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We study the transport properties of a hybrid junction made of a ferromagnetic lead in electrical connection
with the helical edge modes of a two-dimensional topological insulator. In this system, the time-reversal
symmetry, which characterizes the ballistic edge modes of the topological insulator, is explicitly broken inside
the ferromagnetic region. This conflict situation generates unusual transport phenomena at the interface which are
the manifestation of the interplay between the spin polarization of the injected current and the spin-momentum
locking mechanism operating inside the topological insulator. We show that the spin-polarized current originated
in the ferromagnetic region is asymmetrically divided in spatially separated branch currents sustained by edge
channels with different helicity inside the topological insulator. The above findings provide the working principle
of a topological current divider in which the relative intensity of the branch currents is determined by the
polarization of the incoming current. We discuss the relevance of this effect in spintronics where, for instance, it
offers an alternative way to measure the current polarization generated by a ferromagnetic electrode.

DOI: 10.1103/PhysRevB.102.195427

I. INTRODUCTION

The search for new topological states of matter is one of
the most active fields in physics [1-7]. The scientific interest
towards topological states is motivated by their robustness
against material defects and imperfections, which is a desir-
able property for technological applications and fundamental
studies. The robustness of topological matter against perturba-
tions originates from the existence of boundary modes which
are protected by the symmetries of the bulk. These topolog-
ical modes can be described by using low-energy models in
reduced spatial dimension, the resulting theories being rep-
resentative of the whole material. This intriguing situation
shares analogies with the holographic principle [8] which is a
supposed property of quantum gravity inspired by black hole
thermodynamics.

Topological superconductors [9] and topological insulators
[10] are important members of the topological matter family.
The research lines focused on these states of matter are not
completely independent since topological superconductivity
can be achieved, for instance, by proximizing a topological
insulator with a conventional s-wave superconductor [11].

Since the first theoretical proposal by Kitaev [12], the
interest for topological superconductivity has been fueled by
the search for the Majorana quasiparticle [13,14]. The latter
has produced intense theoretical [15,16] and experimental
[17-19] activity inspired by the possibility to obtain useful
information for the forthcoming quantum computers [20,21].

On the other hand, a topological insulator state in two
dimensions was first synthesized in mercury telluride quantum
wells more than ten years ago [22,23]. Scientific efforts in this
direction led to the theorization [24] and subsequent discov-
ery [25] of three-dimensional topological insulators. Recently,
the more exotic category of high-order topological insulators
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[26-29] hosting protected surface, edge, or corner states was
introduced. Two-dimensional topological insulators are par-
ticularly appealing for applications and fundamental studies
[30—41]. These systems present a bulk insulating phase ac-
companied by one-dimensional conducting edge modes with
preserved helicity. These states are protected from backscat-
tering effects by the time-reversal symmetry and behave like
ideal ballistic channels presenting the spin-momentum lock-
ing effect, which is very appealing in spintronics [41-45].
Moreover, they are characterized by a linear dispersion rela-
tion spanning an energy range inside the bulk gap.

The size of the bulk gap is an important material pa-
rameter. A large gap is a desirable property for device
applications since it ensures that the topological phase is
not contaminated by thermally excited nontopological states.
Recently, two-dimensional topological insulators with a bulk
gap of 100 meV were identified [46]. This value, which
is sensibly greater than the gap values of the HgTe/CdTe
and InAs/GaSb quantum wells, is compatible with room-
temperature applications. These recent developments suggest
that topological protected room-temperature electronics could
be soon achieved [47]. In view of this revolution, new
paradigms are needed to fully exploit the potential of the
topological phase.

In searching for new effects, an inspiring paradigm is
combining systems with heterogeneous characteristics. In
these heterostructures, the competition between different or-
ders sometimes generates emerging properties. Inspired by
these arguments, in this work we study the transport prop-
erties of a hybrid system obtained by coupling the massive
states of a ferromagnetic electrode with the massless edge
modes of a two-dimensional topological insulator. In this
system the time-reversal symmetry is explicitly broken inside
the ferromagnet, while it is preserved inside the topological
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FIG. 1. (a) Schematic of the topological current divider described in the main text. A two-dimensional topological insulator (TT) is laterally
etched to form a constriction. A ferromagnetic electrode (F) is created in the constriction region where massive electronic states belonging to
the F region hybridize with the massless helical modes of the topological insulator. The application of a voltage bias to the system induces
an electrochemical potential gradient (1, # pg) responsible for a current. The current coming from the ferromagnetic region is split in two
branch currents: the top current sustained by edge modes with positive helicity (R 1 and L | states), and the bottom current sustained by edge
modes with negative helicity (R | and L 1 states). The top and bottom currents have different intensity, this difference being controlled by the
current polarization instead of the electrical resistances of the branches. (b) Side view of the device. (c) Band structure of the ferromagnetic
region and of the topological channel. The Fermi level, which crosses both the spin-up and the spin-down bands of the ferromagnet, lies inside
the bulk gap separating the conduction band (CB) and the valence band (VB) of the topological insulator.

insulator. Under this conflict condition, the system response
is strongly affected by the influence of magnetism on the
helical states [48]. In order to study the system response, we
build a low-energy formulation of the problem, allowing to
study the transport properties of the heterojunction within the
framework of the scattering field theory a la Biittiker [49,50].
We demonstrate that the application of a voltage bias to the
system induces an asymmetric splitting of the polarized cur-
rent coming from the ferromagnet into two branch currents
having relative intensity controlled by the polarization of the
incoming current. We discuss the relevance of this effect in
spintronics along with the working principle of a topological
current divider. Implementation details related to the use of
Stoner or spin bandwidth asymmetry ferromagnets are also
commented.

