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Nonlinear high-frequency magnetic response of magnetoferritin metacrystals
governed by spin thermodynamics
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A theory is developed of the time-dependent magnetization of the metacrystal composed of magnetoferritin
macromolecules. Such superstructures, comprising up to several million superparamagnetic nanoparticles en-
capsulated in protein shells, can be created artificially using biochemical assembling technologies. They have
been also shown to occur naturally in sensitive cells of the inner ear of birds, which suggests their possible
involvement in the detection of the geomagnetic field for orientation and navigation of migratory animals.
The dynamics of the magnetic system of the magnetoferritin metacrystal, comprising a very large number of
magnetic moments coupled by long-range dipole forces, is exceedingly complex. In order to find the response
of the metacrystal to high-frequency magnetic fields, we used a thermodynamic approach borrowed from the
theory of nuclear spin systems of solids. The resulting theory yields the time-dependent superspin temperature
and magnetization induced by oscillating magnetic fields of arbitrary strength. The predicted dependence of the
high-frequency response on the static magnetic field can be used for experimental detection and characterization
of magnetoferritin metacrystals in biological tissues.
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I. INTRODUCTION

With the development of molecular assembly technolo-
gies, it has become possible to produce superstructures that
mimic properties of crystalline solids on a greatly enhanced
spatial scale. In particular, biotechnological self-assembling
of magnetoferritin has made it possible to create metacrystals
hundreds of micrometers in size [1–6], the constant of their
face-centered cubic (fcc) lattice being about 17 nm. Each node
of such a metacrystal is the magnetoferritin macromolecule,
which contains a magnetic core formed by a magnetite
(Fe3O4) nanoparticle of nearly spherical shape and 7–9 nm
in diameter, encapsulated by a nonmagnetic protein shell
(apoferritin) with the outer diameter of 12 nm [7–9] (see
Fig. 1). Magnetite particles of this size and shape are single
domain, demonstrating superparamagnetism down to block-
ing temperatures of about 20 K [2]. As the magnetite cores
are isolated from each other by apoferritin shells, coupling
of their magnetic moments is possible only via the dipole-
dipole magnetic interaction. Magnetoferritin metacrystals are
considered prospective for engineering magnonic band-gap
structures [3,4], as well as for biomedical applications [6].
They were found to occur naturally in mechanosensitive cells
of the inner ear of birds [10,11], stirring the discussion about
their possible role in magnetoreception [12]. The only qual-
itative analog of these superstructures in classical solid state
physics is the nuclear spin system of a dielectric crystal, which
also has a purely dipolar coupling. However, quantitative dif-
ferences between the parameters of the two systems are huge:
seven orders of magnitude in the particle magnetic moment,
about 1.5 orders in the lattice constant, and over nine orders in
the spin-lattice relaxation time. The question therefore arises:

To what extent can the behavior of the nuclear spin system of a
solid be modeled with magnetoferritin metacrystals, and, vice
versa, what can be adapted from the accumulated knowledge
on the nuclear spin dynamics to get insight into this emerging
class of artificial metamaterials?

In this paper, we show that the magnetic response of
the magnetoferritin metacrystal in the high-frequency (mega-
hertz) domain is governed by the thermodynamics of the
interacting system of the magnetic moments of constituent
magnetite cores, thus bearing an analogy to the spin-
temperature dynamics of the nuclear spin system of a solid.
The collective dynamics results in a pronounced transient non-
linearity at room temperature, which can be used, in particular,
for detection and characterization of natural or artificial mag-
netoferritin metacrystals in living organisms.

