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Lotka-Volterra population dynamics in coherent and tunable oscillators
of trapped polariton condensates
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We demonstrate a regime in which matter-wave condensates of exciton-polaritons trapped in an elliptically
shaped two-dimensional potential appear as a coherent mixture of ground and first-excited states of the
quantum harmonic oscillator. This system resembles an optically controllable two-level system and produces
near-terahertz harmonic oscillations of the condensate’s center of mass along the major axis of the elliptical
trapping potential. The population ratio between the two trap levels is tunable through the excitation laser power
and is shown to follow Lotka-Volterra dynamics. Furthermore, we demonstrate coherence formation between two
spatially displaced trapped condensate oscillators—the polaritonic analog of Huygen’s clock synchronization for
coupled condensate oscillators.
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I. INTRODUCTION

The competitive Lotka-Volterra model describes coupled
autonomous systems (or species in terms of predator-prey
settings) which fight over a common resource. Such compe-
tition can be found in brain activity [1], economics [2], and
laser systems described by Maxwell-Bloch equations where
different modes compete over the laser gain [3]. Interestingly,
dissipative Bose-Einstein condensates can also display similar
competitive population dynamics given the right setting. The
purest form of condensation in the quantum sense refers to
an equilibrium bosonic gas macroscopically occupying the
system ground state while other levels deplete [4]. When
non-Hermiticity is added to the picture, which is the case
for photon and polariton condensates, this macroscopic oc-
cupation is no longer exclusive to just the ground state but
instead other available higher energy levels might become
macroscopically occupied, depending on their internal losses
and coupling to other levels leading to competition over the
condensate gain.

Many-particle two-level systems such as lasers and con-
densates can host complex solutions [5] and give insight
into fundamental physics of coupled systems [6,7] through
detailed experimental control. They also form the solid-
state implementation of semiclassical [8] or fully quantum
qubits, like superconducting circuits for quantum informa-
tion processing. Indeed, the possibility of using Bose-Einstein
condensates for quantum computation has been proposed [9],
followed by some exciting work focused on exciton-polariton
condensates due to their easy optical manipulation [10–13].
Moreover, non-Hermitian two-level systems of polariton con-
densates could potentially model the open Bose-Hubbard
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dimer [14], PT -symmetric physics [15,16], and nonlinear
Josephson effects such as macroscopic self-trapping [17,18].
Recently, these systems have been theoretically proposed as
clock generators under resonant laser excitation [19], and
to realize propagating domain walls in extended conden-
sates through mode competition [20]. It is therefore of quite
some interest to be able to generate and control macroscop-
ically occupied dissipative two-level systems to investigate
the aforementioned possibilities. Such control also opens new
perspectives to study synchronization in extended two-level
bosonic systems where adjacent traps possess different level
occupation.

Our study is then motivated by the following question: Can
a two-level dissipative condensate system be designed with
tunable energy spacing and competitive population dynamics
which determine the ratio of particles between the excited
state and the ground state? In other words, can the condensate
Bloch vector be tuned to have arbitrary polar angle on the
Bloch sphere and precession frequency? Here, we answer
this question in the affirmative. We show experimentally and
theoretically that a nonresonantly excited exciton-polariton
condensate, possessing two energy levels from its laser-
induced trap [21], displays a gradual change in the relative
level occupation number as a function of excitation power
while the pump laser geometry determines the level split-
ting. The condensate population dynamics are found to follow
exactly the competitive Lotka-Volterra equations due to cross-
saturation effects coupling the levels together. Our modeling
provides a transparent description of the physics at play and
strengthens the connection between dissipative polariton con-
densates and laser systems. We additionally demonstrate the
scalability of our system by measuring the coherent coupling
between a pair of two-level condensates by using two distinct
laser beams. There, we observe that the dissipative nature of
their tunneling current synchronizes the systems to maximize
their mutual gain.
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FIG. 1. Schematic of the experimental setup for generation and
measurement of trapped condensate oscillators. Abbreviations: spa-
tial light modulator (SLM), lens (L), quarter-wave plate (λ/4), beam
splitter (BS), microscope objective lens (MO), microcavity sample
(MC), long-pass filter (LP), mirror (M), retroreflector (RR), flippable
lens (FL), charge-coupled device (CCD).

II. METHODS

Experiments are conducted on a strain-compensated semi-
conductor microcavity with InGaAs quantum wells held in a
cold finger cryostat at a temperature T ≈ 6 K. A schematic of
the experimental setup is shown in Fig. 1. The continuous-
wave Gaussian excitation laser (λ ≈ 785 nm) is modulated
using a spatial light modulator in the Fourier plane of the
optical setup, circularly polarized and focused with (elliptical)
annular beam shape onto the microcavity using an NA = 0.4
microscope objective lens. The full width at half maximum
of the laser profile in the radial direction is ≈ 1.5 μm. An
acousto-optic modulator transforms the continuous-wave sig-
nal into square wave packets at 5% duty cycle and 10 kHz
repetition rate to avoid heating of the sample. We operate at a
negative exciton-photon detuning of � ≈ 5.5 meV. Resulting
polariton photoluminescence (PL) at wavelength λ = 857 nm
is collected in reflection geometry, filtered from the excita-
tion laser using a long-pass filter and imaged simultaneously
onto two different charge-coupled device (CCD) sensors. One
sensor (CCD 1) is placed at the output of a 750-mm spectrom-
eter (equipped with a 1800 grooves/mm grating) such that
through combination of optical lenses we can choose to image
spectrally resolved momentum-space (far-field) or real-space
(near-field) photoluminescence. The second sensor (CCD 2)
is placed at the output of a modified Mach-Zehnder interfer-
ometer, in which one mirror is replaced by a retroreflector

