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First-principles calculation of the graphene Dirac band on semi-infinite Ir(111)
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We study the energy dispersion relation of the π and π∗ bands in epitaxial monolayer graphene on a
semi-infinite Ir(111) substrate by a first-principles density-functional calculation. For this purpose, we employ
a realistic surface structure in which the (10×10) unit cell of graphene matches a (9×9) cell of Ir(111). We
determine the surface geometry by using a slab model containing four Ir layers, and the optimized structure
is used as input for the subsequent surface embedded Green’s function calculation. By taking advantage of
semi-infinite calculations, we discuss mini energy gaps at the crossing of the π band and its replicas, the
Rashba-type spin splitting of the π and π∗ bands, and also the energy width of both bands arising from
interactions with the energy continuum of bulk Ir bands.
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I. INTRODUCTION

Epitaxially grown graphene on metal substrates has been
a subject of intense study in the fields of basic science and
engineering over the last decade [1–7]. One of the central
questions here concerns to what extent the π and π∗ bands
of freestanding graphene are modified due to symmetry low-
ering and orbital hybridizations upon adsorption on a metal
substrate. The reason is that the unique transport properties
of freestanding graphene arise from linear energy dispersion
of the two bands with two-dimensional (2D) wave vector k
in the vicinity of the K and K ′ points of the Brillouin zone,
which can be expressed via massless Dirac fermions as

ε(k) = ED ± h̄vF |k − kD|, (1)

where vF is the Fermi velocity, kD is the wave vector at
the K or K ′ point, and ED denotes the Dirac point energy
[8]. Broadly speaking, the graphene/metal interfaces can
be divided into two categories depending on the nature of
graphene-substrate bonding. In the case of strong bonding
(chemisorption), the graphene π states are heavily intermixed
with substrate d bands, leading to massive modifications of
the linear energy dispersion. In the case of weak bonding
(physisorption), the π states interact only weakly with sub-
strate sp bands, so that their linear energy dispersion is mostly
preserved, except that a small gap Eg can be opened between
the π and π∗ bands at ED [1,2,5].
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In the present work, we focus on monolayer graphene
on Ir(111), which has been regarded as an example of rel-
atively weakly interacting overlayers despite the existence
of Ir 5d states near the Fermi level EF . Since the lattice
constant of graphene is 10% smaller than that of the Ir(111)
plane, superposition of the two lattices gives rise to moiré
superstructures [9–13], which depends on the relative rota-
tional angle φ of the two lattices. It was revealed that φ

can be controlled by changing the temperature T of the Ir
substrate during graphene growth. At high temperatures (T �
1500 K), the perfectly aligned structure with φ = 0◦ (termed
R0◦ phase) is formed, whereas at lower temperatures, several
distinct moiré structures with finite rotational angles were
found [14,15]. The R0◦ overlayer can be described accurately
by a commensurate structure where a (10×10) supercell of
graphene matches a (9×9) cell of Ir(111). Within the super-
cell, the overlayer exhibits undulations perpendicular to the
surface [11–13].

The occupied part of the electronic structure of the
R0◦ graphene/Ir(111) was thoroughly investigated by angle-
resolved photoemission spectroscopy (ARPES) [15–27]. The
main findings are as follows: (i) Overall, the linear energy
dispersion of the π band is preserved. (ii) The Dirac point es-
timated from the fitting of the linear dispersion of the π band
is located slightly above EF , implying small charge transfer
to the substrate [16,18,20]. (iii) The summit of the π band,
Eπ = ED − Eg/2, is either slightly above EF [16] or below
EF [19,20]. (iv) The moiré potential produces replicas of the
π bands centered at k = kD + G with G, a reciprocal lattice
vector corresponding to the superlattice. (v) Mini energy gaps
are observed at the crossing of the primary and replica π

bands [16] and also at the crossing of the π band and Ir
surface bands [18]. (vi) Hybridizations between the π and Ir
5d states give rise to the spin-orbit splitting of the π band of
∼50 meV [15]. (vii) The Dirac point can be shifted to lower
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energies below EF via electron doping through adsorption or
intercalation of chemical species [18–26].

On the theory side, several density-functional theory (DFT)
calculations were reported for the (10×10) graphene/Ir(111)
surface and the related ones with additional adsorbates or
intercalated species [1,9,11,26–31]. These calculations em-
ployed a slab model containing about five Ir(111) layers to
represent the substrate. For the purpose of structural opti-
mization, the use of a thin slab is justified since the electron
density at the surface converges very rapidly with increasing
slab thickness for metal substrates with a high bulk electron
density such as Ir. On the other hand, upon adsorption, the
electronic states in the overlayer interact with the energy con-
tinuum of the substrate and become resonances with a finite
energy width unless they are located within a projected bulk
band gap of the substrate. However, if the substrate is modeled
by a thin slab, all energy levels in the surface normal direction
are discretized. Thus, the slab model cannot correctly describe
the interaction between the overlayer and substrate electronic
states. The unfolded band structure of the (10×10) graphene
overlayer on Ir(111), including the spin-orbit splitting and
energy gaps, was presented in a few recent papers [1,29,30].
Since the Ir substrate in those works was represented by an
aproximately five-layer-thick slab, it is important for compar-
ison with realistic surfaces to examine how the band structure
converges with increasing substrate thickness. As such, in the
present work, we calculate the electronic structure of graphene
monolayer on a truly semi-infinite substrate. To do so, we
employ a realistic (10×10) graphene overlayer on a (9×9)
Ir(111) substrate. We discuss not only the energy dispersion of
the π and π∗ bands but also their energy widths as a function
of k.