The work is organized as follows. In Sec. II, we intro-
duce the problem and provide a low-energy effective model
for the device. Boundary conditions imposed by the modes’
hybridization are carefully discussed within the framework
of the matching matrix formalism. The scattering matrix is
also derived. In Sec. III, we present the scattering field theory
and derive the observables of the system. Commented results
are presented in Sec. IV, while the conclusions are given in
Sec. V. Details on the scattering approach are reported in
Appendixes A and B.

II. MODEL HAMILTONIAN

Let us consider the system depicted in Fig. 1 consisting
of a ferromagnetic electrode in electrical connection with
the edge states of a two-dimensional topological insulator.
In order to force the mode coupling between the ferromag-
netic and the topological region, a constriction is formed
by lateral etching of the topological insulator. Adopting a
one-dimensional description, the Hamiltonian model can be
written in the form H = Hy; + Hr + H,, where Hr; and
Hp represent, respectively, the topological insulator and the

ferromagnet Hamiltonian. The additional term H, represents
the tunneling Hamiltonian, which is left undetermined for the
moment. The edge modes of the topological region provide
the relevant degrees of freedom contributing to the Hamilto-
nian and accordingly we can write [51]

Hry = =it . [ dx(l, o, = Wi,0000). ()

where v is the propagation velocity of the edge modes, o €
{1, 1} represents the spin projection, and ¥z, and Y,
represent fermionic fields in second quantization obeying anti-
commutation relations. The edge modes with positive helicity
(R 1 and L | states) are spatially separated from the edge
modes with negative helicity (R | and L 1 states). The cou-
pling among edge modes entirely depends on the junction
properties described by H,. On the other hand, the Hamilto-
nian of the ferromagnetic side of the junction is given by

7?92
Hr = Z/dx[lﬁ; <_ 2mx - nnhex _EF>in|’ (@)

where we have introduced the notation 14 | = =, the Fermi
energy Er, and the second quantization fermionic fields ¥,
which describe massive states with spin projection ¢ and
effective mass m,. We also assume for simplicity that the spin
quantization axis is the same as that of the topological region.
An exchange term —n,h,, is included in order to simulta-
neously account for Stoner and spin bandwidth asymmetry
ferromagnetism [52,53]. The quantum states of the topolog-
ical and ferromagnetic side are hybridized when the tunneling
Hamiltonian is considered. The latter statement can be easily
verified by writing the Heisenberg equations of the motion for
the fermionic fields involved in the problem. Accordingly, we
obtain the following equations:

ihaﬂ/fRa = [wRav H] = _ihvawaa + [I/IRoa H],
ihatWLa = [WL(ﬁ H] = ihvaxwLU + [WL(ﬁ Ht]v
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+ [Iﬂo ’ Hl‘]7 (3)

where we have introduced the notation [, H] = vH — Hr,
meaning the commutator of i with the Hamiltonian H. Due
to the lack of two-body interaction effects, Eqs. (3) present
the same structure of the Schrodinger problem in first quanti-
zation. The structure of the problem is completely determined
once the coupling terms [Yg/rs, H;] and [, H;] have been
assigned by making a specific choice for the tunneling Hamil-
tonian. Within the framework of a continuous model, the
aforementioned coupling terms are sensibly different from
zero only at the interface point between the ferromagnetic
and the topological regions. In the following, without loss
of generality, we fix the interface position at x = 0. Due to
the above considerations, the coupling terms originated by
the tunneling Hamiltonian can be arranged in the form of
an interface potential whose effects can be accounted for by
using appropriate boundary conditions at the interface.

We are interested in describing the transport properties in
the linear-response regime and thus it is convenient to resort
to a low-energy projection of the ferromagnet Hamiltonian.
The projection provides an accurate description of electronic
states with energy eigenvalue close to the Fermi level, i.e.,
the quantum states which are relevant in defining the transport
properties of the system. In the ferromagnetic side of the
system (x < 0), the Schrodinger problem can be written in
spinorial form as follows:

1202
o e fr ’ Y=oy, @)
2 =1 s
0 PO 4 p — Ep '

- Zmi

where ¥ = (4, ¥, ). Following the low-energy projection
procedure described in Ref. [54], the wave function in the
vicinity of the Fermi energy Er can be expanded by introduc-
ing left- and right-mover representation. In this way, assuming
that the Fermi level crosses both the spin-up and the spin-
down bands, we can write

Vo = Yro (X)e™F* + Y, (x)e 7, (5)

where fiky = </2my(Er + nsh,y) are the spin-sensitive Fermi
momenta, and ¥, (x) and V¥, (x) are slowly varying func-

tions of the spatial coordinate x. Using Eq. (5) in Eq. (4) and
neglecting second derivatives of Y g, (x) and rapidly oscil-
lating terms, the initial Schrodinger problem can be written in
the form

D+ 02><2 B
[Om o }qf — ihd, v, ©6)

where W = (Ygy, Yy, YRy, ¢L¢)’, 0,47 represents a 2 X 2
matrix with vanishing elements, and