mounted on a translation stage. Here, we chose to image the
interference of the real-space (near-field) polariton photolumi-
nescence with its retroreflected and time-shifted distribution,
i.e., |�(r, t) + exp (ikr)�(−r, t + τ )|2. The wavevector k is
controlled by transverse displacements of the retroreflected
beam and determines the orientation and periodicity of the
interference fringes. Recorded interferograms are analyzed
by means of off-axis digital holography to obtain magnitude
and phase of the first-order correlation function g(1)(r,−r, τ ),
where τ is the temporal shift controlled by the relative path-
length difference of the two interferometer arms.

III. RESULTS

The dissipative nature of polariton condensates requires
continuous pumping to compensate for (mainly optical) losses
and maintain the condensate beyond its intrinsic picosecond
lifetime. Optical excitation of polariton condensates by means
of a nonresonant laser beam is interlinked with the generation
of an incoherent reservoir of excitons, which acts as both
optical gain and a repulsive potential for polaritons. The spa-
tial distribution of this particle-interaction-induced potential
is inherently linked to the spatial geometry of the excitation
pump profile. Design of potential landscapes by means of
optical pump laser beam shaping is at the heart of research
for polaritonic devices and applications. While the use of
widely spaced tightly focused pump laser beams (spot size
≈2 μm) leads to the excitation of high-energy and radially
expanding condensates [22,23], on the contrary, the use of
closely spaced pump beam geometries can show condensation
in low-energy and spatially confined polariton modes [24–27].
In particular, it has been shown that a nonresonant circular
or elliptical annular pump profile creates a near-parabolic
potential landscape for polaritons and facilitates trapped po-
lariton condensation in states approximately given by the
eigenstates �nm of the two-dimensional quantum harmonic
oscillator (HO) [28,29]. Change in experimental parameters,
such as the diameter, ellipticity, or the pump power of the
annular excitation profile, modifies the system’s resonance
conditions and allows for condensation in different HO states
characterized by their indices n and m.

In the following, we experimentally demonstrate polariton
condensation in an elliptically shaped potential favoring con-
densation in the lowest two HO modes. Nonlinear coupling
between the two energetically split modes (cross-saturation
effects) is shown to yield a limit-cycle state. This nonsta-
tionary state involves linear harmonic oscillations of the
condensates center of mass 〈x〉 in analogy to the harmonic
oscillations of a mechanical pendulum for small angles of
displacement (see Fig. 2).

A. Competition of two condensate modes

By shaping the excitation laser profile into an elliptical
annulus with diameters of 14.2 and 10.6 μm in the x and y di-
rection, respectively, we lift the degeneracy of the two excited
HO states �10 and �01 [29]. Here, the trap’s elongation in the
x direction leads to a larger net gain for the �10 state as for the
�01 state, thus favoring condensation into the former state. In
Fig. 3(a) we show the measured real-space polariton PL for
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FIG. 2. Schematic illustration of harmonic oscillations of a
polariton condensate in an optically generated elliptical trapping
potential. Dual-mode condensation into the two energetically lowest
modes �00 and �10 with energy splitting h̄� leads to an oscillatory
motion of the condensate’s center of mass 〈x〉 ∝ cos (�t ) in analogy
to the harmonic motion of a mechanical pendulum for small displace-
ment angles.

the system excited with pump power P = 1.1Pthr, where Pthr

is the system’s condensation threshold pump power. We con-
firm single-mode condensation in the �10 state by spectrally
resolving the emission along the major axis of the elliptical
trap (y = 0) as illustrated in Fig. 3(d). The observed blueshift
of ≈ 1.1 meV above the lower polariton ground state energy
is a result of the optically induced background (confinement)
potential. By increasing the excitation pump power to P =
2.1Pthr we observe a transition of the system from single-mode
excited state �10 occupation to single-mode ground state �00

occupation as shown in Figs. 3(c) and 3(f). Interestingly, in
the transition region, i.e., 1.1Pthr < P < 2.1Pthr, we observe
the coexistence of both modes. Such a dual-mode regime with
approximately equal occupation of both modes is realized at
P = 1.3Pthr and shown in Figs. 3(b) and 3(e). The continu-
ous transition of excited state to ground state condensation

Energy (m
eV

)

FIG. 3. Two-mode competition in a trapped polariton conden-
sate. (a–c) Experimentally measured real space and (d–f) energy-
resolved real space photoluminescence along the major axis (y = 0)
of the elliptical annular pump beam (red dashed line) for varying ex-
citation pump power P above condensation threshold. (g) Integrated
spectra for increasing excitation pump power P. (h) Spectral weights
of the ground-state mode (red) and the first excited state (blue) and
their energy splitting h̄� (black) extracted from the experimental
spectra in (g). The experimental spectral resolution (0.02 meV) is
illustrated in gray shading. The energy scale in (d–g) is scaled as
the blueshift with respect to the lower polariton ground state mode
below threshold. (i) Calculated relative mode occupations N0,1/Ntot

with Ntot = (N0 + N1) for two weakly coupled modes described in
Eqs. (3a) and (3b) as a function of their relative net gain p0/p1.