The outline of this paper is as follows. In Sec. II we
present the surface geometry of the R0◦ graphene on Ir(111),
which will be used for the subsequent electronic structure
calculation. Section III contains the results and discussion
of the present semi-infinite surface calculations. We begin
with the discussion of the electronic structure of the clean
Ir(111) and three hypothetical 1×1 graphene overlayers in
which their lattice constant is artificially enlarged to match
that of the Ir(111) substrate. Then, we proceed to provide core
results of the present paper, i.e., those for the realistic (10×10)
graphene overlayer on a (9×9) Ir(111) substrate. We conclude
in Sec. IV.

II. SURFACE GEOMETRY

We choose the [1̄10], [1̄1̄2], and [111] crystal orientations
of fcc Ir as the positive x, y, and z directions, respectively.
The surface geometry of the R0◦ graphene monolayer form-
ing a (10×10) structure on a (9×9) supercell of Ir(111) is
determined by total-energy minimization within DFT. It is
known that the generalized gradient approximation (GGA)
in DFT substantially overestimates the interlayer spacing be-
tween graphene and the Ir(111) substrate, since the bonding
between them arises from the van der Waals (vdW) interaction
which is absent from the GGA [9]. Recently, much effort
has been made to develop a theoretical framework called
vdW-DFT, where the nonlocal correlation energy functional
accounting for the vdW interaction is added to the GGA
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FIG. 1. (a) Top and (b) side views of the (10×10) graphene
monolayer on a (9×9) Ir(111) slab containing four Ir layers. The
red parallelogram indicates a (9×9) supercell of the substrate. Three
dashed circles encompass regions where carbon hexagons are located
at atop, hcp, and fcc adsorption sites.

functional [32,33]. The vdW-DFT was able to predict the ex-
perimentally observed atomic structure of graphene on Ir(111)
precisely [11–13]. Though we fully acknowledge this fact, in
the present work we have employed the local density approxi-
mation (LDA) in DFT for the following reasons: (i) Feibelman
demonstrated that LDA can reproduce the atomic structure of
the graphene overlayer on Ir(111) excellently, although this
agreement may be of fortuitous nature due to error cancel-
lations [31,32]. (ii) We need the optimized geometry as input
for the subsequent surface Green’s function calculation and do
not aim to discuss bonding energies of the overlayer. (iii) LDA
can often predict the work function of metals better than GGA.
In the case of the clean Ir(111) surface, the experimental value
is 5.79 eV [34], while the LDA and GGA values are 5.86
and 5.51 eV, respectively, according to Ref. [35], which agree
well with 5.88 and 5.51 eV obtained with the present Green’s
function calculation. The difference in work function between
LDA and GGA may affect the energy levels relative to EF of
weakly bound electrons.

The calculation is made with the use of the VASP program
[36,37], an implementation of the projector augmented-wave
method [38]. The surface is modeled by a slab model that
consists of a graphene monolayer and four Ir(111) layers.
All atoms except for those in the bottom Ir layer are allowed
to relax. The lattice constant of the hexagonal Ir(111) plane,
aIr = 2.71 Å was determined by a separate bulk total-energy
calculation.

In Fig. 1 we show the top and side views of the sur-
face geometry of the (10×10) graphene overlayer on a
(9×9) Ir(111) slab obtained by the present calculation. The
averaged interlayer spacing between the overlayer and the
outermost Ir layer, 3.40 Å, is in good agreement with previous
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measurements [11–13] and with the vdW-DFT calculation
[11]. The three dashed circles in Fig. 1(a) labeled atop, hcp,
and fcc encompass distinct regions in a supercell where the
center of a carbon hexagon is located approximately on top of
an Ir atom in the outermost, the second, and the third Ir layer,
respectively. The calculated heights relative to the outermost
Ir layer are 3.73, 3.16, and 3.18 Å for the atop, fcc, and hcp
adsorption sites, respectively, implying that the undulation of
the overlayer in the normal (z) direction amounts to 0.57 Å.
This value is by 0.1 Å larger than the vdW-DFT value, 0.46 Å
[11]. The perpendicular undulation within the substrate layers,
which decays with distance from the surface, is much smaller.
Its magnitude for the outermost Ir layer is ∼0.01 Å.

III. SURFACE ELECTRONIC STRUCTURE

We employ the embedded Green’s function (EGF) tech-
nique of Inglesfield [39,40] to calculate the electronic
structure of semi-infinite surfaces. In this method, the space
is partitioned into the surface region with finite thickness
and the semi-infinite substrate, and the Green’s function in
the embedded surface region is computed by representing
the semi-infinite bulk via the embedding potential acting on
the boundary surface between the two regions. We use a
computer code [41,42] that combines the EGF technique and
the full-potential linearized augmented plane-wave (LAPW)
method [43]. The spin-orbit interaction inside the muffin-tin
sphere surrounding each nucleus is incorporated by adding the
standard �l · �σ term to the embedded Hamiltonian, where �l is
the orbital angular momentum operator and �σ = (σx, σy, σz )
is the vector of Pauli matrices. To calculate the surface
Green’s function, we invert a double-sized matrix containing
the Hamiltonian for both spin components without using any
perturbation approach. To be consistent with the structural
calculation, self-consistent surface electronic structure calcu-
lations are performed within the LDA in DFT.

