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Multichannel scattering mechanism behind the reentrant conductance feature
in nanowires subject to strong spin-orbit coupling
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The characterization of helical states can be performed by checking the existence of the reentrant behavior,
which appears as a dip in the conductance probed in nanowires (NWs) with strong spin-orbit coupling (SOC)
and under a perpendicular magnetic field. Yet puzzling experimental results report the observation of the
re-entrant behavior also in the absence of magnetic fields, ascribed to unconventional spin-flipping two-particle
backscattering. We theoretically demonstrate that the observation of the conductance dip can be explained
through a multichannel scattering mechanism, which causes a reduction of the transmission when an effective
attractive potential and coupling between different channels are present. Both ingredients are provided by the
SOC in the transport properties of NWs. The relative effect of the sharpness of interfaces and external fields has
also been assessed. The reduction of symmetry constraints of the NW is analyzed and proved to be important in
the tuning of the reentrant characteristic.
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I. INTRODUCTION

Topologically protected quantum computation can be
achieved by employing Majorana zero modes [1]. Such Majo-
rana states were predicted to be observed in nanowires (NWs)
with strong spin-orbit coupling (SOC) in proximity to an s-
wave superconductor and under the presence of an external
magnetic field [2–4]. Semiconductor NWs based on InAs and
InSb have a strong SOC and the experimental realization and
characterization of such NWs have been recently explored to
check the existence of helical states [5–8], which are closely
related to Majorana zero modes. A signature to verify helical
states is the so-called reentrant behavior [9], which appears
as a measurable dip in the conductance when an external
magnetic field is strictly different from zero. In Ref. [5], how-
ever, an unexpected result was observed: the appearance of the
reentrant characteristic in the absence of the external magnetic
field. This feature was attributed to spin-flipping two-particle
backscattering [5,10,11]. Nonetheless, the dip at zero mag-
netic field may also appear in the presence of scattering by
impurities [12,13]. Consequently, a clear explanation for the
reentrant feature is still lacking, as stated in Ref. [8], and we
also subscribe to that assertion.

In this paper, we want to shed light on the problem of the
observation of the reentrant behavior when the magnetic field
is absent by adding an essential ingredient that has clearly
been previously overlooked. The preliminary theoretical pre-
diction of a conductance dip was ascribed to the opening of a
pseudogap in the energy dispersion of the NW by combining
SOC and a magnetic field [9]. Both theoretical and experi-
mental validations of such a prediction in InAs and InSb NWs
have been attempted for some time [5–7,14–16]. However, the
result found in Ref. [5] is surprising because no pseudogap is
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expected when the magnetic field is absent. In turn, theoret-
ical models that predict the pseudogap opening require the
concurrence of three factors: the SOC along the whole NW
[9,15,16], a magnetic field, and a spatial potential localized in
a finite region, which controls the reentrant behavior by tuning
the energy into the pseudogap. Particularly, in the experiment
described in Ref. [5], a perpendicular electric field is applied
in a finite region along the longitudinal direction of the NW,
as depicted in Fig. 1. Once an electric field is applied, the
induced structural inversion asymmetry SOC emerges [17].
Also, the bias voltage applied between source and drain, as
shown in Fig. 1, triggers a SOC. However, the electric field,
Ex, applied between top and bottom gates is much higher,
thereby causing a stronger SOC in the finite region of length
L. In this paper we will unveil how this last external field con-
figuration plays an important role in the transport properties
and provide a clear explanation for the reentrant behavior in
the absence of the magnetic field. To comprehend this effect,
one needs to understand that the Rashba Hamiltonian limited
to a finite region behaves as an attractive potential, as shown
in Ref. [18]. Furthermore, it has been demonstrated that a
resonant reflection (dip in the conductance) might occur if
two conditions are satisfied: the scattering by an attractive po-
tential and the coupling between different transport channels
[19], even in the absence of a magnetic field. Precisely, these
two ingredients are present in quasi-one-dimensional systems,
such as NWs, where the SOC takes place in a finite region.