with increasing pump power P is illustrated in Figs. 3(g) and
3(h) showing the measured (spatially integrated) spectra and
normalized mode emission intensities (blue and red curves),
respectively. We point out that the mode linewidths for the
spectra illustrated in Figs. 3(d)–3(g) are limited by the spec-
tral resolution �E ≈ 0.02 meV of our experimental setup.
We separately estimate a linewidth of ≈ 0.004 meV for the
ground state condensate at P = 2.1Pthr from analysis of the
condensate’s autocorrelation function (see Appendix C).
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While the energy levels of both modes E00 and E10 ex-
perience a continuous blueshift with increasing excitation
pump power P > 1.1Pthr we find that—within our experimen-
tal resolution—there is no change in energy splitting h̄� =
E10 − E00 ≈ 0.22 meV [see black line in Fig. 3(h)]. Because
the dominant contribution to the energy splitting h̄� between
ground and first excited state is given by the optically induced
confinement potential, we conclude that there is no significant
change in the potential landscape for increasing pump power
P above the condensation threshold. Motivated by our ex-
perimental results we describe the condensate wave function
�(r, t ) in a two-mode model

�(r, t ) = ψ0(t )�00(r) + ψ1(t )�10(r), (1)

where �00,10 represent the orthogonal and normalized spatial
field distributions of the system’s ground- and first-excited
states. The complex-valued envelopes ψ0,1 resemble occu-
pation numbers N0,1 = |ψ0,1|2 and phases θ0,1 = arg(ψ0,1)
of each mode, respectively. One can derive the nonlinear-
coupled two-level system (see Appendix B)

iψ̇0 = [ω0 + ip0 + (α0 − iσ0)|ψ0|2 + (β − iκ )|ψ1|2]ψ0,

iψ̇1 = [ω1 + ip1 + (α1 − iσ1)|ψ1|2 + (β − iκ )|ψ0|2]ψ1.

(2)

Here, for each mode j = 0, 1 the real-valued parameters
denote eigenfrequency ω j , net gain p j , self- and cross non-
linearities α j and β, as well as the self- and cross-saturation
terms σ j and κ . Equations (2) can analogously be rewritten
into four coupled differential equations for the occupation
numbers N0,1 and phases θ0,1 of each mode, i.e.,

Ṅ0 = 2(p0 − σ0N0 − κN1)N0, (3a)

Ṅ1 = 2(p1 − σ1N1 − κN0)N1, (3b)

θ̇0 = ω0 + α0N0 + βN1, (3c)

θ̇1 = ω1 + α1N1 + βN0. (3d)

Equations (3a) and (3b), which are decoupled from the phase
dynamics, have previously been theoretically studied in the
context of mode competition in polariton condensates [30,31].
They represent the competitive Lotka-Volterra equations, and
as such describe competition between two interacting species
populations [32], as well as the competition between two laser
modes [33]. The relative strength of competition between
the two modes sharing the same gain medium is given by
the parameter C = κ2/σ1σ2. While in the so-called strong-
coupling regime (C > 1) cross-saturation effects dominate the
system and one species will quench the population of the
second entity, in the following, we restrict our analysis to the
experimentally relevant weak-coupling regime (C < 1) which
facilitates the coexistence of both species. Considering config-
urations where at least one mode is pumped above threshold,
i.e., p0,1 > 0, there exist three nontrivial equilibrium points
(Ṅ0,1 = 0) given by

(I) N0 = 0, N1 = p1/σ1,

(II) N0 = σ1 p0−κ p1

σ0σ1−κ2 , N1 = σ0 p1−κ p0

σ0σ1−κ2 ,

(III) N0 = p0/σ0, N1 = 0.

(4)

However, only one of these points can be stable for the same
parameters and the stability of each solution (I–III) is deter-
mined by the system’s Jacobian, which yields the conditions

(I) p0 < p1κ/σ1, p1 > 0,

(II) p0 > p1κ/σ1, p1 > p0κ/σ0,

(III) p0 > 0, p1 < p0κ/σ0.

(5)

While two of these points (I and III) represent single-mode
polariton emission, one point (II) corresponds to dual-mode
emission with energies E0,1 = h̄θ̇0,1 given by Eqs. (3c) and
(3d). In Fig. 3(i) we show the equilibrium occupation numbers
N0 and N1 for increasing relative net gain p0/p1 between
the two modes. The continuous transition from single-mode
emission in the second mode (I) to single-mode emission in
the first mode (III) is interleaved with a region of dual-mode
emission (II). The physical reasons for the increase of p0/p1

in experiment as a function of laser power can be understood
from two different mechanisms. First, as pump power is in-
creased further above threshold the number of particles in the
condensate increases, which blueshifts the excited state out of
the trap making it more and more lossy. Second, the growing
number of particles in the reservoir enables polaritons to relax
more efficiently in energy [28,34] which makes p0 grow faster
than p1.