_ [—invEa, 0
Ds = [ 0 ihv;ax] ™

includes the kinetic energy of left and right movers written
in terms of the spin-sensitive velocities vy = hklﬁ’i /my. .
Within the above representation, which is valid for x < 0, the
relevant information on the ferromagnetic state is provided by

the spin-dependent quantities vff, which on their turn depend
on the position of the Fermi level. Moreover, in the limit
vf — v, Eq. (6) takes the same form of the Hamiltonian
problem of the topological side of the system (x > 0), i.e.,

D Oyaly _
|:02><2 D }\II_ iho, W, (8)
with D = —ihvd,o, and o, the Pauli matrix. In this way, both

sides of the junction can be described by adopting the same
spinorial representation. The relation between the wave func-
tions at the interface depends on the tunneling Hamiltonian
and can be described by using the matching matrix formalism.
In particular, once a tunneling Hamiltonian H, has been spec-
ified, a matching matrix M is identified. The wave functions
in close vicinity of the interface point x = 0 obey the relation

w(0t) = MW7), ©))

where W(0") and W(0™) represent the wave functions belong-
ing to the topological or ferromagnetic side, respectively. In
writing Eq. (9), the notation x(ﬁ)E = Xo £ € has been introduced
with € a positive infinitesimal quantity.

So far we have identified a low-energy model which allows
the description of the whole system within the same spinorial
representation. In the derivation, we have only invoked gen-
eral properties of the tunneling Hamiltonian H,, with special
emphasis on its local character. For presentation reasons, we
postpone to the next section the discussion about the identifi-
cation of the interface potential generated by H,.

III. SCATTERING THEORY AND OBSERVABLES

In the following, we provide a detailed description of the
scattering field theory. Boundary conditions for the scattering
problem along with a derivation of the M matrix are also
discussed.

A. Scattering field theory

Within the framework of the Biittiker approach, second
quantization scattering fields are introduced. These fields are
written in terms of translational-invariant eigenmodes of the
local Hamiltonian describing each semi-infinite electrode.
This construction is quite general and can be adapted to the
present situation.

Following the above procedure, the scattering field describ-
ing elementary processes inside the ferromagnetic lead can be
written as follows:

Yr(x, 1) = /dE(aﬁm(x,t)ll) + ¢ (x,1)12)

+ory (X, 1)|3) + Pry(x, 1)]4)), (10)
where the notation
o—iEt/h s
PRy, (X, 1) = ———=¢"F “apy | (E), (11)
27rhv1}t
—iEt/h e
by (6 1) = ———=e"" by (E),  (12)
7 2w hvE 7
E
k;’i = ﬁv_i > O (13)
F
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has been introduced. Moreover, to implement a multichan-
nel theory, the auxiliary quantities |1) = (1,0, 0, 0), |2) =
(0,1,0,0), |3) =(0,0,1,0), and |4) = (0,0,0, 1) have
been defined. The scattering operators dg, (E) and bro(E)
describe incoming and outgoing particles with fixed energy
and spin.

Similarly, in the topological side of the system, we obtain

Yr(x, 1) = /dE(Xm(x, DI + xey (x,1)12)),

Yp(x,1) = /dE(Xm(x,t)B) + xer(x,0)14)), (14

where the notation

o—iEt/h

N 2mhv

—iEt/h
———=¢ "L, (E), (16)
2 hv
E
ke =—>0 17)
hv

has been introduced. In writing Eqgs. (14), we have taken
into account that states with positive helicity, represented by
Yr(x,t), are spatially separated from states with negative

helicity, described by ¥(x, t).
Once the scattering fields are known, current density oper-
ators (in units of the electron charge ¢ = —e, e > 0) can be

written in the following form:

. dEdE' _
T :Z/ 2h ¢
x [a}, (E)agy (E")

je / dEdE’'
=[] —e¢
T 2mh

x [by (E)bry(E') — a} | (E)ar (EN],  (19)

. dEdE' _
8= / T2 ¢
x [by, (EYbry (E') — a} ,(E)arq (E))).  (20)

Due to the spin imbalance in the ferromagnetic electrode, a
spin current described by the operator (in units of 7/2)

" dEdE’
Ir = Z '7“/ 2k
x [}, (E)ags(E') — b} (E)br,(EN]  (21)

is also generated when a voltage bias is applied to the
system. The observables of the theory are the quantum sta-
tistical averages (J¢), (J%), (Jg), and (J3), which can be
computed by explicitly using the scattering relation b i(E) =
> i Sji(E)a;(E) complemented by the electrode correlations
(&; (E)a;(E")) = 8;j6(E — E') fi(E). In writing the correlation
functions, the following shortened notation has been intro-
duced: 51 = ELT? ];2 = l;L¢, 53 = éRM 54 = l;Ri’ fll = CAIRT,
a) = agy, a3 = ary, and a4 = ap4 (see Fig. 2). Moreover,
due to the system geometry, the Fermi distributions of the

Xro (X, 1) = " hro (E), (15)

XL(I(-xa t) =

it(E'—E)/h

— b} _(E)br,(EN],  (18)

it(E'—E)/h

it(E'—E)/h

o—it(E'—E)/h

x=0
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FIG. 2. Schematic of the device effective model. Modes labeled
by 1 and 2 belong to the ferromagnetic electrode and represent the
spin-up and spin-down channels, respectively. Modes labeled by 3
and 4 belong to the topological insulator and represent positive- and
negative-helicity edge states, respectively.

electrodes are given by fi(E) = f2(E) = fL(E) and f3(E) =
J4(E) = fr(E).