II. MODEL

We theoretically model the electronic transport through
the nanowire where the Rashba SOC occurs in a region with
length L along the z direction by the following Hamiltonian:

H =
(

p2

2m∗ + Vc(x, y)

)
I + HR, (1)
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FIG. 1. Schematic picture showing the NW whose longitudinal
direction coincides with the z axis. The source and the drain are
presented along with the region with length L where the perpendic-
ular electric field Ex between top and bottom gates is applied. The
magnetic field, Bx , is applied in the x direction.

where the first term is the kinetic energy, Vc(x, y) is the lateral
confining potential, HR is the Rashba Hamiltonian, and I is the
2 × 2 identity matrix corresponding to the spin-independent
part. The confining potential describes the lateral confinement
of the NW, which is modeled as Vc(x, y) = m∗(ω2

x x2 + ω2
y y2),

where ωx and ωy represent the strength of the lateral confine-
ment in the x and y directions, respectively. We assume that
the Rashba interaction, caused by the electric field Ex, acts
only in the region of length L along the z direction; thus, HR =
α f (z)(kyσz − kzσy), where f (z) = �(z + L/2) − �(z − L/2)
and �(z) is the Heaviside function. The Rashba coupling
constant is α, while kq and σq are the wave vector and the
Pauli spin matrix in the q direction, respectively.

The wave function �(�r) can be expanded as a func-
tion of the lateral eigenfunctions φnx,ny (x, y), which are
solutions of the two-dimensional harmonic oscillator with
eigenenergies εnx,ny = h̄ωx(nx + 1/2) + h̄ωy(ny + 1/2), with
nx = ny = 0, 1, 2, . . .. The wave function has two spin com-
ponents �±(�r) = ∑

nx,ny
ψ±

nx,ny
(z)φnx,ny (ρ, ϕ), where ψ s

nx,ny
(z)

is the scattering wave function along the z axis for each trans-
port channel j = (nx, ny, s), and s = ±. For this expansion,
the matrix elements of Eq. (1) are

Hj, j′ =
[

h̄2k2
z

2m
+ ε j

]
δ j, j′ + c j, j′ + d j, j′. (2)

In Eq. (2), we have the spin degenerated orbital eigenen-
ergy ε j = εnx,ny , the intersubband term c j, j′ = α(z)〈 j|kyσz| j′〉,
and the intrasubband term d j, j′ = −〈 j|{α(z), kz}σy| j′〉, where
{α(z), kz} = [α(z)kz + kzα(z)]/2 and α(z) = α f (z). These
terms can be analytically calculated by means of the
raising and lowering operators, whose results are c j, j′ =
−is′δs,s′ α(z)√

2l2
y

[
√

n′
yδny,n′

y−1−
√

n′
y + 1δny,n′

y+1]δnx,n′
x
, where ly =√

h̄/(m∗ωy) and d j, j′ = −isδs,−s′{α(z), kz}δnx,nx ′δny,ny ′. The in-
tersubband term only couples states with different quantum
number ny, same spin, and same quantum number nx; while
the intrasubband term couples states with different spin and
same quantum numbers nx and ny. Ideally, we should consider
infinite transport channels (subbands) to completely solve the
transport along the z direction, but the influence of high energy
channels would exponentially decay if incoherent transport
effects were considered, in the same way that occurs for the
Shubnikov–de Haas oscillations [20]. Thus, to extract the
basic physics of the dip in the conductance, we consider the
coupling between the lowest energy states and ωy � ωx (simi-
lar equations can be found for ωy > ωx). Within this subspace,
we get the following Hamiltonian:

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

h̄2k2
z

2m + ε1 i{α, kz} −ir(z) 0

−i{α, kz} h̄2k2
z

2m + ε2 0 ir(z)

ir(z) 0 h̄2k2
z

2m + ε3 i{α, kz}
0 −ir(z) −i{α, kz} h̄2k2

z

2m + ε4

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3)

where j = 1 ⇒ (0, 0,+), j = 2 ⇒ (0, 0,−), j = 3 ⇒
(0, 1,+), and j = 4 ⇒ (0, 1,−). For these states, we have
that ε1 = ε2 = ε = h̄(ωx + ωy)/2, ε3 = ε4 = λ = h̄(ωx +
3ωy)/2, r(z) = α(z)/(ly

√
2), and the transport wave function

can be written as � = (ψ+
0,0(z) ψ−

0,0(z) ψ+
0,1(z) ψ−

0,1(z))t . By
using the linear combination between transport channels with
same energy, χ±

nx,ny
(z) = (ψ+

nx,ny
(z) ± iψ−

nx,ny
(z))e∓iθ (z)/

√
2,

where θ (z) = ∫ z
0 kα (z′)dz′ and kα (z) = mα(z)/h̄2, we

rewrite the transport wave function in this new basis
�̃ = (χ+

0,0(z) χ−
0,0(z) χ+

0,1(z) χ−
0,1(z))t and we arrive at the

transformed Hamiltonian

H =

⎛
⎜⎜⎜⎜⎜⎝

−h̄2

2m
d2

dz2 + ε + Vα (z) 0 0 −ir(z)e−2iθ (z)

0 −h̄2

2m
d2

dz2 + ε + Vα (z) −ir(z)e−2iθ (z) 0

0 +ir(z)e2iθ (z) −h̄2

2m
d2

dz2 + λ + Vα (z)

+ir(z)e2iθ (z) 0 0 −h̄2

2m
d2

dz2 + λ + Vα (z)

⎞
⎟⎟⎟⎟⎟⎠

, (4)

where the intrasubband term of the SOC contribution appears as an effective attractive quantum well potential Vα (z) = −mα(z)2

2h̄2 ,
as also described in Ref. [18]. Its width is determined by L and the depth by the Rashba coupling strength (proportional to the
perpendicular electric field Ex). Equation (4) leads to equations coupled in pairs with the same spin in the σy basis, given by

−h̄2

2m

d2χ±
0,0(z)

dz2
+ [ε − E + Vα (z)]χ±

0,0(z) − ir(z)e−2iθ (z)χ∓
0,1(z) = 0, (5)

−h̄2

2m

d2χ±
0,1(z)

dz2
+ [λ − E + Vα (z)]χ±

0,1(z) + ir(z)e2iθ (z)χ∓
0,0(z) = 0 (6)
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FIG. 2. Normalized conductance as a function of the normalized
Fermi energy for 2, 4, 8, 12, and 24 channels, considering L = 8.0lx ,
α = 1.0α0, and null magnetic field.

Equations (5) and (6) were deduced in the simplest
scenario to demonstrate that, by considering the coupling
between only four states and the mere presence of the Rashba
SOC within a finite region, the necessary conditions to ob-
serve the resonant reflection [19] are satisfied; they are (i) the
existence of an attractive potential Vα (z) and (ii) the coupling
between different channels ruled by the term ±ir(z)e±2iθ (z).
It is paramount to assert that a strict one-dimensional (1D)
transport model, considering the Rashba SOC between differ-
ent spins, will not lead to the required conditions described
above because of the lack of the attractive potential. In Fig. 2,
we plot the numerical solution for the normalized conductance
as a function of the total energy, varying the number of states
(channels) and considering α = α0, ωy = ωx and L = 8.0lx,
where εx = h̄ωx, lx = √

h̄/(m∗ωx ), and α0 = εxlx, which are
the chosen energy, length, and Rashba constant scales. The
total energy, E , represents the applied bias, which in turn is
equivalent to the variation of the gate-voltage applied perpen-
dicularly to the NW [16]. The numerical results were obtained
by noting that the total Hamiltonian in Eq. (1) commutes with
the momentum in the z direction, pz, therefore the scattering
wave functions can be expanded in the exp (ikzz) basis. By us-
ing the expansion of the wave-function in the exp (ikzz) basis
and the boundary conditions at the interfaces z = ±L/2, we
get a system of linear equations. The solution of this system
of linear equations yields all the coefficients of the expansion
in the exp (ikzz) basis plus all the transmission and reflection
coefficients [21]. The conductance is evaluated through the
Landauer-Buttiker formula G = G0 Tr [tt†], where G0 = e2/h
and t is the matrix composed of the transmission elements ti, j ,
where i and j denote the transmitted and the incident channels,
respectively.