We calculate the transient behavior of the competitive
Lotka-Volterra system towards its fixed point attractors for
all three scenarios (I–III) as shown with red-black arrows in
Figs. 4(a)–4(e). Here, for each configuration, we also plot
the system’s Lyapunov function L(N0, N1) in false color scale
which can be written in quadratic form [35],

L = −2p0N0 − 2p1N1 + σ0N2
0 + σ1N2

1 + 2κN0N1. (6)

We point out that the Lyapunov function L satisfies the
condition L̇ � 0 and that the system’s fixed point attractors
correspond to the minima of L(N0, N1) within its domain
{N0 � 0, N1 � 0}. We stress that the observed change in mode
populations here is very different from the mode switching
previously reported in Ref. [36], which was attributed to linear
(deterministic) polariton physics where the laser parameters
changed which quantum mode had the lowest condensation
threshold.

The presented configurations with stable mode occupation
numbers N0,1 are solutions of the nonlinear coupled two-level
system ψ(t ) = (ψ1(t ), ψ0(t ))T described in Eqs. (2). These
two-level states ψ(t ) describe orbits on the Bloch sphere
spanned by the three-component vector S = (ψ†σψ)/(ψ†ψ)
with Pauli matrix vector written σ. One can show that

Sx(t ) = 2
√

N1N0

N1 + N0
cos(�t + δ),

Sy(t ) = 2
√

N1N0

N1 + N0
sin(�t + δ),

Sz(t ) = N1 − N0

N1 + N0
,

(7)

where δ is a stochastic phase offset chosen during the spon-
taneous condensation event. In Figs. 4(f)–4(j) we illustrate
the orbits corresponding to the intensity equilibrium points
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FIG. 4. Numerical analysis of two weakly coupled condensate modes with occupation numbers N0 and N1 described in Eqs. (3a)
and (3b). (a–e) Phase portraits and Lyapunov potentials L [false color scale, Eq. (6)] for increasing relative net gain p0/p1 from
left to right. Black circles depict fixed point attractors for (a) vanishing occupation N0 = 0 of the ground state, (b–d) dual-mode op-
eration N0,1 > 0, and (e) vanishing occupation N1 = 0 of the excited state. (f–j) Representation of the intensity equilibrium points
on the Bloch sphere spanned by the three-component vector S = (Sx, Sy, Sz ) described in Eq. (7). (k–o) Projection of the orbits on
the Bloch sphere (red) onto the two-dimensional phase space (blue) spanned by the condensate’s center of mass 〈x〉 and momentum
expectation value 〈p〉 illustrates the regimes in which the trapped condensate is (k, o) stationary and (l–n) harmonically oscillating.
Numerical parameters: σ0 = σ1 = 1 ps−1, p1 = κ = 0.5 ps−1, and p0 = (0.25 ps−1, 0.31 ps−1, 0.5 ps−1, 0.81 ps−1, 1 ps−1) for (a–e) and
(f–j), respectively.

depicted in Figs. 4(a)–4(e). Condensate configurations with
single-mode occupation in ground or excited state yield fixed
points located at the poles of the Bloch sphere as shown
in Figs. 4(f) and 4(j). The periodic orbits in Figs. 4(g)–4(i)
for dual-mode operation are centered around the Sz axis and
their period is determined by the modes’ energy splitting, i.e.,
T = 2π�−1. Modification of the relative occupation numbers
[as demonstrated in Fig. 3(h)] allows control over the position
of the orbit’s Sz position. Furthermore, as we demonstrate in
Appendix D, the period T of these orbits is optically tuneable
in the range 10–20 ps through spatial modulation of the pump
laser profile.

B. Harmonic oscillations of a trapped condensate

There is a direct relation between the periodic orbits ap-
pearing on the two-level system’s Bloch sphere described
in Eq. (7) and the harmonic oscillations of the condensate
density |�(r, t )|2 illustrated in Fig. 2. In particular, the ex-
pectation values of the condensate’s center of mass along the
horizontal (major) axis in real space 〈x〉 and momentum space
〈p〉 are given by

〈x〉 (t ) = x0Sx(t ), (8a)

〈p〉 (t ) = p0Sy(t ), (8b)

where the scaling factors x0 = 〈�00| x |�10〉 and p0 =
〈�00| h̄∂x |�10〉 are dependent on the spatial distribution of
the two competing modes. The trajectories of the two-

level system on the Bloch sphere in Figs. 4(f)–4(j) can be
projected onto the phase plane spanned by space 〈x〉 and
momentum 〈p〉 expectation values as illustrated in Figs. 4(k)–
4(o). Here, single-mode condensation in either excited state
[Fig. 4(k)] or ground state [Fig. 4(o)] both correspond to
a stationary condensate center of mass located at 〈x〉 =
〈p〉 = 0. The periodic orbits appearing in Figs. 4(l)–4(n)
depict harmonic oscillations of the condensate’s space 〈x〉
and momentum 〈p〉 expectation values in analogy to the
phase-plane orbits of a mechanical undamped oscillator.
Our analysis is backed by numerical simulations on the
two-dimensional driven-dissipative Gross-Pitaevskii equation
describing the nonresonantly driven polariton condensate
(see Appendix A).