Proceeding as detailed above, the charge currents expecta-
tion values take the form

J§=Z/

je(1,2}
dE
I = f E[Z 1S3 ()£, (E) — fs(E)},

dE
jg—/z h|:Z|S4,(E)I fr(E)—f4(E)} (22)

Due to the scattering matrix properties, in equilibrium con-
ditions [i.e., fi(E) = f(E), with i € {l,...,4}] no charge
current can flow through the system and thus Jp =Jj =
Ji = 0. Moreover, because the scattering matrix is a unitary
operator (S'S = SST = 1), current conservation in the form
Ji = Jj + Jg can be easily proven.

Similar considerations lead to the expectation value of the
spin current operator, which can be written in the following
form:

= m/z h[f,(E) Z|S,,(E>| ﬁ(E)]

jef{1,2}

[fj(E) - |Sjr<E>|2fr<E>},

(23)

with oy = 1 and 0, = —1. Charge and spin currents depend
on the scattering matrix elements. The scattering matrix, on
its turn, can be obtained from the M matrix as explained in
Appendix A.

B. Boundary conditions of the scattering problem and
derivation of the M matrix

The presence of a velocity gradient at the interface in-
duces nontrivial boundary conditions. The latter are the
manifestation of the charge current conservation which pro-
vides a constraint for the matching matrix. We briefly
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discuss this topic. The charge continuity equation allows us
to write the relations Ji = w07 )9, w0~ ) and Jr+Jg =
W (0F)vrW(0") with J& = J§ + J5. Due to the presence of
a velocity gradient at the interface, the first quantization ve-
locity operator on the left side of the junction is given by

vi 0 0 0

. |0 —v; 0 0
=10 0 vy 0| @4
0 0 0 —u

while on the right side of the junction the analogous operator
takes the form

v 0 0 0
. |0 —v 0 O
=10 0 oy 0 (25)

0o 0 0 —v

The current conservation and the matching condition ex-
pressed by Eq. (9) lead to the important relation

MM = vy, (26)

which immediately implies that the simple boundary con-
dition W(0%) = W(0™) is not allowed in the presence of a
velocity gradient at the interface. Indeed, in the absence of
interface potentials, we can look for a solution of the matrix
equation in Eq. (26) in the form of a diagonal matrix. Direct
computation shows that the required solution is given by

v Jvr Jvr [of
M, = diag ‘,TF",TF",TF",TF ) (27

which coincides with the identity matrix in the absence of
velocity gradient (i.e., for vf — V).

We are now ready to treat the problem of the boundary
conditions induced by the tunneling Hamiltonian H,. Let us
assume that the tunneling Hamiltonian generates an interface
potential proportional to the Dirac delta function 6(x) centered
at the interface point. This assumption, however, is prob-
lematic because the coexistence of the Dirac delta potential
with a velocity gradient introduces analytic difficulties in the
theory [55,56]. The problem can be solved by introducing
an infinitesimal shift € > O between the point at which the
interface potential diverges and the one at which the velocity
gradient is present. In practice, we introduce an interface
potential proportional to the Dirac delta function at x = 0,
while we set the point at which a velocity gradient is present
atx = ¢, where the limit e — 07 is implied (see Fig. 3). Once
the diverging potential has been specified, its matching matrix
M, can be computed, as we explain in a moment. On the other
hand, the matching matrix at the velocity gradient interface
coincides with M, [57]. Thus, the matching conditions at the

two distinct interfaces can be written as follows:
w(0F) =M w(0),
' (28)
W(et) = MryW(e™).

In the limit € — 0T, the approximate equality W(e™) =~
W(0™) becomes an exact relation and thus we get

W(et) = MoM;W(07). (29)

x=0 X=¢€

- + - + F
WO ||POT) W(e)||P(ET)

M m, i, Tl

—_—
X

FIG. 3. Interface model explained in the main text. An interface
potential proportional to the Dirac delta function is introduced at x =
0, while a velocity gradient is present at x = €. When the limit € —
07 is considered, the matching matrix of the resulting interface M =
MM, is recognized.

Thus, in the limit of coalescing interfaces the matching matrix
of the single-interface problem can be written in the factorized
form M = M,M,. The remaining part of the present section
is devoted to the identification of M.

Let us add to the ferromagnet Hamiltonian [Eq. (4)] the
scattering potential 2/8(x) with { a generic 2 x 2 Hermitian
operator. The Dirac delta potential implies the usual boundary
conditions for the wave functions of the ferromagnetic region:

_ 2 [m 0 |-
Ay (0%) — 3,y (07) = ﬁ[ OT mi]Z/{W(O*),
(30)
Y (0%) =¥ (07),

with ¥ (0%) = (V4 (0%), vy (0%))". Starting from Eq. (30) and
using the low-energy mapping [Eq. (5)], the boundary con-
ditions in the right- and left-movers representation can be
obtained. In deriving the low-energy boundary conditions,
the approximation 0,y (0F) & ikfé[lﬁRg(Oi) — Yo (0)] is
required. Once the boundary conditions have been obtained,
the matching matrix M, can be easily recognized. In this way,
the boundary conditions of the original problem are converted
into appropriate boundary conditions for the low-energy the-
ory without introducing additional parameters. Thus, within
the low-energy formulation, the mode coupling at the inter-
face directly depends on the original potential U.