II. THEORY

The cores of magnetoferritin balls comprising the
metacrystal are superparamagnetic particles with the satu-
ration magnetization MS = 470 G (in the case of the pure
magnetite monocrystal core), or somewhat less for cores of
mixed composition (other iron oxides, ferrihydrite). For the
core radius ρc = 4 nm it is easy to estimate that the magnetiza-
tion saturation field at room temperature is about 1000 G. The
anisotropy energy of a spherical magnetic nanoparticle of this
size is much less than the thermal energy kBT at room temper-
ature. As will be seen from the calculations presented below,
the energy of magnetic interaction of a magnetic moment at a
node of the metacrystal with magnetic moments at other nodes
is also much less than kBT . Therefore, the metacrystal remains
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FIG. 1. Structure of the magnetoferritin metacrystal. A fragment
of the face-centered cubic (fcc) lattice is shown in projection along
one of the cubic axes. Blue spheres depict magnetite cores; apo-
ferritin shells are shown by brown shading. a ≈ 17 nm is the fcc
lattice constant, ρ ≈ 6 nm is the outer radius of the protein shell, and
ρc ≈ 4 nm is the radius of the magnetic core.

in the paramagnetic state with random orientation of magnetic
moments. These estimates are confirmed by measurements of
static magnetization curves for different temperatures [2]: At
250 K, the metacrystal magnetization is linear in magnetic
field B up to B = 500 G, with no remanence.

As distinct from the static susceptibility, the high-
frequency susceptibility of a paramagnet may deviate from
the Curie law even at high lattice temperatures. This was first
noticed by Casimir and Du Pré back in 1938 [13]. The prob-
lem is that the exposure to varying magnetic field changes the
energy of the paramagnet, pushing its magnetic system out of
equilibrium with the crystal lattice. With increasing frequency,
the isothermal susceptibility gives way to the adiabatic one,
determined by the absence of energy transfer between the
magnetic system and the lattice. The same should be true for
the nonlinear susceptibility. In the following, a differential
equation will be derived for magnetization induced by the
external magnetic field that varies on the timescale longer
than the time of establishing the internal equilibrium within
the magnetic system. The equation will be verified by com-
parison with known results for the nuclear spin system of a
classical solid, and then applied to describe the dynamics of
magnetoferritin metacrystals.

The dynamics of the magnetic moment �mi of the i th node
of the metacrystal, including the fluctuations of its direction,
is described by the Langevin equation, based on the Landau-
Lifshits-Gilbert equation [14]:

d �mi

dt
= −γ [ �mi × ( �Bi + �BAi + �b f )] − γ η

[
�mi × d �mi

dt

]
, (1)

where �Bi is the magnetic field at the node; �BAi = ∂EAi
∂ �mi

is the
anisotropy field, EAi being the anisotropy energy of the mag-
netic core at this node; and �b f is the random field that takes
into account the effect of lattice vibrations. The gyromagnetic
ratio γ is close to that of free electrons, as confirmed by
experiments on microwave ferromagnetic resonance in mag-
netoferritin metacrystals [4]. The damping constant η and the
rms amplitude of the random field �b f for magnetic nanoparti-

cles fixed in the metacrystal lattice are determined by coupling
of the magnetic moment to vibrations [14]; the frequency
spectrum of �b f at high temperatures is approximated by that of
white noise. Solving Eq. (1) for an isolated magnetic nanopar-
ticle yields the Néel relaxation time of its magnetic moment,
τN [15]. In the case of magnetic cores in the metacrystal,
the magnetic field �Bi = �B + �bi includes, apart from the ex-
ternal magnetic field �B, also the field �bi created by other
magnetoferritin particles via their dipole-dipole interaction.
This fact greatly complicates the problem of the magnetic
dynamics in the metacrystal as compared to one of an isolated
magnetic nanoparticle, considered in Ref. [14], because �bi

also fluctuates. Its dynamics follows fluctuations of magnetic
moments of the other cores, which in turn are affected by
fluctuating fields created by their neighbors. The interaction
effects become the strongest when the Néel relaxation is slow,
as expressed by the condition