Although we cannot directly assess the condensate’s ultra-
fast (picosecond-timescale) oscillations, we indirectly resolve
them through time-correlation measurements. Hereby, we in-
terfere the real-space polariton photoluminescence �(r, t )
with a retroreflected and time-shifted version �(−r, t + τ ) of
itself and extract the system’s first-order correlation function
(see Methods)

g(1)(−r, r; τ ) = 〈�∗(r, t )�(−r, t + τ )〉√
〈|�(r, t )|2〉〈|�(−r, t )|2〉

, (9)

where 〈· · · 〉 denotes time averaging. The coherence function
[Eq. (9)] is a complex-valued and normalized measure for
the first-order correlations between the two signals �(r, t )
and �(−r, t + τ ). When the signals are composed of two
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frequency components with frequency detuning � we expect
periodic modulation of the coherence function g(1)(−r, r; τ )
at the same frequency � according to the Wiener-Khinchin
theorem.

In the following we unravel the time correlations of the
trapped condensate system presented in Figs. 3(b) and 3(e)
with approximately equal occupation of ground and first ex-
cited states. Experimentally recorded interference patterns
and extracted modulus |g(1)| and argument arg(g(1) ) of the
correlation function are illustrated in Figs. 5(a), 5(c), and
5(e) for no relative time delay τ = 0 between the two sig-
nals. The equal-time correlations reveal vanishing coherence
(|g(1)(−r, r; τ = 0)|) along the vertical lines x ≈ ±1.9 μm.
This is a direct result of the mixing of two states with oppo-
site parity and equal contribution to the condensate density,
N0|�00(r)|2 = N1|�10(r)|2. On the contrary, at small dis-
tances |x| � 1.9 μm, where the condensate density is mainly
formed by particles in the ground state, we find a highly
correlated signal g(1) ≈ 1 resembling the symmetric nature
(even parity) of the ground state �00. At larger distances
|x| 	 1.9 μm we find an anticorrelated signal g(1) ≈ −1 as
a result of the antisymmetric field distribution (odd parity) of
the excited state �10. The composition of even- and odd-parity
states is a necessary condition for a nonvanishing oscillation
amplitude x0 = 〈�00| x |�10〉 of the condensate’s center of
mass.

Introducing a temporal delay of half an oscillation pe-
riod τ = π/� ≈ 10 ps we measure an interference pattern
as illustrated in Fig. 5(b) with corresponding modulus and
phase of the correlation function g(1)(−r, r; τ = 10 ps) shown
in Figs. 5(d) and 5(f). Here, we have applied a constant
offset to the argument of the correlation function to yield
zero phase at the origin r = 0; i.e., we measure from a
co-rotating reference frame. We find large correlation be-
tween spatially mirrored positions g(1)(−r, r; τ = 10 ps) ≈ 1
throughout the whole system in agreement with the conden-
sate’s spatial density oscillation. Further, in Figs. 5(g) and 5(h)
we plot the extracted modulus and argument of the correlation
function g(1)(−x, x; τ ) along the trap major axis y = 0 for
varying temporal delay τ . Periodic disappearance and revival
of coherence at x = ±1.9 μm [see Fig. 5(i)] with frequency
�/2π ≈ 52 GHz reveal the coherent nature of the present har-
monic oscillations persisting over more than 20 oscillations
(∼400 ps).

C. Synchronization of two polariton oscillators

In a next step we investigate a system of two spatially
separated polariton condensates, each of them representing a
trapped (dual-mode) oscillator. As we schematically illustrate
in Fig. 6(a) for small separation distances between the two
traps a finite coupling rate V0,1 between the system’s ground
states �

(1,2)
00 and excited states �

(1,2)
10 , where the superscript

denotes different traps, leads to phase locking of the conden-
sates’ periodic orbits and, thus, to synchronized oscillatory
motion of the centers of mass 〈x(1,2)〉 of both condensates.

For our experiment we generate two identical elliptical
annular pump profiles with similar dimensions as those pre-
sented in Figs. 3 and 5. The two trap centers are displaced by
d ≈ 20.7 μm and excitation at pump power P ≈ 1.3Pthr leads

FIG. 5. First-order correlations of a dual-mode polariton con-
densate in an elliptical trap. (a, b) Recorded interference of the
real-space polariton photoluminescence �(r, t ) and its retroreflected
and time-shifted version �(−r, t + τ ) for (a) τ = 0 and (b) τ =
10 ps. The annular pump profile is shown as red dashed ellipses.
(c, d) Magnitude and (e, f) phase of the digitally reconstructed
first-order coherence function g(1)(−r, r; τ ) for (c, e) τ = 0 and
(d, f) τ = 10 ps, respectively. Temporal evolution of (g) magnitude
and (h) phase of the coherence function g(1)(−x, x; τ ) along the
horizontal slice y = 0. For better visibility an offset to the phase
pattern has been applied for each time step τ to yield zero phase at
the center r = 0. (i) Harmonic oscillation of the coherence function
|g(1)(−x, x; τ )| with maximum oscillation amplitude at x = 1.9 μm
extracted from (g). The condensate is pumped at 1.3 times the con-
densation threshold.
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sync
(a)

FIG. 6. Synchronization of two polariton oscillators. (a) Schematic showing the coupling between two trapped and spatially separated
dual-mode condensates and the resulting synchronization of their periodic orbits on the Bloch sphere. (b) Measured real-space condensate
photoluminescence excited by two elliptical annular pump profiles (major axis ≈14.7 μm, minor axis ≈10.4 μm) shown as red dashed
lines. (c) Corresponding energy-resolved emission along symmetry axis y = 0. (d) Modulus of the measured first-order coherence function
|g(1)(−x, x; τ )| showing correlations between the centers of the two trapped condensates. (e) Periodic disappearance and revival of coherence
|g(1)(τ )| at x = 7 μm extracted from (d). (f) Measured energy-resolved momentum-space emission along ky = 0. White dashed line depicts
the lower polariton dispersion below condensation threshold. (g) Extracted momentum-space mode profiles for interfering ground states �

(1,2)
00

(red) and excited states �
(1,2)
10 (blue) at energies indicated by arrows in (g). Black dashed lines display the calculated mode profiles in the

absence of interference, i.e., for incoherent modes.

to approximately equal occupation of ground state �
(1,2)
00 and

excited state �
(1,2)
10 in each trap (1) and (2), respectively. In

Fig. 6(b) we show the measured real-space condensate PL and
in Fig. 6(c) we plot the spectrally resolved emission along the
symmetry axis y = 0. We note that—within the spectral reso-
lution of our experiment—the energies of the ground and first
excited modes are identical in both traps, where each trap has
energy splitting h̄� ≈ 0.20 meV. Coherence between the two
spatially separated dual-mode condensates is confirmed by
interferometric cross-correlation measurements. In particular,
the measured modulus of the first-order correlation function
|g(1)(−x, x; τ )| along the symmetry axis y = 0 is shown in
Fig. 6(d). The illustrated spatial range 5 < x < 15 μm con-
tains the mutual coherence between both traps centered at
x ≈ ±10 μm. In analogy to our results for a single oscillat-
ing condensate displayed in Fig. 5(g) we observe spatially
distributed time-periodic modulation of the coherence func-
tion demonstrating synchronized spatial oscillations of both
trapped condensates. A profile of the temporal coherence
function with maximum oscillation amplitude at x = 7 μm
is displayed in Fig. 6(e) showing periodic disappearance and
revival of coherence with frequency ∼50 GHz. We point out
that the measured coherence function displayed in Fig. 6(e)
with vanishing correlation at τ = 0 reveals phase locking of
the two oscillating condensate centers of mass 〈x(1,2)〉 with
vanishing phase difference (in-phase synchronization).

Coherence between the two condensate traps and phase
locking of their respective oscillating centers of mass
〈x(1,2)〉 is further confirmed by our measurement of the sys-
tem’s energy-resolved momentum-space emission shown in

Fig. 6(f). Here, we resolve (far-field) interference for both
condensate modes with extracted intensity profiles shown
in Fig. 6(g) for ground state (red) and first excited state
(blue). For comparison we plot the calculated unmodulated
profiles (black dashed) that resemble incoherent emission be-
tween both condensate traps. The experimentally observed
far-field intensity modulation with destructive interference
at kx = 0 reveals antiphase synchronization between the
two spatially separated condensates at both energy levels,
i.e., �θ0 = θ

(2)
0 − θ

(1)
0 = π and �θ1 = θ

(2)
1 − θ

(1)
1 = π . One

can easily show that phase locking with equal phase dif-
ferences �θ0 = �θ1 of the coupled HO modes resembles
in-phase synchronization of the two condensate oscillators
as schematically illustrated for the two Bloch spheres in
Fig. 6(a).

In the following, we describe the system’s wave function in
the tight-binding approach as a superposition of two spatially
separated dual-mode condensates:

�(r, t ) =
∑
j=1,2

ψ
( j)
0 (t )� ( j)

00 (r) + ψ
( j)
1 (t )� ( j)

10 (r). (10)

Synchronization of the two coupled condensate oscillators can
be modeled by introducing a linear coupling V0,1 term be-
tween each of the trapped HO modes. In general this coupling
term consists of both dissipative and nondissipative parts,
i.e., V0,1 = iγ0,1 + J0,1 [37]. Using the short-form notation
iψ̇ (1,2)

0,1 = H (1,2)
0,1 ψ

(1,2)
0,1 where H0,1 is a function describing the

two-level dynamics of an isolated condensate oscillator [i.e.,
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square brackets of Eqs. (2)], we can now write the four cou-
pled equations

iψ̇ (1)
0 = H (1)

0 ψ
(1)
0 + (iγ0 + J0)ψ (2)

0 , (11a)

iψ̇ (2)
0 = H (2)

0 ψ
(2)
0 + (iγ0 + J0)ψ (1)

0 , (11b)

iψ̇ (1)
1 = H (1)

1 ψ
(1)
1 + (iγ1 + J1)ψ (2)

1 , (11c)

iψ̇ (2)
1 = H (2)

1 ψ
(2)
1 + (iγ1 + J1)ψ (1)

1 , (11d)

to describe the dynamics of each of the mode amplitudes
ψ

(1,2)
0,1 constituting the total condensate wave function in

Eq. (10). It is known that dissipative coupling with γ0,1 < 0
(γ0,1 > 0) facilitates phase locking of each trapped condensate
mode with phase difference �θ0,1 = θ

(2)
0,1 − θ

(1)
0,1 = π (0) [37].