We now specialize our reasonings to the scattering
potential:

Ly{:h_v[ 80

o —if
> s1e ] 31)

—g1e” 80

where the dimensionless parameters gy and g; represent the
spin-preserving and the spin-flipping scattering strength, re-
spectively. Spin-flipping scattering events are activated by the
interface magnetization which, in general, may well differ
from the bulk value. To mimic this interface effect, we have
introduced the 6 parameter describing the orientation of the
interface magnetization in the x-y plane. With this choice, the
required matching matrix takes the following form:

1 —ix ip ip —ix
| =iy 1+1ié ié —iy
M=\ s 1—is iy |0 G2
i —if —ip 1+ ix
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where the dimensionless parameters «, 8, v, and § depend on
the microscopic details of the interface as specified below:

o — v B = v o0 _ v o0
_g()zv;rv _glzv;f ) y_g12v; s
5= v
_g02v;'

Once the matching matrices M| and M, are known, the scat-
tering matrix is derived by using the method reported in
Appendix A. The explicit expression of the S matrix is re-
ported in Appendix B.

IV. RESULTS AND DISCUSSION

In order to discuss the outcome of the proposed theory, we
resort to a linear-response formulation for the charge and spin
currents. In particular the charge currents can be written (by
restoring the charge prefactor) as follows:

2
c_ € 2 2 .
Jr = A Z (8317 + 184171V — V&), (33)

Jje(1,2}
Ji = ¢ [1S311% + 1S322 1(V, — V&) (34)
T = 50h 31 32 L R),
Je = S0P + 1S P1(Ve — Vi) (35)
B — 27Tfl 41 42 L R)»

where the scattering amplitudes are evaluated at the Fermi
energy, while the quantity V; — Vi represents the voltage bias
applied to the device. A similar expression can be obtained for
the spin current in the ferromagnetic electrode:

LV —Ve)
B =TSN oS + ISPl (36)
je{1,2}

with o0y = 1 and 0 = —1. The spin current in the ferromag-
netic electrode strongly depends on the scattering properties
of the interface. Using the explicit expression of the scatter-
ing matrix elements, it is possible to demonstrate that J} in
Eq. (36) goes to zero when the limit go — 0 is considered.
Despite that the mentioned limit is not appropriate to describe
the device, the above conclusion may appear counterintuitive
and deserves some discussion. A simple argument shows the
correctness of the aforementioned statement and the relevant
role of the reduced dimensionality. When an ideal ballistic
channel is considered, the spin current is proportional to
> .. s ngvy with ny the spin-dependent density of states. In
one dimension, ny o 1/ v%, which leads to a vanishing spin
current. The latter conclusion is peculiar to a one-dimensional
case. In fact, in two dimensions n. is proportional to the
effective mass m4 , and thus a nonvanishing spin current is
obtained.

Nonvanishing values of the spin current are obtained in one
dimension when the charge carriers interact with scattering
centers (e.g., the ferromagnet/topological insulator interface).
The resulting scattering events, whose presence is expected in
real systems, are described by spin-sensitive reflection proba-
bilities which determine a polarized current.

A. Contact polarization

Instead of working with the spin current J3., a more useful
concept in spintronics is the notion of contact polarization
P, [58]. This quantity, also known as current polarization,
provides a measure of the degree of spin polarization of a
current originated by a magnetic region. Contact polariza-
tion is in general different from the bulk polarization P of a
magnetic material, which is determined by the spin-dependent
density of states. Despite this difference, the contact polar-
ization P, represents the relevant quantity in understanding
spin-polarized transport phenomena in nanostructured de-
vices. Contact polarization is experimentally accessible and
can be studied within the scattering theory. Using Eqgs. (33)
and (36), P. takes the suggestive form

_ 2 J;— _ Zje{l,Z} o‘j[|Sj3|2 + |Sj4|2] 37)
CDO JIL: Zje{l,Z}[|Sj3|2 + |Sj4|2]

with &y = h/2e the magnetic flux quantum. A close look at
the contact polarization formula given in Eq. (37) shows that
this quantity is simultaneously affected by the band structure
of the ferromagnet and by the ferromagnet/topological insula-
tor interface. Naturally, P, = 0 when a nonmagnetic electrode
is considered.