A. Clean Ir(111) surface

First, we examine the surface band structure of the clean
Ir(111) surface with which the graphene overlayer interacts.
We calculate the electronic structure of the ideal Ir(111) by
including three Ir layers in the surface embedded region. The
plane-wave cutoff for the LAPW basis functions in the inter-
stitial region is chosen as Ec = 3.52 Ry while radial orbitals
with angular momentum l � lmax = 6 are included in the ba-
sis functions inside muffin-tin spheres.

In Fig. 2(a) we show ρ(k, ε), k-resolved density of states
(DOS) projected on a first-layer Ir atom, along the �-K (kx)
direction for the interval, 0.7ks � kx � 1.3ks, where ks =
(ks, 0) with ks = 4π

3aIr
(1.55 Å−1) is the K point of Ir(111).

Here, ρ(k, ε) of an atom whose nucleus is located at rn is
defined by

ρ(k, ε) = −1

π

∫
|r−rn|�R

dr Tr [ImĜ(k, ω, r, r)]. (2)

In Eq. (2), the volume integral is performed within a muffin-
tin sphere with radius R centered at rn and the trace is
taken over spin index of the 2×2 Green’s function matrix
Ĝ(k, ω, r, r) with 2D wave vector k, complex energy ω =

FIG. 2. Intensity plots of (a) ρ(k, ε), (b) sy(k, ε), and (c) sz(k, ε)
calculated in a first-layer Ir muffin-tin sphere with radius R =
2.48 bohrs for semi-infinite Ir(111) along the kx direction. The
K point of Ir(111) is located at ks = (ks, 0). Color varies linearly
with log10 |ρ(k, ε)| in panel (a) and linearly with |sα (k, ε)| in pan-
els (b) and (c) (see color scale bars). The imaginary energy γ =
2 meV. The inset in (c) illustrates the surface Brillouin zones of
pristine Ir(111) (dashed hexagon) and free-standing graphene (solid
hexagon).

ε + iγ , and space coordinate r, where a small imaginary en-
ergy γ is introduced to broaden δ-function-like DOS peaks of
discrete surface bands.

In Figs. 2(b) and 2(c) we also show the y and z components
of the k-resolved magnetization density projected on a first-
layer Ir atom defined by

sα (k, ε) = −1

π

∫
|r−rn|�R

dr Tr [σαĜ(k, ω, r, r)], (3)

where α = y or z. It should be noted that sx(k, ε) vanishes
identically on the kx axis due to the following reason: Let us
denote the wave function of a nondegenerate surface state with
a wave vector k = (kx, 0) by ψs. We apply the time-reversal
operator T̂ and the mirror reflection operator with respect
to the yz plane, M̂, to ψs. The resultant state M̂T̂ ψs, which
is also an energy eigenfunction due to the C3v symmetry of
the surface, should coincide with ψs except for a constant C,
i.e., M̂T̂ ψs = Cψs with |C| = 1. Hence, the x component of
the spin operator has an expected value, 〈σx〉 = 〈ψs|σx|ψs〉 =
〈M̂T̂ ψs|σx|M̂T̂ ψs〉 = −〈σx〉, indicating that 〈σx〉 = 0. Thus,
the spin associated with ψs is perpendicular to the x axis.
Furthermore, at kx = ks, the spin is perpendicular not only to
the x direction but also to the two symmetrically equivalent
directions within the xy plane (rotated by ±120◦ with respect
to the x axis), which implies that the spin must point to the
surface normal (z) direction.

It is seen that two pairs of spin-split surface bands, S1

and S2, emerge inside the surface projected bulk band gap
having a distorted diamondlike shape. In the first Ir layer, S2

is contributed dominantly by the dyz orbital. As is seen, S2

exhibits a large spin-orbit splitting. The spin of the S2 band
is mainly polarized in the surface normal (±z) direction. The
y component of the spin is several times smaller and changes
sign at kx = ks as discussed above. Seen from the positive x
direction, the spin rotates clockwise with increasing kx. The
orbital character of S1 in the first Ir layer is dominantly d3z2−r2 -
like. S1 exhibits a Rashba-type spin splitting whose magnitude
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increases with increasing kx. The y and z components of the
spin of S1 are of similar size and the spin rotates anticlockwise
with increasing kx when seen from the positive x direction.
The surface bands in Fig. 2 are in good agreement with the
ARPES result of Pletikosić et al. [16], in which two spin-split
branches of the present S2 band were named S2 and S3.

B. The (1×1) graphene overlayer on Ir(111)

Before moving on to the (10×10) graphene/(9×9)
Ir(111) surface, we calculate the electronic structure of
(1×1) flat graphene overlayers on Ir(111) to examine to what
extent the local symmetry of different adsorption sites affects
the energy dispersion of the graphene π and π∗ bands. For
this purpose, the planar lattice constant of graphene is in-
creased artificially by 10% to match that of the Ir(111) plane,
aIr = 2.71 Å. For the atop, hcp, and fcc geometries, we adopt
the overlayer-substrate heights given in Sec. II. The cutoff
parameters for the LAPW basis set are chosen as Ec = 3.52

Ry and lmax = 6.
The first, second, and third rows of Fig. 3 display the

calculated results for the atop, hcp, and fcc adsorption geome-
tries, respectively. The first column of each row shows ρ(k, ε)
averaged over two C atoms in a unit cell, while the second
and the third show ρ(k, ε) and sz(k, ε) of a first-layer Ir atom,
respectively.