γ BLKτN � 1, (2)

where BLK =
√

〈b2
i 〉 is the kinetic local field, i.e., the mean

squared field acting upon one of the core magnetic moments
from all the other moments. In this limit, solving the dynamic
problem becomes exceedingly difficult; however, as we show
below, it can be approached thermodynamically. Indeed, if
the condition given by Eq. (2) is fulfilled, the system of the
magnetoferritin moments of the metacrystal becomes analo-
gous to the nuclear spin system of a dielectric crystal. The
nuclear spin system is known to reach the internal equilibrium
within the time T2 ≈ (γN BLN )−1, where γN is the gyromag-
netic ratio of the nuclear spin and BLN is the local magnetic
field created by other nuclear spins. On the timescales longer
than T2, the nuclear spin system is described by the thermo-
dynamic distribution function (or, quantum mechanically, the
density matrix) defined by the spin temperature θN , which may
differ from the lattice temperature by orders of magnitude.
The magnetization in a slowly (as compared to T2) varying
magnetic field at each moment of time is given by the Curie
law with the instantaneous spin temperature. The dynamics
of spin temperature is determined by energy redistribution
between Zeeman and spin-spin interaction reservoirs as well
as by the spin-lattice relaxation, i.e., leveling of the spin
temperature with the temperature of the lattice [16,17]. To es-
timate the applicability of this approach to the magnetoferritin
metacrystal, let us calculate the kinetic local field BLK , i.e.,
the mean squared field acting upon one of the core magnetic
moments from all the other moments, assuming their random
orientation:

B2
LK =

∑
j

(
1

r j

)6〈(
�mj −3

�r j ( �mj · �r j )

r2
j

)2〉

= 2m2
∑

j

(
1

r j

)6

, (3)

where the vector �r j defines the position of the j th node with
respect to the selected one. Numerical summation over the fcc
lattice yields

∑
j ( 1

r j
)
6 ≈ 115.7a−6 ≈ 0.226ρ−6, where a =

2
√

2ρ is the fcc lattice constant, and ρ is the external radius of
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the apoferritin shell. Expressing the magnetic moment via the
saturation magnetization and volume of the magnetite core as
m = 4π

3 ρ3
c MS , we obtain

BLK ≈ 2.82
ρ3

c

ρ3
MS. (4)

Taking ρ = 6 nm and ρc = 4 nm, we find BLK ≈ 0.83MS .
Correspondingly, T2 ≈ (γ BLK )−1 ≈ 0.15 ns for MS = 470 G.

The approach of the magnetic system to the internal equi-
librium may be slowed down by anisotropy of magnetite
cores, and this is indeed expected to happen at lower temper-
atures, close to the blocking temperature of about 20 K [2].
In analogy to the Néel relaxation [14,15], the dynamics of the
projection of the magnetic moment of a specific core on its
anisotropy axis is slowed down by the factor exp(EA/kBT ),
where EA is the anisotropy energy. However, at room temper-
ature this effect should be negligible, as the exponential factor
is close to unity. It is worth noting that a similar problem exists
in the nuclear spin physics, due to quadrupole interaction of
nuclear spins with electric field gradients induced by strain,
which results in the same dependence of energy on the direc-
tion of the particle magnetic moment as that in the case of the
uniaxial anisotropy of magnetic nanoparticles. As experimen-
tally shown in semiconductor microstructures under optical
cooling of the nuclear spin system [18], the dipole-dipole
interaction is still able to establish the equilibrium within
the spin system even when the effective quadrupole field (an
analog of the anisotropy field here) is 5–8 times larger than
the dipole-dipole local field.

This value of T2 should be compared with the Néel relax-
ation time τN , which is an analog of the spin-lattice relaxation
time T1 of the nuclear spin system. In the case of larger
superparamagnetic particles with large uniaxial anisotropy

(EA/kBT � 1), the Néel relaxation time is given by
an approximate formula τN ≈ τ0

√
πkBT/2EA exp(EA/kBT )

[14,19], where τ0 is of the order of 1 ns [20,21]. For the rele-
vant case of low anisotropy and high temperature, no universal
theoretical expression exists, to the best of our knowledge,
so it is better to rely on experimental data. In Ref. [22], τN

in dispersed magnetoferritin was determined by fitting the
frequency dependence of the efficiency of its heating by os-
cillating magnetic fields [19]. For samples with ρc = 4.3 nm
and ρc = 4.8 nm, τN of 11 and 75 ns was found, respectively.
This result suggests that the condition τN � T2 is likely to be
fulfilled for magnetoferritin metacrystals at room temperature
at least.