The electrical response of the device is completely charac-
terized by the following relations:

c __ 1+P¢ c

J _< 5 )J, (38)
JE = (—1 — P“)JC (39)
=(— ,

which can be proven by using Egs. (33)—(35) and observ-
ing that S31 = S14, S30 = Si3, S41 = So4, and Sy = S5 (see
Appendix B). Equations (38) and (39) are the main result of
this work and constitute the working principle of a topolog-
ical current divider. In this device, the polarized current Jg
generated by the ferromagnetic electrode is asymmetrically
partitioned in spatially separated branch currents, namely, J7
and J§, sustained by quantum states with opposite helicity.
Differently from a common current divider whose response is
determined by the electrical resistances of the branches, here
the relative intensity of the currents in the topological side of
the system is controlled by the polarization degree of the cur-
rent entering the topological insulator. Along with the interest
in spintronics, the mentioned effect seems to be promising
in achieving an experimental estimation of P. starting from
a direct measurement of J5. and Jg according to the relation

_Jr—Js

- : 40
i+ 0

c

The experimental effectiveness of this procedure can be al-
tered by the unintentional introduction during the fabrication
process of a resistive asymmetry between the top and bottom
branches. This effect is typically due to the contact resistance
formed at the interface between the topological insulator and
the metallic electrodes. This problem can be mitigated by an
accurate device design or by appropriate calibration of the
device response.
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Another important question to be answered is whether the
difference between J; and Jg is sizable and can be easily
measured when realistic P, values are considered. Certainly,
a positive answer to this question depends on the micro-
scopic details of the ferromagnetic electrode and on the

J

g%)[m_ —my + (m_ +my)xl

characteristics of the ferromagnet/topological insulator in-
terface. For this reason, in the following, we provide
a careful discussion of this point. The contact polariza-
tion can be analytically evaluated and takes the following
form:

P.=

where the dimensionless quantities my =my | /m, x =

hex/Er, and A = /2Er/(mv?) have been introduced along
with the bare electron mass m. Equation (41) shows that
P. — 0 when gy — 0, with J}, = 0 in this limit. Due to or-
bital reconstruction phenomena at the interface, the gg — 0
regime mentioned above is not expected to be established in
real devices and, for this reason, a correct modeling of the
interface requires gy # 0. In the more realistic tunnel regime
(g0 > 1), P. takes sizable values which are only affected by
the microscopic details of the ferromagnetic lead without any
reference to the interface properties. Under this regime, it is
possible to demonstrate that Jj. o< (v'F")2 + (v;)2 and J; «
(v)? — (vy)? so that
+42 —\2
~ O = O pe (42)
WEP + @)y ¢

the latter being in qualitative agreement with Ref. [59]. It
is interesting to compare the above result with the bulk po-
larization P expected for a one-dimensional electrode. The
spin-dependent density of states in one dimension is given by
Ny X 1/1)2E so that

c

- +
ny —n_ U, —V

ny +n_

JF —
Vg + Vg

(F)? = (vp)*
=— — —. (43)
Wi + (vp)? + 2vf vy

In view of the above results, we conclude that P is in gen-
eral different from P and, as also noticed in Ref. [60], a
measure of P, cannot be directly used to extract informa-
tion about P. Despite this general statement, we do observe
that when the velocity range v}t /vy € [0.65, 1.45] is consid-
ered, i.e., for |P| < 0.2, the expression P ~ —P¥/2 is very
well verified. Furthermore, considering the extended velocity
range v;/v; € [0.3, 3] (|P] < 0.5), the less accurate formula
~ —0.6P} is found. Interestingly, the sign of P does not
coincide with that of P, the latter finding being consistent
with Ref. [61]. Once a connection between P and P} has
been established, we provide a numerical estimation of P,
based on Eq. (41). Before studying P,, we have to define the
range of variability of the dimensionless parameter A and its
physical meaning. To this purpose, let us write the param-
eter in the evocative form A = v, /v with v, = /2Er/m a
characteristic velocity of magnitude comparable to the Fermi
velocity in a metal. Based on this observation, v, ~ (1-2) x
10% m/s, while the typical velocity associated to the edge
modes of a two-dimensional topological insulator is given
by v ~ (3.8-5) x 10°> m/s [30]. From these estimates, we

Blm_+my + (m_—m)x]+ 28 Vmom (1 — x2) +822(1 — x2)’

(41)

(

conclude that 2 < A < 5. When the Fermi energy can be ef-
fectively tuned by using an electrostatic back gate, the device
working point can be changed and this change is accounted by
a different value of A.

The general behavior of the contact polarization is reported
in Fig. 4. In particular, in Fig. 4(a) the P, vs h.,/EF curve of
a Stoner ferromagnet (my = 1) is considered. The interface
parameters have been fixed to go = 2.5 and g; = 0.5 which
correspond to an almost metallic contact with reflection prob-
ability ~20-30%. The contact polarization curve is a growing
function of the exchange term h,,/Er which presents a sensi-
tive dependence on the A parameter. For A = 2 and h,,/Er =
0.5, we obtain P, ~ 0.2 and consequently J; ~ 1.5J5. The
above observation shows that the proposed device reacts to the

0.4

0.2

0.0

P. 0.2
-0.4
-0.6
-0.8

-05 00 05
hex/EF

307 ‘ :
© :

25 B

025
20 | =

— 0
15 | =
Lol |
05| L =050

05 00 05

my

I ~0.75

FIG. 4. (a) P. as a function of h,,/Er obtained by setting the
model parameter as my = 1, go = 2.5, g1 = 0.5, A = 5 (dashed line),
or A =2 (solid line). (b) P. as a function of k. /Er obtained by
setting m; = 3 and m_ = 1, while taking the remaining parameters
as in (a). (c) Density plot of P, as a function of h,,/Er and m,.. The
remaining model parameters have been fixed as m_ =1, go = 2.5,
g1 =0.5,and L = 2.

hex/EF
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FIG. 5. (a) J5/J; as a function of h,./Er and m, obtained by setting the model parameters as m_ =1, go =2.5, gy = 0.5, and L =2
(metallic regime). (b) J5./J§ as a function of h,,/Er and m,. obtained by setting the model parameters asm_ = 1,g, =9, g1 =0.5,and A =2
(tunneling regime). (c) J5/Jg as a function of h,,/Er in the metallic regime. Different curves are obtained by setting m, = 0.5 (top curve),
my = 1 (middle curve), and m, = 1.5 (bottom curve). (d) J5./J§ as a function of &, /Er in the tunneling regime. Different curves are obtained
by setting m, = 0.5 (top curve), m;. = 1 (middle curve), and m, = 1.5 (bottom curve).

injection of a moderate spin-polarized current with a sizable
difference between J; and J.