III. RESULTS

In Fig. 2, the conductance is almost constant for E > εx

and no dip is observed if only two channels with quantum
numbers (0, 0,±) are taken into account (similarly to a strict

1D transport model). However, once four channels {(0, 0,±),
(0, 1,±)} are considered, a strong reflection occurs, leading
to a dip in the conductance, as can be observed in the plot
of normalized conductance shown in Fig. 2 for E ≈ 2εx. The
four-channels case corresponds to the numerical solution of
Eqs. (5) and (6), which has the intrasubband Rashba SOC
term equivalent to an attractive potential in the region |z| �
L/2. Such a negative potential can support a quasibound state
within this region and this state interacts with the continuum
states causing the strong reflection due to interference effects.
It is interesting to mention that, for E < 2εx, only the states
(0, 0,±) admit scattering modes, whereas the other quantum
channels correspond to evanescent modes. Therefore, the in-
fluence of evanescent modes in the transport properties is very
important, as can be seen when comparing the conductance
evaluated using two and four channels in Fig. 2. Note that,
in the isotropic case, with ωy = ωx, the states (0, 1,±) and
(1, 0,±) are degenerated in energy, but only the state (0, 1,±)
couples to state (0, 0,±); therefore, the conductance includ-
ing the state (1, 0,±) can be easily obtained by adding the
constant value G0 for E > 2εx in the four-channels results of
the conductance.

When eight channels are considered, {(0, i,±), (1, 0,±)},
with i = 0, . . . , 2, the first dip moves to lower energies in
the first plateau and no dip is observed for E > 2εx. The dip
shifts because of the coupling between states (0, 1,±) and
(0, 2,±), which affects the scattering mode (0, 0,±). Again,
degenerated states (2, 0,±) and (1, 1,±) do not couple to the
scattering modes and only contribute with a constant value to
the conductance evaluated with eight channels for E > 3εx.
To facilitate the numerical calculations, degenerated states
are not taken into account when they do not couple to the
scattering modes within the total energy region considered,
and their effect is only adding a constant value G0 to the
conductance when its channel is open.

Considering twelve channels, {(0, i,±), (1, j,±)}, with
i = 0, . . . , 2 and j = 0, . . . , 2, the first dip does not change
because the coupling with the scattering mode with quan-
tum numbers (0, 0,±) has not been modified. On the other
hand, a dip in the second plateau appears for E ≈ 3εx due
to the coupling between the scattering mode (1, 0,±) and
the evanescent modes (1, 1,±) and (1, 2,±). For 24 chan-
nels, {(0, i,±), (1, j,±), (2, k,±)}, with i = 0, . . . , 4, j =
0, . . . , 3, and k = 0, . . . , 2, the first dip suffers a redshift due
to the extra coupling between states (0, 3,±) and (0, 4,±).
Two dips in the second plateau appear because of the inclusion
of states (0, 3,±), (0, 4,±), and (1, 3,±). Furthermore, a
reentrance in the third plateau appears for E ≈ 4εx due to
the coupling between states (0, 2,±), (0, 3,±), and (0, 4,±).
We can thus learn from the analysis of the results shown in
Fig. 2 that for E < εnx,ny the scattering mode designated by
quantum numbers (nx, ny, s) couples to the evanescent mode
(nx, ny + 1, s) through the intersubband term, which causes
the dip in the conductance. On the other hand, evanescent
modes (nx, ny + 1, s) and (nx, ny + 2, s) are coupled to each
other, which modifies the conductance by a type of a domino
effect. Of course, this domino effect keeps influencing the
conductance up to a certain value of quantum numbers, where
incoherent effects take place. Hereafter, the number of chan-
nels will be chosen depending on the range of energy studied
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FIG. 3. (a) Normalized conductance as a function of the normal-
ized Fermi energy for 24 channels, L = 8.0lx , α = 1.0α0, and null
magnetic field, by changing the degree of smoothness of the SOC
region, characterized by σ = 0 (solid curve), 0.1 (dashed curve),
0.2 (dash-dotted curve), 0.5 (dotted curve), and 1.0 (dash-do-dotted
curve). (b) Spatial dependence of α(z)/α for various values of σ .