The other condition of the validity of the thermodynamic
approach is that the external field B should not change too
fast, which is expressed by the inequality 2π f T2 � 1, where
f is the frequency of variation of B. From this condition,
we find that the magnetic system of the metacrystal main-
tains the internal equilibrium if the frequency spectrum of
the external perturbation does not extend above hundreds of
megahertz.

Given all the necessary conditions for using the thermo-
dynamic approach are satisfied, one can pass to deriving the
equation which would describe the magnetization dynamics
of the metacrystal in magnetic fields of varying strength.
The key point here is that the distribution function of the
magnetic system is assumed to be determined by a single
parameter, which, in analogy with the nuclear spin system,
we will call superspin temperature, θSS . In fact, it is more
convenient to use the inverse superspin temperature deter-
mined as β ≡ 1

kBθSS
, where kB is the Boltzmann constant.

In the following, we assume that kBθSS is much larger than
the characteristic energy per one magnetite particle in the
metacrystal.

The internal energy of the magnetic system is obtained by averaging the energy over configurations of the magnetic moments
with the distribution function defined by β:

E =
∑

σ

fσ Eσ = �−1
∑

σ

(1 − βEσ )Eσ = −β�−1
∑

σ

(EZ + Edd + EA)2 = −β�−1
∑

σ

(
E2

Z + E2
dd + E2

A

)
, (5)

where fσ = exp(−βEσ )∑
σ exp(−βEσ ) ≈ 1

�
(1 − βEσ ) is the probability to occupy the state σ , � is the total number of states, and zero energy

corresponds to the completely disordered magnetic system. Here the Zeeman energy is defined as

EZ =
∑

i

�mi · �B, (6)

where �mi are vectors of the magnetic moments of the cores. The last equality in Eq. (5) holds because cross products of the
Zeeman energy EZ , the dipole-dipole energy Edd , and the anisotropy energy EA vanish upon averaging over the states of the
uncorrelated system of magnetic moments. Substituting Eq. (5) into Eq. (6), we obtain

E = EZ + Edd + EA = −β�−1

[∑
σ

∑
i, j

( �mi · �B)( �mj · �B) +
∑

σ

(
E2

dd + E2
A

)] = −βN
1

3
m2

(
B2 + B2

L

)
, (7)

where EZ , Edd , and EA are mean values of Zeeman, dipole-dipole, and anisotropy energies; N is the total number of particles in
the metacrystal; and the squared thermodynamic local field B2

L by definition equals

B2
L ≡ 3

Nm2
�−1

∑
σ

(
E2

dd + E2
A

)
. (8)
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Here

�−1
∑

σ

E2
dd = 1

2

〈[∑
i, j

1

r3
i j

(
�mi �mj − 3( �mi · �ri j )( �mj · �ri j )/r2

i j

)]2〉
= Nm2

6
B2

LK , (9)

where angular brackets denote independent angular averaging of each �mi, and �−1 ∑
σ E2

A is obtained in an analogous way by
averaging squared anisotropy energies at all the nodes.

The mean value of the total magnetic moment of the metacrystal is

MB =
∑

σ

fσ MBσ = �−1
∑

σ

(1 − βEσ )MBσ = βB�−1
∑

σ

M2
Bσ = 1

3
βNm2B. (10)

The rate of changing the energy of a closed system Ė (in
our case it is the rate of changing the energy of the metacrystal
as a whole; the heat exchange with the environment can be
neglected on the submicrosecond timescale) under variation
of external parameters is equal to the mean value of the partial
time derivative of the system Hamiltonian [23]. In our par-
ticular case, since the only parameter explicitly depending on
time is the external magnetic field B, this rate equals

Ė =
〈
∂Ĥ

∂B

〉
dB

dt
= ∂EZ

∂B

dB

dt
= −MB

dB

dt
= −1

3
βNm2B

dB

dt
.