When a mass asymmetry between the charge carriers with
opposite spin projection is considered, the curves shown in
Fig. 4(a) are deformed. This behavior is shown in Fig. 4(b),
where the P, vs h,,/EF curves are presented by setting m =
3 and m_ = 1, while taking the remaining parameters as in
Fig. 4(a). Let us consider the case h.,/Er = 0, which is ap-
propriate to describe a ferromagnetic state only induced by a
mass asymmetry. Under this circumstance, considering A = 2,
we get P. ~ —0.3 which implies the relation J; ~ 1.86J5.

The behavior of the contact polarization as a function of
h../Er and m, is presented in Fig. 4(c). Regions with positive
and negative P, values are separated by the curve [m_ — m, +
(m— + my)x] = 0, while a prevalence of negative P, values is
observed.

B. Device figure of merit

A relevant figure of merit of the topological current di-
vider is the current ratio J;/Jp which is studied in Fig. 5.
In Figs. 5(a)-5(c) the current ratio Jy5 /Jg as a function of

hey/Er and m is studied. Direct inspection of the figures,
which are obtained within the metallic regime of the junction,
shows that relevant values of the current asymmetry (i.e.,
J5/J§ 2 1.2) can be reached even when moderate intensities
(i.e., hey/Erp 2 0.4 with my = 1) of the exchange term are
considered. The tunnel limit is analyzed in Figs. 5(b)-5(d).
Tunneling limit is obtained by setting the interface scattering
strength to go = 9, while maintaining the remaining parame-
ters as fixed in Fig. 5(a). In this way an opaque interface with
reflection probability of ~80% is obtained. The analysis of the
device response in the tunneling regime evidences a relevant
enhancement of the current asymmetry. In particular, when the
parameters h,,/Er ~ 0.45 and my = 1 are considered, we get
J5 ) Jg =~ 2.

The above reasonings show that, even without considering
half-metallic electrodes (P = 1), the proposed device is able
to generate a relevant current asymmetry between Ji and Jj,
which is a crucial requisite for the experimental verification.
The mentioned effect is present both in tunneling and in metal-
lic regimes of the ferromagnet/topological insulator interface
and presents a dependence on the microscopic details of the
ferromagnet band structure. The latter dependence can be
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exploited to investigate conventional or exotic ferromagnetic
materials, the former being described by the Stoner theory
while the ferromagnetic state of the latter is triggered by a
spin-sensitive mass renormalization.

C. Experimental issues

The proposed device can be realized by lateral etching of
a quantum spin Hall material and successive deposition of a
quasi-one-dimensional ferromagnetic lead to form the geom-
etry given in Fig. 1. In principle, before the deposition of the
ferromagnetic electrode, an oxide layer (e.g., aluminum oxide
of nanometer thickness) can be deposited to form a tunnel bar-
rier between the ferromagnetic electrode and the topological
insulator. In this way, the ferromagnetism acts perturbatively
on the topological side of the device, allowing an equili-
brate interplay between competing states of matter. From the
technological side, the proposed device can be fabricated by
adapting the experimental process described in Refs. [62,63].
When the quantum spin Hall state is implemented by using
HgTe quantum wells, well-established multiterminal transport
techniques are available at ultralow temperature (~30 mK)
[64]. Under this condition, the device operation in the bal-
listic regime can be analyzed. In order to guarantee ballistic
transport, a source-drain distance not exceeding ~1 pum is
necessary. Compared to the interferometric devices based on
helical edge modes [30], we expect that the proposed device
is much more robust against coherence losses originated by
inelastic scattering events. Indeed, the topological current di-
vider works because of the spin-momentum locking, which is
maintained as long as the system is described by the quantum
spin Hall state. This state of matter has been proven to be
robust against phonon-induced backscattering and Coulomb
interaction effects [31]. Robustness against large magnetic
fields has been also demonstrated [65,66].