In freestanding graphene, the π and π∗ bands are degener-
ate at the K point since the two C atoms in a (1×1) unit cell
(denoted as C1 and C2 sites) are symmetrically equivalent. In
the case of the atop adsorption geometry, this symmetry is
approximately preserved since the effects of the second- and
third-layer Ir atoms located underneath the two C atoms are
mostly screened out. As a result, the π and π∗ bands shown
in Fig. 3(a) exhibit no noticeable energy gap at ED. Both the
bands become surface resonances within the energy contin-
uum of a projected bulk band. In Fig. 3(a), the degenerate
DOS peak at kx = ks is located at 0.18 eV above EF and its
full width at half maximum (FWHM) amounts to 25 meV.
Figure 3(b) reveals that the π band of graphene interacts
with the surface bands of Ir(111), S1 and S2, resulting in the
opening of energy gaps at the crossing points. To demonstrate
this more clearly, we show in the inset of panel (b) a magnified
view of the DOS at the crossing point of the π and S1 bands.
Strong distortion of the energy dispersion of the π band due
to the interaction with S1 was observed in a previous ARPES
experiment [18]. The hybridization of the π band and Ir 5d
states results in spin splitting of the π band. As seen from the
inset of Fig. 3(c), which plots sz(k, ε) of a first-layer Ir atom
at kx = 0.9ks within a small energy interval containing the π

band peaks, the spin-orbit splitting of the π band amounts to
∼20 meV. Its magnitude changes only weakly with kx.

In the case of the hcp and fcc adsorption geometries,
the asymmetry of the two C atoms in a (1×1) unit cell is
greatly increased, since first-layer Ir atoms are located, say,
underneath the C1 sites in the case of the hcp geometry and
underneath the C2 sites in the case of the fcc geometry. This
results in strong modifications of the energy dispersion of the
π and π∗ bands as seen from Figs. 3(d) and 3(g). A large
energy gap (>0.5 eV) is opened between the π and S1 band.
Further, the π∗ band, which is shifted downward and merged

FIG. 3. (a), (d), (g) ρ(k, ε) averaged over two inequivalent C
atoms. (b), (e), (h) ρ(k, ε) for a first-layer Ir atom. (c), (f), (i) sz(k, ε)
for a first-layer Ir atom. Panels (a)–(c), (d)–(f), and (g)–(i) correspond
to the atop, hcp, and fcc adsorption geometries, respectively. The
same color scales as those in Fig. 2 are used. Muffin-tin sphere radii
are R = 1.33 and 2.48 bohrs for C and Ir atoms, respectively. The
imaginary energy γ = 2 meV. The inset in (b) displays a magnified
view of the DOS at the band crossing. The inset in (c) displays
sz(k, ε) in a small energy interval containing two peaks of the spin-
split π band marked by a red arrow.

within the projected bulk bands of Ir, is hardly seen except for
a higher energy region with kx < 0.8ks.

C. The (10×10) graphene overlayer on Ir(111)

Now, we calculate the electronic structure of graphene
monolayer forming a (10×10) superstructure on a (9×9)
cell of Ir(111) by adopting the surface geometry obtained in
Sec. II. We include a graphene monloayer and the outermost
Ir atomic layer in the surface embedded region, so that the
embedded region contains 81 Ir and 200 C atoms per unit cell.
It is an advantage of the EGF method that one needs to embed
just a single substrate layer for accurate surface calculations in
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FIG. 4. Intensity plot of ρ̃(k, ε) for the (10×10) graphene over-
layer on Ir(111). Color varies linearly with log |ρ̃(k, ε)| (see color
scale bar). (a) k = (kx, 0) with 0.75kD � kx � 1.25kD where kx =
ks(= 0.9kD ) and kx = kD correspond to the K points of Ir(111) and
graphene, respectively. (b) k = (kD, ky ) with 0 � ky � 0.1kD. The
muffin-tin sphere radius of C atoms is chosen as R = 1.33 bohrs.
�ε = 20 meV and γ = 2 meV.

the case of metals with high electron densities [44]. To reduce
computational load without losing the numerical accuracy, we
use Ec = 3.22 Ry as a cutoff energy for the LAPW basis
set, which is only slightly smaller than the one used in the
preceding sections. With this Ec, the size of the Hamiltonian
matrix to be inverted still amounts to 5.6×104. The Green’s
function is calculated in a small Brillouin zone (BZ) of the
(10×10) graphene supercell. In order to obtain the energy
dispersion of the π and π∗ bands in the BZ of the (1×1)
primitive cell, it is necessary to unfold the band structure. In
the Appendix, we describe the method we used for unfolding
the local DOS at a single k point in the supercell BZ onto
those at 102 k points in the BZ of the primitive cell.

