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Hydrogen adatoms on graphene: The role of hybridization and lattice distortion
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By performing a detailed study of hydrogen adsorbates on graphene using density functional theory (DFT), we
propose a general tight-binding (TB) formalism for a simultaneous treatment of multiple impurities of arbitrary
species. To elucidate the details of the hydrogen-graphene bonding, we systematically examine the effects of
hybridization and deformation on the band structure and the spectral function. An enhanced understanding of
the binding mechanisms leads to a TB model whose predicted spectral function compares favorably with the
DFT calculations on the scale of the supercell, as well as the individual adsorbates and carbon atoms. The
computational load of our model scales with the number of impurities, not their separation, making it especially
useful for experimentally relevant clustered impurity configurations that are too computationally expensive for
DFT. The formalism described here allows for the treatment of Anderson impurities and impurities that bind to
multiple carbon atoms.
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I. INTRODUCTION

Hydrogen is one of the most-studied graphene adsorbates.
It has been shown, for example, that it can give rise to mag-
netism [1–4], enhance spin-orbit coupling [5,6], and lead to
spin relaxation [7] and magnetoresistance [8]. Furthermore,
the single-orbital hydrogen atom is the prototypical localized
state in the problems of impurity-impurity interactions [9–11]
and charge-density oscillations [12]. An accurate description
of the interaction between hydrogen adatoms and the under-
lying graphene lattice is, therefore, crucial to studying these
diverse phenomena.

While density functional theory (DFT) can describe the
effects of hydrogen adsorption accurately, ab initio modeling
of impurity clusters requires unfeasibly large computational
cells. Moreover, even for dilute impurity concentrations, com-
monly used periodic boundary conditions cause undesirable
interactions between adatoms in neighboring images (even for
very large cells) [3,11], and can induce a spurious band gap in
certain cases [13].

A suitable tight-binding (TB) model can, in principle, over-
come these limitations. Earlier work has utilized two main ap-
proaches to describe hydrogen adatoms on graphene: coupling
an impurity orbital to carbon atoms [12,14,15], or treating the
host carbons as vacancies [3,8,16]. For the latter approach,
the carbon-hydrogen bond has been described as the removal
of a pz orbital from graphene, creating a magnetic pseudova-
cancy [3,8,15,16], and the spectral function of the super cell
with a single hydrogen adsorbate has been shown to be quite
similar to the result for a single vacancy [14,15,17,18]. This
missing-orbital model was successfully utilized in Ref. [8],
where the authors used a TB mean-field Hubbard model and
a supercell with hundreds of carbon atoms to calculate the
system magnetization induced by the missing orbital.

Advances in experimental techniques have made it possible
to study the effects that individual and clustered impurities
have on the bulk charge density and magnetization in both
graphene and other two-dimensional (2D) materials [3,19,20].
In Ref. [3], it was demonstrated that the magnetization can be
switched on and off by changing the relative positions of hy-
drogen adatoms. Reference [19] shows complex interference
patterns in spatially resolved dI/dV measurements, corre-
sponding to the Friedel oscillations originating from multiple
impurities. Finally, in Ref. [20] the authors use real-space
Friedel oscillations produced by single hydrogen adsorbates
and hydrogen dimers to study the Berry phase. Therefore, a
model that can accurately handle multiple impurities simulta-
neously is highly desirable.

Although most theoretical work dealing with hydrogen
impurities in graphene focuses on individual adsorbates, mul-
tiple adsorbates have been previously addressed in Ref. [12],
where the authors employed the Born approximation to study
substitutional defects and calculated the impurity-induced
charge density in the form of Friedel oscillations. In the
present work, we propose a nonperturbative approach to de-
scribe multiple impurities without any positional restrictions.

To elucidate the effects of hydrogen adsorption on
graphene, we perform detailed DFT calculations and study
the interplay between lattice deformation and hybridization.
Our results reveal that the hydrogen-hosting carbon maintains
interaction with its neighbors even after adsorption-induced
lattice buckling. Therefore, we construct a multi-impurity TB
model to include this effect. An additional benefit of explicitly
treating the impurity as an orbital is the possibility of using
the Anderson model [21] to study the impurity magnetization.
While in this work we limit our comparison of TB and DFT
results to hydrogen adsorbates, our formalism applies equally
well to general adatom species with an arbitrary arrangement.
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FIG. 1. (a) Semihydrogenated planar graphene. The borders of
the unit cell are drawn as gray lines. The cross sections of (b) planar
and (c) structurally relaxed SH graphene, as well as (d) buckled
graphene are also shown.

Using quantum field theory (QFT), we demonstrate how one
can calculate the spectral function, local charge density, and
the interaction energy for a general impurity configuration.

This paper is organized as follows. In Sec. II, we study the
effects that extreme adsorption-induced lattice deformation
has on the electronic properties of graphene. We observe that
even a non-negligible 10◦ bucking does not substantially warp
the relevant bands. We also examine the semihydrogenated
(SH) graphene configuration, using DFT and TB, to under-
stand the role that buckling plays in the adatom-graphene
interaction. These observations allow us to create a simplified
graphene-impurity TB model, introduced in Sec. III, which is
used to explore individual hydrogen adatoms on graphene. A
brief discussion on the effects of deformation on magnetiza-
tion can be found in Sec. III C. We demonstrate our model’s
ability to handle multiple impurities of various types for dif-
ferent separations in Sec. IV. The computational methods are
provided in Sec. V. Finally, Sec. VI contains the concluding
remarks.