V. CONCLUSIONS

We have presented the minimal model of a
ferromagnet/topological insulator device in the ballistic
regime. In this device, the massive states of the ferromagnetic
electrode are hybridized with the helical modes of
a two-dimensional topological insulator presenting
the spin-momentum locking property. Resorting to a
one-dimensional effective model, we have analyzed the
nontrivial boundary conditions at the ferromagnet/topological
insulator interface and we have studied the device response
by using the scattering field theory a la Biittiker. We have
demonstrated that the polarized current originated by the
ferromagnetic electrode is asymmetrically partitioned in two
branch currents sustained by quantum states with opposite
helicity and belonging to the top and bottom edges of the
topological insulator. The spatial separation of the branch
currents allows direct measurement of the effect. The analytic
evaluation of the branch currents shows that they depend on
the current polarization in a simple form which can be used
to measure the polarizing effect of the ferromagnetic lead.
With this purpose, we have studied the contact polarization
as a function of the details of the band structure of the
ferromagnetic electrode. The results of this analysis suggest

that the presented method could be a useful tool to measure
the current polarization. When the main figure of merit of
the device is analyzed, namely, the current ratio J5 /Jg, we
have found that both for metallic and tunneling contacts the
quantity J;/Jg is sensibly different from 1 as long as the
contact polarization is different from zero. The mentioned
effect represents the working principle of a topological current
divider which is of utmost interest in spintronics. Apart from
its intrinsic interest for spintronics, the mentioned effect could
be also important for the correct operation of devices based
on topological superconductivity and Majorana fermion
physics. A topological superconductor can be obtained
by proximization of the edge states of a two-dimensional
topological insulator with a conventional superconductor. In
complex devices magnetic electrodes can be also present. We
argue that under this condition the effect we are reporting can
play some role in affecting the device response.

Finally, we have presented a minimal model serving as
proof of principle for the operation of a topological current
divider. Material-dependent information and ab initio studies
are required to get accurate estimates about the mentioned
effect and eventually extend the operation conditions up to
room temperature.

ACKNOWLEDGMENT

Discussions with R. De Luca are gratefully acknowledged.

APPENDIX A: DERIVATION OF THE S MATRIX FROM
THE M MATRIX

Let us assume that the M matrix is known. The scattering
fields at fixed energy E in close vicinity of the interface are
related as specified in Eq. (9) of the main text. Using the
scattering field definitions given in Eqgs. (11) and (12) and
Egs. (15) and (16), we can write

xm(OI,t) 1 by(E)
4y | x0T 1) 1 as(E)
FO7) = xr (07, 0) | 7 v | ba(E) (AD
xep (07, 1) as(E)
and
rai(E)-
$rr (07, 1) iz/@
| ¢ (0, 0) vr
W) = b (0. 1) | & | 2 (A2)
RGN B NS

Substituting Egs. (A1) and (A2) in Eq. (9) and disregarding
a common time-dependent prefactor, we get the following
relation:

by(E) a(E)
a3(E) | _ | ba(E)
by | = M) | (A9
as(E) b\(E)

which is written in terms of the matrix:

~ ) v v v
./\/l=/\/l-d1ag< /E, /E’ /%, /E) (A4)
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0 0 0 O
01 0 0
B=1o 0 0o ol
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

FRANCESCO ROMEO
Equation (A3) can be recast in the form b; = Y, S;;4; by using the auxiliary matrices:

0 0 1 0
0 0 0 O

A=lo 0 o 1|
0 0 0 0
1 0 0 0
0 0 0 O

C=lo 1 0 of
0 0 0 O

This procedure leads to the following relation between the S matrix and the M matrix:

S(E) = (A — MB)"'(MC — D).

(A5)

Thus the S matrix is determined once the M matrix, which specifies the ferromagnet/topological insulator coupling, is known.

APPENDIX B: EXPRESSION OF THE S MATRIX

The scattering matrix of the problem takes the following form:

—B+2iv, g0+ 2ie g, /o0y

—2igovy —4v vy

2ie~ gy SO U7

g —2i(v, -&-_vT)go—gzl —4v vy

—82i(vy +vp)g0+g +4v vy

85—2i(vy+v1)go—g] —4v vy

—g+2i(v) +v1)go+8 +H4v vy
2ie g1/} vy

Zie‘f’gl /U, Uy —g%-',—ZingU-',—gz1 —2igov, —4vyv,
§ = | ~&F2@ v teHv vy g=2iv, o) —gi—dvi vy §—2i(v +vp)go—gi—dv vy —gy+2i(v +vp)gotgi+Hvy vy
2ie gy Sujvr —gy+2iv, got+gt ’

2ie g, S vp

—2igovy —4v vy

25—2i(v,+v1)go—g] —4v v

2ie g S, vy

—2igov, —4vpvy

—g+2i(v,+up)go+e+HAvy vy

&—2i(v,+vp)go—g} —4v vy

2ie g, Ju, vy

—g3+2i(v,+v1)g0+g +4v vy
—g+2iv1 80+

7g%+2i(v¢ +vy )g0+g21+4v¢v¢ g%)72i(v¢ +vy )gofgzl —4v vy

g%JfZi(vi +vy )gofgzl —4v vy 7g%+2i(v¢ +vy )go+g21 +4v vy

where the notation vy = v/ /v and v, = vy /v has been introduced. Direct inspection of the S-matrix structure evidences that
spin-flipping scattering events are responsible for the activation of intraedge backscattering phenomena in the topological
side of the junction. Due to this, S33 and S44 are proportional to the spin-flipping scattering strength g;. These terms are
vanishing quantities in the presence of preserved helicity and time-reversal symmetry. On the other hand, the coupling with the
ferromagnetic electrode also induces interedge scattering events in the topological side of the junction. The interedge coupling,
related to S34 and Su3, is affected by the ferromagnetism but it is not canceled when a nonmagnetic electrode is considered.

The scattering matrix also depends on the phase factor e+

which, however, plays no role in a single-interface device.
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