In Fig. 4 we show the intensity plot of ρ̃(k, ε), the k-
resolved DOS which is projected on the graphene overlayer
and unfolded onto the BZ of the primitive cell. As described
in the Appendix, we take the average of the local DOS over
the 200 C muffin-tin spheres within a supercell to calculate
this quantity. Panel (a) shows ρ̃(k, ε) along the kx axis within
the interval of 0.75kD � kx � 1.25kD, where kD = (kD, 0)
with kD = 10

9 ks (1.72 Å−1) the K point of graphene. Panel
(b) shows the local DOS in the perpendicular direction, i.e.,
ρ̃(k, ε) for k = (kD, ky) in the interval of 0 � ky � 0.1kD. We
have employed different logarithmic color scaling than that
in Figs. 2 and 3 to be able to illustrate weak DOS features
arising from replica Dirac cones. Also, the DOS intensity
maps in Fig. 4 exhibit more grainy features than those in
Figs. 2 and 3 since we had to compromise on the density of
(k, ε) mesh points due to the enormous computational time
required for the (10×10) supercell calculation. In Fig. 4, the

FIG. 5. (a) ρ̃(k, ε) of the (10×10) graphene overlayer on Ir(111)
at 11 k points on the kx axis. (b) s̃y(k, ε) (dotted lines) and s̃z(k, ε)
(solid lines) at the same kx’s as in (a). �ε = 20 meV and γ = 2 meV
in both panels. The small number below each curve indicates kx/kD

where kD = (kD, 0) is the K point of graphene. s̃y(k, ε) and s̃z(k, ε)
at a given kx are vertically shifted for better visibility. The insets (i)
and (ii) in panel (a) show the π and π∗ band peaks at kx = 0.925kD

calculated with �ε = 2 meV and γ = 1 meV, respectively.

spacing between neighboring energy points �ε is 20 meV and
that between neighboring k points is partly �k = 1

160 kD and
partly 1

80 kD, whereas the corresponding ones in Figs. 2 and 3
were �ε = 4 meV and �k = 1

600 ks.
First of all, by tracing two diagonal thick (dark-blue) lines

gapped at a few places along the way in Fig. 4, we see that
overall, the linear energy dispersion of the π and π∗ bands is
preserved. The dispersion curves of the two bands are quali-
tatively similar to the corresponding ones in Fig. 3(a) of the
(1×1) overlayer except that the two bands cross at kx = kD in
the present case instead of at kx = ks = 0.9kD.

In order to better see the behavior of the local DOS, we plot
in Fig. 5(a) ρ̃(k, ε) of the graphene overlayer as a function of
ε at 11 k points on the kx axis in the neighborhood of kD.
The corresponding y and z components of the magnetization
density of the graphene overlayer are shown in Fig. 5(b).
In both panels, �ε = 20 meV and γ = 2 meV. The linear
dispersion of the π and π∗ bands is also visible in these
DOS curves. Furthermore, we see that the DOS peaks of both
bands become narrower as k moves away from the K point of
graphene. As an example, let us look at the DOS peaks of the
π and π∗ bands at kx = 0.925kD marked by arrows 1 and 1′
in Figs. 4 and 5. It is seen in Fig. 2(a) that at kx = 0.925kD

(1.03ks), the energies of the two peaks 1 and 1′ are located
within a projected bulk band gap of Ir(111). Nevertheless, due
to the backfolding of the projected bulk Ir bands induced by
the supercell potential, both the bands exhibit a nonvanishing
energy width. More importantly, the corresponding s̃y(k, ε)
and s̃z(k, ε) in Fig. 5(b) reveals that the π and π∗ bands
exhibit a spin splitting due to orbital hybridizations with Ir 5d
states. We made a supplemental Green’s function calculation
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with a finer energy interval �ε = 2 meV and γ = 1 meV in
the energy range of the π and π∗ bands and obtained the local
DOS shown in the two insets of Fig. 5(a). It is seen that the
lower and upper DOS peaks of the spin-split π band have a
FWHM of ∼10 and ∼20 meV, respectively, and the energy
splitting between them is 30 meV as shown in the inset (i) of
Fig. 5(a). This value is in rough agreement with the ARPES
measurement of Marchenko et al., who reported a spin-orbit
splitting of (48 ± 5) meV for the π band peak at −0.6 eV
below EF . The magnitude of the spin-orbit splitting of the π

band in the present calculation is also in good agreement with
a recent slab calculation [29]. Regarding the π∗ band, while its
lower DOS peak is much broader than the upper one as shown
in the inset (ii) of Fig. 5(a), the energy splitting between the
two peaks, ∼30 meV, is similar to that of the π band.

Figure 5(b) shows that the spin texture in the π and π∗
bands is qualitatively different from that in typical surface
bands exhibiting a large Rashba spin splitting; for instance,
the L-gap surface band on Au(111) [42]. The normal (z)
component is about the same size as the parallel (y) one.
Moreover, the parallel (y) component nearly vanishes at the K
point due to the approximate C3v symmetry of the overlayer.
In this relation, we refer to a recent paper of Sławińska and
Cerdá [45], in which the complex spin texture in the graphene
π bands on Pt(111) and Ni(111)/Au was investigated in detail
by a large-scale DFT calculation.

The DOS in the region surrounded by oval A in Fig. 4
reveals that the π band interacts strongly with the S1 band
of Ir(111), leading to the opening of a gap and strong hy-
bridizations of the two components. The same gap opening
happened in the (1×1) overlayer presented in Sec. III B and
is in line with the experiment reporting a strong distortion of
the linear dispersion curve of the π band near EF [18]. The
energy gap formed between the π and S1 bands can also be
seen in Fig. 5(a) as a dip in the DOS curves at kx = 0.95
and 0.975kD (see ovals labeled A). Similarly, the DOS in the
region surrounded by oval E in Fig. 4 suggests that the π band
strongly hybridizes with the S2 band of Ir(111) as in the case
of the (1×1) overlayers shown in Fig. 3.