and the ratio of ωy = ωx, but the minimum number of chan-
nels is fixed to 24.

According to Rainis and Loss [16], the smoothness of
the electrostatic potential profile between the contacts and
the wire plays an important role in the observation of the
reentrant behavior for a finite magnetic field. They have
shown that the electrostatic potential profile should not be
either too smooth or too abrupt to optimize the observation
of the dip in the conductance. Based on these discussions, we
have also explored the effect of sharpness of the interfaces
of the SOC region by adopting a spatial dependence of the
Rashba coupling constant in the following way: α(x) =
α{1/[1 + exp ((z − L/2)/σ )] − 1/[1 + exp ((z + L/2)/σ )]},
where σ is the degree of smoothness. As can be observed in
Fig. 3, the conductance obtained in the abrupt case σ = 0
is not very different from the cases where σ = 0.1 and 0.2.
Only for σ = 0.5 and 1.0 does the conductance become
quantitatively different from the abrupt case, and the dip
in the first plateau completely disappears when σ = 1.0.
Therefore, we can conclude that the smoothness of the SOC
region affects the dip of the conductance only when it is too
smooth. Since the results of the sharp interfaces show a good
agreement with the relatively smooth spatial dependence of
the SOC region, we will hereafter employ the abrupt model
in the numerical calculations.

The normalized conductance for different lengths of the
SOC region is shown in Fig. 4(a), considering the following
parameters: L = 4.4lx (solid curve), L = 5.6lx (dashed curve),
L = 6.8lx (short-dashed curve), and L = 8.0lx (dotted curve),
null magnetic field, ωy = ωx, and α = 1.0α0. The dips can be
tuned by modifying the length L [see Fig. 4(a)]. For example,
the first dip disappears for L = 5.6lx, while it reappears for
L = 4.4lx, L = 6.8lx, and L = 8.0lx. In the second plateau,
one can find two dips (L = 5.6lx, L = 6.8lx, and L = 8.0lx)
or just one dip (L = 4.4lx). In Fig. 4(b), we plot the normal-
ized conductance for twenty four channels using the same

FIG. 4. (a) Normalized conductance as a function of the nor-
malized Fermi energy for 24 channels, considering L = 4.4lx , 5.6lx ,
6.8lx , and 8.0lx , null magnetic field, and α = 1.0α0. (b) Normalized
conductance as a function of the normalized Fermi energy for 24
channels, considering L = 8.0lx , null magnetic field, and α = 0.2α0,
0.4α0, 0.6α0, 0.8α0, 1.0α0, and 1.2α0. The curves are offset for
clarity according to the indicated values.

parameters of Fig. 2, except for the Rashba constant, which is
varied from α = 0.2α0 to α = 1.2α0. For α = 0.2α0 no dips
are observed in Fig. 4(b), but for α = 0.4α0 the dips already
appear. For α = 0.6α0, the first dip disappears and the third
dip gets wider. When α = 0.8α0, two dips appear in the first
plateau and the subsequent dips get wider. On the other hand,
two dips appear in the second plateau and only one appears
in the first plateau when α = α0. For α = 1.2α0, the dips in
the first two plateaus suffer a redshift and the third dip almost
disappears. In Ref. [5], the authors report two different values
for the Rashba constant coupling α = 0.8 eV Å and α =
1.2 eV Å, which correspond to α = 0.57α0 and α = 0.85α0

in our simulations. These values are estimated from different
experimental techniques and according to the results shown
in Fig. 4(b), dips would appear for both experimental values.
In summary, both parameters α or L induce the interference
between scattering and evanescent modes, which can tune and
lead to the appearance of the dips in the conductance.

