C. J. Van Diepen,
C. Reichl, W. Wegscheider, S. Das Sarma, and L. M. K.
Vandersypen, Quantum simulation of a fermi–hubbard model
using a semiconductor quantum dot array, Nature (London)
548, 70 (2017).

[40] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons,
L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith,
and M. A. Eriksson, Silicon quantum electronics, Rev. Mod.
Phys. 85, 961 (2013).

[41] E. J. Meier, F. A. An, and B. Gadway, Observation of the topo-
logical soliton state in the Su-Schrieffer-Heeger model, Nat.
Commun. 7, 13986 (2016).

[42] M. Parto, S. Wittek, H. Hodaei, G. Harari, M. A. Bandres, J.
Ren, M. C. Rechtsman, M. Segev, D. N. Christodoulides, and
M. Khajavikhan, Edge-Mode Lasing in 1d Topological Active
Arrays, Phys. Rev. Lett. 120, 113901 (2018).

[43] E. Taranko, M. Wiertel, and R. Taranko, Transient electron
transport properties of multiple quantum dots systems, J. Appl.
Phys. 111, 023711 (2012).

[44] X. Li, Y. Meng, X. Wu, S. Yan, Y. Huang, S. Wang, and W. Wen,
Su-Schrieffer-Heeger model inspired acoustic interface states
and edge states, Appl. Phys. Lett. 113, 203501 (2018).

[45] C.-C. Chien, K. A. Velizhanin, Y. Dubi, B. R. Ilic, and M.
Zwolak, Topological quantization of energy transport in mi-
cromechanical and nanomechanical lattices, Phys. Rev. B 97,
125425 (2018).

[46] A. Rajak and A. Dutta, Survival probability of an edge majo-
rana in a one-dimensional p-wave superconducting chain under
sudden quenching of parameters, Phys. Rev. E 89, 042125
(2014).

[47] P. D. Sacramento, Fate of majorana fermions and chern numbers
after a quantum quench, Phys. Rev. E 90, 032138 (2014).

[48] C. H. Lee and J. C. W. Song, Quenched topological boundary
modes can persist in a trivial system, arXiv:2002.11726.

195429-13

https://doi.org/10.1126/science.1259327
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1103/PhysRevB.89.085111
https://doi.org/10.1209/0295-5075/112/10004
https://doi.org/10.1103/PhysRevB.93.115432
https://doi.org/10.1103/PhysRevA.92.023624
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1038/nphys4080
https://doi.org/10.1063/1.5028571
https://doi.org/10.1038/s41534-019-0159-6
https://doi.org/10.1103/PhysRevA.99.013833
https://doi.org/10.1103/PhysRevB.99.035146
http://arxiv.org/abs/arXiv:1802.03973
https://doi.org/10.1016/j.physleta.2019.126168
https://doi.org/10.1088/1361-648X/ab3d72
https://doi.org/10.1088/1367-2630/ab61d7
https://doi.org/10.1103/PhysRevB.96.035139
https://doi.org/10.1002/qute.201900105
https://doi.org/10.1103/PhysRevB.89.115109
https://doi.org/10.1103/PhysRevB.100.075437
https://doi.org/10.1103/PhysRevB.95.165109
https://doi.org/10.1103/PhysRevLett.110.200403
https://doi.org/10.1103/PhysRevB.96.035149
https://doi.org/10.1103/PhysRevB.82.235114
http://arxiv.org/abs/arXiv:1811.11984
https://doi.org/10.1103/PhysRevB.99.195428
https://doi.org/10.1038/srep22562
https://doi.org/10.1103/PhysRevLett.110.036802
https://doi.org/10.1038/s41534-020-0253-9
https://doi.org/10.1038/nature23022
https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1038/ncomms13986
https://doi.org/10.1103/PhysRevLett.120.113901
https://doi.org/10.1063/1.3679050
https://doi.org/10.1063/1.5051523
https://doi.org/10.1103/PhysRevB.97.125425
https://doi.org/10.1103/PhysRevE.89.042125
https://doi.org/10.1103/PhysRevE.90.032138
http://arxiv.org/abs/arXiv:2002.11726
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