Indeed, direct substitution of the in-phase or the antiphase
ansatz ψ

(1)
0,1 = ±ψ

(2)
0,1 respectively results in simply the same

set of coupled equations as given by Eqs. (2) with shifted
ω0,1 → ω0,1 ± J0,1 and p0,1 → p0,1 ± γ0,1. A rigorous stabil-
ity analysis of these and more exotic solutions is beyond the
scope of the current study. While the far-field emission pattern
of our experimentally realized coupled-trap system displayed
in Fig. 6(f) indicates dissipative coupling with γ0,1 < 0, other
synchronization patterns are expected when changing the sep-
aration distance between the two traps [38].

IV. CONCLUSION

In this work we have demonstrated optical generation,
tunability, and coupling of macroscopic two-level systems
realized in trapped polariton condensates. Nonresonant ex-
citation using annular beam profiles enables optical control
over the mode composition of each trapped condensate. As
we have shown, dual-mode condensation comprising the two
energetically lowest trapped modes results in nearly terahertz
(picosecond-timescale) spatial density oscillations in close
analogy to the dynamics of a simple mechanical oscillator.
Amplitude and frequency of such a condensate oscillator are
both tunable through modulation of the excitation laser beam.
Dissipative coupling between two closely spaced condensate
traps, each of which represents a (dual-mode) oscillator, fa-
cilitates phase locking of their spatial oscillations. This effect
represents a quantum analog of Huygen’s clock synchroniza-
tion realized by spatially oscillating coherent many-particle
states. Our work demonstrates an interconnectable element
for future polaritonic circuitry, and lays out directions for po-
laritonic applications utilizing coupled macroscopic two-level
systems.

The data that support the findings of this study are openly
available from the University of Southampton repository [39].
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APPENDIX A: NUMERICAL SIMULATIONS

We simulate the dynamics of the polariton condensate
in the parabolic regime of the lower polariton branch us-
ing the two-dimensional driven-dissipative Gross-Pitaevskii
model [40] written for the condensate wavefunction, �(r, t ),
and a rate equation for the exciton reservoir supplying parti-
cles into the condensate, n(r, t ):

i
∂�

∂t
=

[−h̄∇2

2m
+ α|�|2 − iγc

2

+
(

g + iR

2

)
n + g

P

W

]
� + iR(�), (A1)

∂n

∂t
= −(�R + R|�|2)n + P(r). (A2)

Here, m is the polariton effective mass, α is the polariton-
polariton interaction strength, R is the scattering rate of
reservoir excitons into the condensate, γc is the rate of po-
lariton losses through the cavity mirrors, �R is the decay
rate of the reservoir excitons, g is the interaction strength of
polaritons with the exciton reservoir feeding the condensate,
and W is the conversion rate of high-momentum excitons P(r)
(proportional to the laser profile and power) into the reservoir
excitons n at lower momenta through phonon interactions.
The final term R(�) is an energy relaxation term [28,34] that
assists ground state condensation and is taken proportional to
the background density of excitons,

R(�) = λ
(

n + P

W

)[
h̄∇2

2m
+ μ(r, t )

]
�. (A3)

Here, λ denotes the energy relaxation efficiency and μ(r, t )
is the particle-conserving local effective chemical potential of
the condensate.

The elliptical pump profile is written

P(r) = P0
L4

0(
x2

a2
+ y2

b2
− r2

0

)2

+ L4
0

. (A4)

Here, L0 denotes the finite thickness of the laser profile ridge,
r0 = 5.3 μm is the trap radius, and its ellipticity is defined
by a = 1.5 and b = 1. The value P0 denotes the laser power
density. The lower polariton mass and lifetime are taken
corresponding to the properties of our cavity: m = 0.3 meV
ps2 μm−2, and γ = 0.2 ps−1. The remaining parameters are
taken similar to those used in previous works [28]: α =
3.3 μeV μm2, g = 2α, R = 0.6α, �R = 0.25γc, W = 0.5γc,
L0 = 5 μm, and λ = 0.0013 μm2.

The results of simulation are presented in Fig. 7, where
we increase the pump power from P0 = 5.6 to 6.1 and
6.7 μm−2 ps−1 in Figs. 7(a)–7(c), respectively, where we
plot the time-averaged condensate density. The corresponding
temporal dynamics along the x axis are shown in Figs. 7(d)–
7(f). In agreement with experimental observations, we find
that with increasing power in simulation the system goes from
dominant excited mode occupation, to a mixed excited-ground
state occupation resulting in a limit cycle, and finally dom-
inant ground state occupation. All three solutions are stable
against perturbations.
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FIG. 7. Numerical simulation of Eqs. (A1) and (A2) at three
different excitation powers. (a, d) P0 = 5.6 μm−2 ps−1 showing con-
vergence to a stable fixed point (stationary) condensate occupation
of the trap first excited mode. (b, e) P0 = 6.1 μm−2 ps−1 results
in condensate converging into a stable limit cycle corresponding to
mixed occupation of both trap first excited and ground states. (c, f)
P0 = 6.7 μm−2 ps−1, condensate now converges to a new fixed point
corresponding to dominant ground state occupation.