Because of the strong modification of the dispersion curves
caused by the interaction between the π and S1 band, the
actual Dirac point ED, at which the upper and lower Dirac
cones cross, does not coincide with the one estimated by
extrapolating the occupied part of linear dispersion of the π

band. As exemplified by a dashed yellow line in Fig. 4(b), the
Dirac point estimated from linear dispersion of the π band
may be only slightly above EF , which is in agreement with
previous experiments. However, in fact, as marked by arrow 2
in Fig. 4(a), the π and π∗ bands at kx = kD form a single broad
peak at 0.43 eV above EF . It is seen from Fig. 5(a) that its
FWHM amounts to ∼0.22 eV, which is about ten times larger
than the corresponding one for the (1×1) overlayer shown in
Fig. 3(a). An intuitive explanation of why no appreciable gap
emerges between the upper and lower bands is as follows: As
mentioned in Sec. III B, Eg appears when the carbon atoms
in the C1 and C2 sites become symmetrically inequivalent. In
the present case, within the (10×10) unit cell, the C1 sites are
partly on atop, hcp, and fcc sites as illustrated in Fig. 1, and
importantly, this is true for the C2 sites. In this sense, both
the sites are symmetrically equivalent when averaged over the

FIG. 6. Charge density in the energy range 0.32 eV � ε − EF �
0.54 eV at the K point of graphene corresponding to the FWHM of
the broad DOS peak at ED on a vertical cut plane along the diagonal
line AB in Fig. 1.

supercell; as a result, the gap does not appear. The present
result on the π state at the K point of graphene is not in
line with the slab calculation of Dedkov and Voloshina [1],
in which ED and Eg were estimated to be 150 meV above
EF and ∼300 meV, respectively. We believe that in general,
it may be difficult to predict the formation of a broad reso-
nant peak as shown in Fig. 5 by a slab calculation since the
resonance is replaced by a finite number of discrete energy
levels.

The present result suggests that the strength of the
overlayer-substrate interaction and the local symmetry of a
small portion of the overlayer are not sufficient to deter-
mine the gap opening at ED. Rather, the overall symmetry
of the overlayer in a whole unit cell plays a crucial role in
the opening of a gap. Restructuring or symmetry lowering of
the overlayer via the adsorption and intercalation of atoms
results in the opening of an energy gap. In fact, the interca-
lation of Cu [23] and Bi [24] in between the graphene and
the Ir(111) surface was found to induce the lowering of ED

below EF and the opening of an energy gap Eg, whereas no
clear evidence of the gap opening was observed for the Gd
intercalation [25]. In the case of the Cu intercalation, it was
shown that the hybridization of the graphene π and Cu 3d
states is responsible for the gap opening at ED [23].

In Fig. 6 we show the electron charge density in the energy
range 0.32 eV � ε − EF � 0.54 eV corresponding to the
FWHM of the broad π band peak on a vertical cut plane along
the diagonal line AB in Fig. 1. As is seen, the charge density
is delocalized over the whole (10×10) unit cell although its
amplitude on the atop site is a little smaller than those at the
hcp and fcc sites. It is also seen that the electronic states in
this energy range are strongly hybridized with the Ir states.

In Fig. 4, we observe several replica Dirac cones. As illus-
trated in Fig. 7, these Dirac cones are centered at kD + Gi.
First, within the interval 0.8 � kx/kD � 0.9 (1.1 � kx/kD �
1.2), we observe two replica π bands centered at kD + G1 and
kD + G2 (kD + G3 and kD + G4) as marked by two arrows
3 and 4 (5 and 6). The two bands interact with each other
within the interval and split into two bands dispersing parallel
to each other with kx. In contrast, the replica π∗ bands marked
by arrow 3′ (5′) do not exhibit a significant energy splitting
within the same interval 0.8 � kx/kD � 0.9 (1.1 � kx/kD �
1.2), implying that the interaction between the two replica π∗
bands is much weaker. In addition, in Fig. 4(b), we see replica
π and π∗ bands centered at kD + G5 as marked by arrows 7
and 7′. Also, in Fig. 4(a), we observe a weak DOS signal of
replica Dirac cones centered at kD + G7 as marked by two
arrows 8 and 8′.
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FIG. 7. Red line indicates a small portion of the first BZ of the
(1×1) graphene near kD = (kD, 0), the K point on the kx axis. Small
hexagons are mini BZs of the (10×10) supercell whose centers are
chosen to be at kD + Gi where Gi is a reciprocal lattice vector of
the supercell. Replica Dirac cones centered at neighboring kD + Gi’s
interact on the boundaries of the mini BZs, leading to the opening of
a mini energy gap. Small numbers along the kx axis indicate kx/kD.

In the past, mini gaps at the crossing of the primary π

band and its replicas were investigated extensively by ARPES
[15–20]. As indicated by the two ovals B and C in Fig. 4(a),
we observe a mini gap at k = (0.9kD, 0) and (1.1kD, 0) where
the primary π band crosses with two of its replicas. Also,
as indicated by oval D in Fig. 4(b) a mini gap appears at
k = (kD,

√
3kD/20) where the primary π band crosses with its

replica centered at k + G5. The mini gaps B and C are more
clearly visible in the DOS curves at kx = 0.9kD and 1.1kD in
Fig. 5 (see ovals B and C).