In the experiment of Ref. [5], a conductance plateau around
G = 4G0 is observed, whereas in Figs. 2–4 the second plateau
corresponds to G = 6G0. This is caused by the symmetry of
the lateral confinement that provides two scattering modes,
(0, 1,±) and (1, 0,±), degenerated in energy. To obtain G =
4G0, an asymmetry in the confinement of the NW that breaks
this degeneracy must be considered. Thus, the cylindrical NW
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FIG. 5. (a) Normalized conductance as a function of the nor-
malized Fermi energy for 24 channels, considering L = 8.0lx , α =
1.0α0, null magnetic field, and different values for γxy = 0.2, 0.6
to 1.5 (with step 0.05), and 1.8. The curves are offset for clarity.
(b) The dotted points show the first dip position as a function of
γxy. The red solid curve is the linear extrapolation of the first dip
position. The black dash-dotted curve indicates the energy where the
first step in the conductance appears. The green dotted curve shows
where the transition between the first and second plateau occurs. The
blue dashed curve shows where the transition between the second
and third plateaus occurs.

can be replaced by an eccentric one, where the parameter
γxy = ωy/ωx = l2

x /l2
y represents the ratio between the square

of the semiaxes of an ellipse in the x and the y directions.
In Fig. 5(a), we plot the conductance considering different
values of γxy. The gray (lighter) curves represent the con-
ductance without SOC and they can be used as reference for
the plateaus. For ωy �= ωx, the conductance plateau around
G = 4G0 appears, as one can observe in Fig. 5(a) for null SOC
(grey curves). In Fig. 5(b), we plot the first dip position (red
dotted points) as a function of γxy. Moreover, the red solid
curve is the linear extrapolation of the dip position. When
γxy = 0.2, the first dip is absent [see Fig. 5(a)], and the reason
for that can be understood by looking at the crossing [label I
in Fig. 5(b)] between the extrapolated dip position and the
black dash-dotted curve, which indicates the minimum energy
required for nonzero conductance as a function of γxy. For
γxy � 0.2, the dip does not occur because its position would be
a nonallowed energy. This effect can also be explained due to
the decreasing of the intrasubband term, which is proportional

to α/
√

l2
y = √

γxyh̄ωxα/α0. When γxy � 1, the intrasubband

term becomes very small and the dips are suppressed. In
other words, if the NW is very compressed in the x direction
(same direction of Ex), the dips might completely vanish. In
Fig. 5(b), the green dotted (blue dashed) curve shows the
transition between the first (second) and second (third) plateau
regions. When γxy < 1.2 the dip occurs within the first plateau
region, which is delimited by the black dash-dotted curve and
the green dotted curve in Fig. 5(b). When 1.2 � γxy � 2.2 the
dip occurs within the second plateau region, which is delim-
ited by the green dotted curve and the blue dashed curve in
Fig. 5(b). Qualitatively, the first dip position is pushed towards
higher energies as a function of γxy and eventually the dip

FIG. 6. Normalized conductance as a function of the normal-
ized Fermi energy for 24 channels, considering L = 8.0lx , α =
1.0α0,ωy = ωx , and Zeeman energy in the range EZ = 0.0–2.0εx .
The curves are offset for clarity according to the indicated values.