APPENDIX B: COUPLED CONDENSATE MODES
IN A TRAP

In the following we assume that the reservoir can be re-
moved from the dynamics of the condensate (ṅ  0) [41]
and only the leading order contribution to the condensate
saturation mechanism (gain clamping) is considered, i.e.,
n(r) ≈ P(r)(1 − (R/�R)|�(r, t )|2)/�R, where �R/R repre-
sents the condensate saturation density. Further assuming
that the modulation to the reservoir from the condensate
is small in the range of investigated pump powers and
corresponding condensate densities, 1 	 R|�(r, t )|2/�R, the
condensate trapping potential becomes approximately de-
fined by the term V (r) = gP(r)(1/�R + 1/W ). We then
define eigenmodes of the two-dimensional trap which
satisfy

[−h̄∇2

2m
+ V (r)

]
�nm(r) = ωnm�nm(r) (B1)

and are taken to be normalized and real valued. Since
we operate in a regime in which only the trap’s ground
state �00 and first excited state �10 are populated, we
project the total wave function � onto a truncated Hilbert
space

�(r, t ) = ψ0(t )�00(r) + ψ1(t )�10(r), (B2)

where 〈�i0|� j0〉 = δi j . Therefore, the problem can be de-
scribed as an effective two-level system following the

FIG. 8. First-order coherence function |g(1)(τ )| of the ground
state �00 mode excited at pump power P = 2.1Pthr in an elliptical
trap. An exponential fit (red line) of the temporal decay of coherence
yields a 1/e coherence time of tc = 333 ps. Inset shows the measured
interference of the condensates’ real-space emission with its retrore-
flected version at τ = 0 time delay.

equations of motion

iψ̇0,1 = [ω0,1 + ip0,1 + (α0,1 − iσ0,1)|ψ0,1|2
+ (β − iκ )|ψ1,0|2]ψ0,1. (B3)

Here, we have neglected nonlinear off-resonant mixing terms,
e.g., ψ2

1 ψ∗
0 and ψ2

0 ψ∗
1 , between the modes which vanish in the

time average of our continuous-wave experiment. Each mode
j = 1, 2 is driven by its net gain pj = 〈� j0| P |� j0〉 − γc/2,
and stabilized by both its self-saturation term σ j and cross-
saturation term κ . The effects of energy relaxation R(�) can
be absorbed into the term 〈� j0| P |� j0〉 since its strength
is also directly proportional to the power of the pump. We
note that R(�) does not couple opposite parity modes, and
its contribution to the gain of ψ0 and ψ1 can be calculated
using the eigenfunctions of the quantum harmonic oscillator
φn as the modes of our trap and the well-known recurrence
relation,

√
2(k + 1)φk+1(x) =

(
x − d

dx

)
φk (x). (B4)

Thus, the effects of energy relaxation can be phenomeno-
logically represented by changing the parameter p j . Next,
the nonlinear damping terms are determined by the overlap
integrals

σ j =
∫

P(r)�4
j0(r)dr, (B5a)

κ = 2
∫

P(r)�2
00(r)�2

10(r)dr. (B5b)

Nonlinear blueshift of each mode due to Kerr and cross-Kerr
effects are included in the integrals

α j =
∫

�4
j0(r)dr, (B6a)

β = 2
∫

�2
00(r)�2

10(r)dr. (B6b)

APPENDIX C: CONDENSATE LINEWIDTH

We investigate the linewidth of a single-mode trapped
polariton condensate through analysis of the temporal auto-
correlation function of its emission. We choose an elliptical
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FIG. 9. Measured energy splitting h̄� between the lowest two
modes �00 and �10 in an elliptical trap with diameter d of the major
axis. Inset depicts a typical pump laser profile. A power-law decay
� ∝ 1/d (red line) is shown as a guide for the eye.

annular pump with major axis ≈14.2 μm and minor axis
≈10.6 μm to excite a single-mode ground state �00 conden-
sate above condensation threshold at P = 2.1Pthr. Real-space
and energy-resolved photoluminescence of this condensate
are presented in the main text in Figs. 3(c) and 3(f). The
measured decay of temporal coherence |g(1)(r = 0, r = 0; τ )|
extracted at the Gaussian-shaped condensate center r = 0
is shown in Fig. 8. We find a single exponential decay of
coherence with 1/e decay time of tc = 333 ps. Thus, for a
Lorentzian line shape we calculate a (full width at half maxi-

mum) condensate linewidth of �E = 2h̄/τc ≈ 4 μeV, which
is below our experimental spectral resolution � ≈ 0.02 meV.

APPENDIX D: TUNING OF OSCILLATION FREQUENCY

Control over the oscillation frequency of the trapped con-
densate system is achieved by tuning of the energy splitting
h̄� = E10 − E00 between the two competing HO modes. A
change in spatial dimension of the elliptical annular pump
beam profile directly modifies the near-parabolic polaritonic
potential landscape and, thus, allows to control the HO mode
energy splitting. In Fig. 9 we show the measured energy
splitting h̄� (left) between �00 and �10 modes and the cor-
responding calculated oscillation frequency (2π )−1� (right)
for varying diameter d of the elliptical trap pump profile
along its (horizontal) major axis. In our experiment we si-
multaneously modify the vertical diameter of the ellipse to
guarantee two-mode condensation of ground state �00 and
excited state �10; i.e., we quench the population of the �01

mode. Hereby, the eccentricity e of the elliptical pump profile
stays in the range of ≈ 0.6-0.8 for all points shown in Fig. 9.
A typical excitation laser profile is illustrated in the inset
of Fig. 9. We experimentally demonstrate tunability of the
condensate’s spatial oscillations in the frequency range 50–
100 GHz, which corresponds to oscillation periods of 20 to
10 ps.
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