In order to elucidate more details of the local DOS in
the energy range of mini gaps, we performed a supplemen-
tal Green’s function calculation with �ε = 2 meV and γ =
1 meV at k = ks, k1, and k2 on the boundary line of the mini
BZ shown in Fig. 7. The calculated ρ̃(k, ε) and s̃z(k, ε) at
these points are shown in Fig. 8. By virtue of the smaller
energy spacing �ε we can resolve more DOS peaks than those
in Fig. 5. In Figs. 8(a) and 8(b), we observe six DOS peaks
since three Dirac cones intersect at k = ks and each of them
possesses two spin components. One should observe also six
states at k = k2. Indeed, although there appear in Figs. 8(e)
and 8(f) only five peaks, the lowest peak at −0.66 eV below
EF , which possesses a larger area than the two neighboring
ones at higher energies, comprises two nearly degenerate
states. In Figs. 8(c) and 8(d), we see two spin-split π band
peaks at the lower and upper sides of the mini gap since only
two Dirac cones cross at k = k1.

The gap size, if defined as the maximum of the energy dif-
ferences between two nearest-neighbor DOS peaks in Fig. 8,
amount to 310, 138, and 88 meV at k = ks, k1, and k2, respec-
tively. Alternatively, since the fine DOS structures comprising
more than one peak have not been experimentally observed
so far, it might be better for comparison with experiments to
compute the centers of gravity of the DOS on the lower and
upper sides of the energy gap separately and to define the gap
size as the energy difference between the two values. The gap
sizes estimated in this way are ∼340, ∼170, and ∼130 meV

FIG. 8. ρ̃(k, ε) at (a) k = ks, (c) k = k1, and (e) k = k2. s̃z(k, ε)
at (b) k = ks, (d) k = k1, and (f) k = k2. In all panels, �ε = 2 meV
and γ = 1 meV.

at k = ks, k1, and k2, respectively. The gap size measured by
ARPES along the line between ks and k2 was nearly constant
and amounted to ∼160 meV [18] and ∼170 meV [20]. Thus,
the present calculation significantly overestimates the gap size
at k = ks. On the other hand, the present result agrees with
the previous experiments [18,20] in that the energy gap is
located at the lowest position relative to EF at ks and shifts
to higher energies as k moves toward k2. We also note that the
theoretically predicted gap closing at k = k1 [46] does not
occur in the present calculation, which indicates that treating
the substrate as a weak perturbation potential is not accurate
enough to describe the present system where the graphene π

states are strongly admixed with the substrate Ir states.

IV. CONCLUSION

We have studied the electronic structure of a graphene
monolayer on a semi-infinite Ir(111) surface by a first-
principles DFT calculation. To do so, we employed a realistic
structure model in which the (10×10) unit cell of graphene
matches a (9×9) cell of the Ir(111) substrate. The surface
geometry was optimized within the LDA in DFT by using a
slab model containing a graphene monolayer and four Ir(111)
atomic layers. The surface geometry obtained was used as
input structural data for the subsequent EGF calculation. By
exploiting the advantage of a semi-infinite surface calculation,
we have clarified many more details of the energy dispersion
of the graphene π and π∗ bands than could be studied with
standard slab calculations as follows.

We found that overall, the linear dispersion of the π and
π∗ bands is preserved. Nevertheless, it has been revealed that
their dispersion curves are significantly modified from those
of freestanding graphene in several points: (i) Both the bands
exhibit a Rashba-type spin splitting of ∼30 meV. (ii) Mini
gaps appear at the crossing of the primary π band and its
replicas and their size varies between ∼100 and ∼300 meV.
(iii) The energy dispersion of the π band in the vicinity of EF
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is strongly modified due to the gap opening at the crossing
of the π band and the S1 band of Ir(111). (iv) The π and π∗
bands form a heavily broadened single peak at the K point
of graphene and its peak position ED is located at a higher
energy than expected from the linear dispersion of the occu-
pied part of the π band. (v) No appreciable gap Eg appears
at ED since the two carbon cites in a primitive unit cell of
graphene become virtually equivalent when averaged over the
(10×10) supercell. (vi) The energy widths of the π and π∗
bands become progressively narrower as k moves away from
the K point.
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APPENDIX: UNFOLDED LOCAL DENSITY OF STATES

In this Appendix we describe a band-unfolding method
suitable for the surface Green’s function formalism. Let us
assume that a crystal surface, which has a primitive lattice
(PL) structure specified by two basic lattice vectors {a1, a2},
undergoes a structural change to result in a relaxed struc-
ture described by a commensurate superlattice (SL) specified
by two basic lattice vectors, A1 = m11a1 + m12a2 and A2 =
m21a1 + m22a2. For example, m11 = m12 = m21 = m22 = 10
in the case of the (10×10) graphene overlayer on Ir(111). We
use a lowercase g and an uppercase G to represent reciprocal
lattice vectors of the PL and SL, respectively. The 2D unit cell
of the SL is N = |m11m22 − m12m21| times larger than that of
the PL, while the BZ of the PL is N times larger than that of
the SL. Given a 2D wave vector k in the first BZ of the SL,
one can find N reciprocal lattice vectors Gi (i = 1, 2, . . . , N),
for which ki = k + Gi lies within the first BZ of the PL. The
band unfolding in the present context means to derive the local
DOS of a surface atom at N ki points in the first BZ of the PL
from the surface Green’s function calculated at k in the BZ of
the SL.