(11)

The rate of changing the total energy should be equal to
the sum of the rate of changing the internal energy of the
magnetic system given by Eq. (7) as a result of variations of
the magnetic field and of the superspin temperature, and of the
rate of energy exchange with the lattice:

Ė = d

dt

[
−βN

1

3
m2

(
B2 + B2

L

)] − 1

τN

∂E

∂β
(β − βL )

= − Nm2

3

[(
B2

L + B2
)dβ

dt
+ 2βB

dB

dt

]

+ 1

τN

Nm2

3

(
B2 + B2

L

)
(β − βL ), (12)

where βL ≡ (kBTL )−1 is the inverse lattice temperature.
The requirement that the right-hand sides of Eqs. (11)

and (12) should be equal to each other yields the differential
equation for β:

dβ

dt
= −β

B

B2 + B2
L

dB

dt
− β − βL

τN
. (13)

Note that B
B2+B2

L

dB
dt = 1

2
d
dt ln(B2

L + B2) = d
dt ln

√
B2

L + B2.

At τN → ∞ Eq. (13) reduces to the equation d
dt ln β =

− d
dt ln

√
B2

L + B2, by solving which one arrives to the well
known formula for the adiabatic variation of the inverse spin
temperature, usually obtained from entropy conservation in
the adiabatic process [16,17]:

β(t ) = β(0)

√
B2

L + B2(0)

B2
L + B2(t )

. (14)

In order to find the deviation of the superspin temperature
from the lattice temperature under the time-dependent mag-

netic field, we rewrite Eq. (13) the following way:

dβm

dt
= −βm

[
1

τN
+ d

dt
ln g(t )

]
− βL

d

dt
ln g(t ), (15)

where βm = β − βL, and g(t ) =
√

B2
L + B2(t ).

The solution to Eq. (15) has the form

βm(t ) =
∫ t

−∞

[
−βL

d

dt ′ ln g(t ′)
]

G(t, t ′)dt ′, (16)

where the Green’s function G(t, t ′), found from the equation

dG(t, t ′)
dt

= −G(t, t ′)
[

1

τN
+ d

dt
ln g(t )

]
+ δ(t − t ′), (17)

equals

G(t, t ′) = g(t ′)
g(t )

exp

(
− t − t ′

τN

)
. (18)

Substituting Eq. (18) into Eq. (16) yields

βm(t ) = −βL

∫ t

−∞

[
d

dt ′ ln g(t ′)
g(t ′)
g(t )

exp

(
− t − t ′

τN

)]
dt ′

= − βL exp(−t/τN )

g(t )

[
g(t ) exp(t/τN )

− 1

T1

∫ t

−∞
g(t ′) exp(t ′/τN )dt ′

]

= −βL + βL

τN g(t )

∫ ∞

0
g(t − τ ) exp(−τ/τN )dτ.

(19)

Finally, we obtain

β(t ) = βL

τN g(t )

∫ ∞

0
g(t − τ ) exp(−τ/τN )dτ

= βL

τN

√
B2

L +B2(t )

∫ ∞

0

√
B2

L +B2(t − τ ) exp(−τ/τN )dτ.

(20)

The magnetic moment is then found using Eq. (10):

MB = Nm2

3
β(t )B(t )

= Nm2βLB(t )

3τN

√
B2

L +B2(t )

∫ ∞

0

√
B2

L + B2(t − τ ) exp(−τ/τN )dτ.

(21)
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FIG. 2. Examples of β (a), (c) and MB (b), (d) as functions of time over the period of variation of the magnetic field B(t ) = B0 + b sin(ωt ),
for b = 0.5BL and B0 from 0 to 3BL (as shown in panels), τN = 2Tb (a), (b) and τN = 0.2Tb (c), (d).