undergo transitions into higher plateaus as labeled as II and
III in panel (b) of Fig. 5. Of course, there are other subtleties
occurring as γxy is varied; for example, when γxy = 0.7 there
is no dip in the first plateau. On the other hand, by increasing
the value from γxy = 0.75 to γxy = 1.5 both the intensity and
width of the first dip increase. Also, for γxy = 0.6 and 0.65
the first dip appears as well. All these subtleties occur due
to interference phenomena. For γxy = 1.8, the dips in the first
four plateaus are completely absent and this effect is related to
the shift of the dip position to higher energies. Other dips posi-
tion occurring in plateaus different than the first one shown in
Fig. 5(a) also have a linear dependence on γxy, which is related
to the subband energies that linearly vary as a function of
γxy, thereby affecting the energy where the resonant reflection
occurs.

In the experiment described in Ref. [5], it was also ob-
served that the dip in the conductance appears for zero and for
moderate values of the magnetic field, but disappears for high
field values. To probe such effects in our theoretical model, we
consider a uniform magnetic field applied in the x direction
described by the Hamiltonian HZ = EZσx, where EZ is the
Zeeman energy. The matrix elements for this Hamiltonian are
given by HZ

j, j′ = EZδnx,nx ′δny,ny′δs,−s′ . Unlike the Rashba SOC,
the magnetic field is present throughout the whole NW. When
the magnetic field is included, the subband energy is shifted as
ε±

j = εnx,ny ± EZ . This would move the total energy where the
first step in the conductance occurs. Yet, the electron source
will be affected by the uniform magnetic field in the same
way, thereby canceling out this energy shift. Thus, we have
compensated for this difference and considered that the total
energy where the first channel opens does not change with the
variation of the magnetic field. In Fig. 6, we plot the normal-
ized conductance for different values of the Zeeman energy,
EZ , as a function of the total energy. For EZ > 0, the injection
of only one electron occurs between ε1 � E � ε1 + 2EZ , the
injection of two electrons occurs after E > ε1 + 2EZ , and so
on. The range of energy between E = 1.8εx and E = 2.2εx,
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where the reduction of the conductance happens for EZ = 0,
still manifests in a similar way up to EZ = 0.8εx. By using
the experimental values for the g factor [5], we can estimate
that EZ = 0.3εx would correspond to a magnetic field of 5 T.
Furthermore, the increase of the magnetic field causes a nar-
rowing of dips (see Fig. 6). We can thus ascribe the vanishing
of the reentrant behavior for high magnetic fields observed in
Ref. [5] to the combination of the dips’ narrowing produced
by increasing the magnetic field plus incoherent transport
processes. The incoherent transport smears out the reentrant
behavior [16] and for high values of the magnetic field it
would not allow the appearance of very narrow regions of
reflection.

IV. CONCLUSION

In conclusion, we presented a theoretical model capable of
explaining the reentrant behavior of the conductance in the ab-
sence of the external magnetic field and that can be sustained
also for finite field values. The dip in the conductance appears
because of the resonant reflection which is predicted to occur
in quasi-one-dimensional systems if two necessary conditions
are met: the existence of an attractive potential and the cou-
pling between different scattering channels, even though the
coupling occurs between a scattering and an evanescent mode.

Both conditions coexist when the NW experiences the Rashba
SOC in a limited region of length L. The importance of the
limited regions is related to the localized effective attractive
potential that occurs when Rashba SOC is not extended but is
locally present, enabling quasibound states that interfere with
scattering modes, providing a suppression in the transmission.
This scenario agrees with the experimental setup described
in Ref. [5]. Furthermore, geometrical effects related to the
symmetry of the horizontal cross section of the NW were
explored and shown to be an important parameter to control
the appearance and tuning of the dip in the conductance. Such
geometrical effects can appear due to structural or external
field configuration. Lastly, this work provides an alternative
explanation to appearance of the reentrant characteristic for
null magnetic field, which is simpler and more direct than
the mechanism of spin-flipping two-particle backscattering
[5,10,11], previously employed to address this phenomenon.

The data that support the findings of this study are available
within the article.
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