We define a unit cell of the SL by S = ⋃N
j=1 s j , where

s j = {l j + x1a1 + x2a2|0 � x1, x2 � 1} is the unit cell of the
PL specified by l j , a lattice vector of the PL. We assume
that all atoms in the original PL persist during the structural
change and the spatial coordinate of the nth atom belonging to
s j after the structural change is denoted by rn(l j ) (1 � n � Na

and 1 � j � N).
Now, let us consider the k-resolved DOS of the nth

atom (1 � n � Na) defined by Eq. (2) averaged over the N

inequivalent unit cells s j (1 � j � N) forming S,

ρ̄(k, ε) =
N∑

j=1

−1

Nπ

∫
|r−rn(l j )|�R

dr Tr[ImĜ(k, ω, r, r)],

(A1)

with ω = ε + iγ .
In the embedded Green’s function formalism, the 2×2

Green’s function matrix in Eq. (A1) is expanded as

Ĝ(k, ω, r, r′) =
∑
G,G′

Ĝ(k + G, k + G′, ω, r, r′), (A2)

with

Ĝ(k + G, k + G′, ω, r, r′)

=
∑
n,n′

Ĝ(k + G, k + G′, ω, n, n′) fξ (r) f ∗
ξ ′ (r′), (A3)

where ξ = (k + G, n) is a composite index for the LAPW
basis functions. In the interstitial region, the basis function is
given as

fξ (r) =
√

2

AL
ei(k+G)·x sin(pnz), (A4)

where A is the unit-cell area of the SL and pn = π
L n

(n = 1, 2, 3, . . .) with L, a parameter chosen slightly larger
than the thickness of the embedded region. Within the muffin-
tin sphere of an atom centered at rn,

fξ (r) =
∑
l,m

[Almul (r) + Blmu̇l (r)]Ylm(r − rn), (A5)

where ul (r) is a radial solution of the scalar-relativistic
Koelling-Harmon equation at a reference energy εn,l and u̇l (r)
denotes its energy derivative [41].

The reciprocal lattice vectors of the SL in the expansion of
Eq. (A2) can be uniquely decomposed into the form

G = Gi + g, (A6)

where Gi is one of the N reciprocal lattice vectors as defined
above and g is a reciprocal lattice vector of the PL. Thus, Eq.
(A2) can be rewritten as

Ĝ(k, ω, r, r′) =
N∑

i,i′=1

∑
g,g′

Ĝ(ki + g, ki′ + g′, ω, r, r′). (A7)

By inserting Eq. (A7) into Eq. (A1) we obtain

ρ̄(k, ε) = −1

Nπ

N∑
j=1

N∑
i,i′=1

∑
g,g′

∫
|r−rn (l j )|�R

dr Tr[ImĜ(ki + g, ki′ + g′, ω, r, r)]. (A8)

To go further, we consider a simplified case where the atomic position of the nth atom in the jth unit cell remains the same
during the structural change and is given by rn(l j ) = rn + l j . In the case of the (10×10) graphene overlayer, this means that a
perfect graphene monolayer lies on top of the Ir(111) substrate. From Eqs. (A4) and (A5) we see that the basis function satisfies

fξ (r + l j ) = ei(k+G)·l j fξ (r) = ei(k+Gi+g)·l j fξ (r) = ei(k+Gi )·l j fξ (r), (A9)
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if |r − rn| � R (it is necessary that the radial functions ul and u̇l are the same among the N atoms related by l j). Using Eqs. (A3)
and (A9), we see that Eq. (A8) reads

ρ̄(k, ε) = −1

Nπ

N∑
i,i′=1

∑
g,g′

∫
|r−rn|�R

dr Tr Im

[
N∑

j=1

ei(Gi−Gi′ )·l j Ĝ(ki + g, ki′ + g′, ω, r, r)

]
. (A10)

Since
∑N

j=1 ei(Gi−Gi′ )·l j = Nδi,i′ , only the diagonal terms with i = i′ contribute to Eq. (A10). Thus, dropping the off-diagonal
terms, Eq. (A8) reads

ρ̄(k, ε) =
N∑

i=1

ρ̃(ki, ε), (A11)

where ρ̃(ki, ε) is defined by

ρ̃(ki, ε) = −1

Nπ

N∑
j=1

∑
g,g′

∫
|r−rn (l j )|�R

dr Tr[ImĜ(ki + g, ki + g′, ω, r, r)]. (A12)

Equation (A11) indicates the local DOS of the nth atom averaged over the N unit cells s j ( j = 1, 2, . . . , N) can be decomposed
into N DOS functions at the unfolded k points, ki = k + Gi. In fact, in the case of the (10×10) graphene overlayer on Ir(111),
the positions of the C atoms move from rn(l j ) = rn + l j due to surface relaxations. Hence, strictly speaking, Eq. (A11) does
not hold. However, we expect that the contribution of the nondiagonal terms with i 
= i′ in Eq. (A8) may be much smaller than
the diagonal ones since there should be significant cancellations when the sum is taken over the N l j vectors. Hence, we define
Eq. (A12) as the unfolded local DOS of the nth atom at ki in the present work. Similarly, the α component of the unfolded
magnetization density of the nth atom, s̃α (ki, ε), is defined by replacing Ĝ in Eq. (A12) by σ̂αĜ.
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[16] I. Pletikosić, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. T.
N’Diaye, C. Busse, and T. Michely, Dirac Cones and Mini-
gaps for Graphene on Ir(111), Phys. Rev. Lett. 102, 056808
(2009).
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