III. NUMERICAL EXAMPLES OF THE
HIGH-FREQUENCY MAGNETIC RESPONSE

Equation (21) allows one to calculate the response of the
magnetic system of the metacrystal to oscillating magnetic
fields of arbitrary strength, by means of numeric evaluation
of the integral. In the case of the periodic external field
B(t ) = B(t − TB), the time integral in Eqs. (20) and (21)
is converted into an integral over the period of the field
variation, Tb:∫ ∞

0

√
B2

L + B2(t − τ ) exp(−τ/τN )dτ

=
∫ Tb

0

√
B2

L +B2(t −τ ) exp(−τ/τN )dτ

∞∑
n=0

exp (−nTb/τN )

= 1

1 − exp (−Tb/τN )

∫ Tb

0

√
B2

L +B2(t −τ ) exp(−τ/τN )dτ.

(22)

Having chosen B(t ) as B(t ) = B0 + b sin(ωt ), we find β(t )
and MB(t ) (see examples in Fig. 2).

In the case of slow spin-lattice relaxation (τN = 2Tb), the
dependence of β on the magnetic field is close to the adiabatic
one, given by Eq. (14). In this case, at B � BL, β is inversely
proportional to B, and the field dependence of magnetization
becomes flat, which is seen from its weak response to the
oscillating field at B0 = 3BL. The nonlinearity of the response
is clearly seen, especially in the MB(t ) curve for B = BL. At

fast spin-lattice relaxation (τN = 0.2Tb) these effects become
weaker, along with the arising of a phase shift, better seen in
β(t ) curves.

Let us analyze the nonlinear effects in the response in more
detail. Particularly, we will focus on the second harmonic
of MB(t ), which can be detected experimentally with high
sensitivity using a selective amplifier in order to suppress
undesirable interference from the induction coil [24]. In par-
ticular, measuring the real and imaginary parts of the complex
amplitude of the second harmonic, defined as [25]

ReM2(B) = − 2

Tb

∫ Tb

0
MB(t ) cos(2ωt )dt,

ImM2(B) = − 2

Tb

∫ Tb

0
MB(t ) sin(2ωt )dt,

(23)

as a function of the constant magnetic field B, has allowed the
authors of Refs. [24–27] to realize a sensitive method for de-
tection of magnetic nanoparticles dispersed in various media,
e.g., in biological tissues [26,27]. In Fig. 3, examples of such
curves are given for two different values of the ratio τN/TB.

The second-harmonic amplitude reaches its maximum at
|B0| ≈ 0.65BL. The amplitude of the imaginary part strongly
increases with shortening of τN , reflecting the growing
phase shift of the nonlinear response. These features can
be used for experimental determination of BL and τN . In
turn, the local field BL gives an estimate of the interac-
tion strength in the metacrystal via Eq. (8), though in order
to distinguish between the dipole-dipole interaction and the
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FIG. 3. Real and imaginary parts of the second harmonic of
the nonlinear magnetic response of the magnetoferritin metacrystal,
in the units of M0 = βLBLNm2

3 = BLNm2

3kBT . b = 0.5BL , τN = 2TB, and
0.2TB. Vertical dashed lines show the positions of the extrema of the
curves at B0/BL ≈ ±0.65.

anisotropy of magnetoferritin cores, additional information is
needed.

IV. DISCUSSION

The developed theory suggests several directions of exper-
imental research.

Experiments on the response of the metacrystal to high-
frequency magnetic fields at room temperature or higher
temperatures, compared with the above theory, can be helpful
for characterization of metacrystals, in particular for deter-
mination of the magnetic moment and anisotropy energy of
magnetoferritin cores. Even more important is experimental
verification of the thermodynamic approach to the dynamics
of the system of macroscopic magnetic moments. It is so far
well established for quantum spins of nuclei; even in that case,
Eq. (14) for the adiabatic variation of spin temperature with
slowly changing magnetic field had not been verified by direct
experiment until recently [18]. A similar experimental study
for the spatially ordered system of classically large magnetic
moments would be a noticeable contribution to the thermal
physics in general.

Experiments at lower temperatures may appear very in-
teresting for the physics of magnetic phase transitions. The
nuclear spin system of a solid is known to demonstrate phase
transitions into magnetically ordered phases when its spin
temperature is lowered down to the nanokelvin range [28,29],
which is a major technical challenge. With the magetoferritin
metacrystal, one can easily approach the transition into the
magnetically ordered phase by lowering the lattice tempera-
ture, and may hope to observe transient ordering when the
superspin temperature, driven by the oscillating field, crosses
the transition point. The theory should then also be modified
to account for the onset of magnetic order [28].

The experimental method of detection of the second har-
monic of the high-frequency magnetic response as a function

of static magnetic field [24] has proved very useful for detec-
tion of magnetic nanoparticles in biological tissues [26]. It can
be modified for application to living organisms. Magnetofer-
ritin metacrystals are considered prospective for application
in magnetogenetics, i.e., manipulation of biological processes
(such as, e.g., neural transduction) by externally applied mag-
netic field [6]. To this end, metacrystals should be injected into
the organism and directed to a target receptor by biochemical
and genetic manipulations. Their state while on target should
be controlled in a nonperturbative way, for which purpose the
nonlinear magnetic response seems very prospective.

Naturally formed magnetoferritin metacrystals were re-
cently discovered in the inner ear of several bird species, while
they are absent in mammals [10]. The spherical objects with
the ferritin or magnetoferritin metacrystal structure, called
cuticulosomes [11], are 0.5 μm in diameter and are situated in
hair cells that provide sensitivity to vibrations in the hearing
organ and to accelerations and gravity in the vestibular sys-
tem [30]. Since birds are known to use a magnetic compass
for orientation during migration flights [31,32], the possible
role of these magnetic inclusions in magnetoreception has
been discussed [10,12], though no plausible mechanisms were
so far proposed. The magnetic susceptibility of the cutic-
ulosome is apparently insufficient to provide sensitivity to
the geomagnetic field [12]. Whether or not rearrangement
of the ferritin balls filling the cuticulosome and, possibly,
their transfer to mechanosensitive hairs, the stereocilia [30],
could provide such a sensitivity depends on the magnetic
moment of the ferritin core, which is so far unknown.
Measurement of the nonlinear high-frequency response and
comparison of the results with the above theory may help to
solve this problem, as well as to provide screening of other
parts of the body in birds and other organisms for similar
structures.

V. CONCLUSIONS

We have developed a theory of the high-frequency
magnetic response of the metacrystal composed of mag-
netoferritin macromolecules containing superparamagnetic
magnetite cores. The theory is applicable at high enough
temperatures (in particular, at room temperature), when the
metacrystal is in the paramagnetic phase. It is based on the ob-
servation that the time of establishing the internal equilibrium
within the magnetic system of the metacrystal, which occurs
due to the magnetic dipole-dipole interaction of magnetite
cores, is more than an order of magnitude shorter than the time
of its Néel relaxation due to lattice vibrations. This makes the
magnetic system of the metacrystal similar to the nuclear spin
system of a dielectric solid, for which the spin-temperature
approach is known to adequately describe the vast majority
of experimental facts. The dissimilarity of the two systems
is related to their relaxation timescales. For the magnetofer-
ritin metacrystal it is measured in nanoseconds, which limits
the range of relevant effects to the response of the magnetic
system to rapid (with the frequencies lying in the megahertz
range) variations of the strength of the applied magnetic field.
For this reason, the basic equation of the theory is a dif-
ferential equation for the inverse superspin temperature as a
function of time. It is derived from the balance of energies
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under the condition that the magnetic system reaches its in-
ternal equilibrium fast enough to follow the external magnetic
field variations. The equation allows one to compute the time-
dependent magnetization for an arbitrary amplitude of the
external field. In particular, it gives the complex amplitudes of
higher harmonics of the applied sinusoidal probe field as func-
tions of the background static magnetic field. These functions
can be used for characterization of artificial magnetoferritin
metacrystals, as well as for detection and nondestructive con-
trol of such objects in biological tissues. Application of this
technique for studying the cuticulosomes, natural ferritin, or
magnetoferritin metacrystals of spherical shape, is of special

interest, since cuticulosomes are found in receptor cells in the
inner ear of birds and might bear some relation to their ability
to use the geomagnetic field for orientation during seasonal
migrations.
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