II. SEMIHYDROGENATED GRAPHENE

To illustrate the effects that hydrogen adatoms have on
graphene, while isolating the role of the adsobate-induced
buckling, we perform four band structure calculations: one
for pristine graphene, two for SH graphene with and without
structural relaxation, and one for buckled graphene. For the
SH configurations, all the atoms of one of the graphene sub-
lattices host a hydrogen adatom. The buckled graphene has
the same lattice distortion as the relaxed SH monolayer, but
without the hydrogen adatoms. The SH and buckled lattices
are shown in Fig. 1.

In the buckled configuration, one of the sublattices is ele-
vated above the original graphene plane. The angle between
the original plane and the bond connecting the elevated atoms
to their neighbors is about 10.3◦, or slightly more than half
of the angle in a true sp3 hybridization, where it is 19.5◦. Note
that when we relax the SH lattice, graphene is not allowed to
contract laterally in response to the out-of-plane deformation
because we do not expect a substantial system-wide structural
modification due to individual impurities, which are the main
subjects of this study. Thus, in the relaxed SH and buckled

FIG. 2. Ab initio band structures for planar and buckled
graphene. The solid black line is the seventeen-parameter tight-
binding model from Ref. [22].

configurations, the bond length between neighboring carbon
atoms becomes 1.44 Å and a vertical interatomic separation
is 0.26 Å. For the sake of consistency, the hydrogen-carbon
bond length for planar SH lattice is fixed to the value obtained
for the relaxed SH lattice (1.18 Å).

Lattice buckling breaks the planar symmetry of the
graphene monolayer and introduces coupling between previ-
ously isolated bands. The consequences of this interaction can
be most clearly seen in Fig. 2, which shows the comparison
between the planar and buckled graphene band structures.
We observe a strong modification of the upper branch of
the buckled graphene pz band due to the mixing with the
high-energy states. In addition, the new coupling creates an
avoided crossing between π and σ valence bands at ≈ −7 eV,
though the smallness of this level repulsion indicates that
the deformation-induced interaction between pz and the other
carbon valence orbitals is fairly weak.

Comparison of the band structures also reveals that the
lattice deformation does not substantially modify the shape
of the low-energy bands. Instead, it changes the energy sep-
aration between the π and σ bands, introducing small, rigid
energy shifts in these bands with respect to their planar coun-
terparts. A closer look reveals that the buckled bands are
marginally flatter compared to the planar ones (seen best for
the lower branch of the π ), which can be attributed to a very
modest weakening of the carbon-carbon coupling due to the
bond elongation. The robustness of the band structure shape
means that the adsorption-induced lattice deformation is quite
inconsequential for the coupling between the carbon valence
orbitals.

In addition to the DFT band structures, we also plot a
TB dispersion for the π bands in Fig. 2. This dispersion is
calculated from the seventeen-parameter TB model for the
pz orbitals obtained from the maximally localized Wannier
functions in Ref. [22]. The TB model gives an excellent
agreement with the DFT result for the pristine monolayer,
as can be seen in Fig. 2, where the solid TB curve fol-
lows the ab initio pz-orbital bands. For the buckled system,
the TB bands follow the DFT results very well up to the
energies where the deformation-induced mixing with higher
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FIG. 3. DFT band structures SH planar (a) and relaxed (b) graphene. The thin gray lines are all the bands, while the colored overlays
illustrate the contribution of individual hydrogen and carbon valence orbitals. The size of the colored markers corresponds to the amount of a
given orbital in a particular state. (c) TB fit for the Hs/Cpz bands for the flat SH lattice in panel (a) using Eq. (1). The color scale and the line
thickness reflect the contribution of the hydrogen orbital to a given state. The upper TB band can be uncovered in (a) by following the trail of
blue pz orbitals along the higher-energy bands. (d) TB approximation for the relaxed lattice in panel (b). Here, the parameters ε, h, and V0 are
the same as in (c), while the rest are set to zero.

bands becomes important. Because the TB model describes
the buckled monolayer well in the energy range of interest,
we will use it in our description of graphene for the relaxed
SH system.

Next, we consider a flat SH lattice. Our aim here is to con-
struct a TB model that correctly captures the coupling between
the adatoms and graphene using the pristine-graphene model
from Ref. [22] as the starting point. The DFT band structure
is given in Fig. 3(a), where we show the contributions of the
carbon and hydrogen valence orbitals to the band composi-
tion. The hydrogen s orbital sits above the graphene plane
and therefore can couple to all the carbon valence orbitals.
Because of this interaction, both the π and σ graphene bands
mix with the impurity and thus indirectly couple to each other.
The effects of this mixing can be seen as the avoided band
crossings in the valence bands at ≈ −9 eV.

Comparing the band structure of the flat SH system to that
of pristine graphene, it is clear that the valence σ bands remain
relatively unaltered by the addition of hydrogen. The apparent
downward energy shift of the SH σ bands is a consequence
of a raised Fermi level due to the electrons contributed by the
hydrogen adatoms.

Unlike the σ bands, the graphene π bands undergo a sub-
stantial modification when the hydrogen atoms are added to

system. From the band composition, it is obvious that, aside
from the points of avoided crossing, the lower distorted π

bands contain primarily carbon’s pz and hydrogen’s s orbitals.
Therefore, as we construct the TB model, we ignore the cou-
pling of hydrogen to the non-pz carbon orbitals.

In the absence of graphene, the hydrogen atoms form a
triangular lattice with an interatomic distance of 2.46 Å and
lattice vectors d1 and d2 identical to those of graphene. Be-
cause of the relatively large separation with respect to the size
of a hydrogen atom, it is not unreasonable to assume that, from
the TB perspective, the interaction strength between hydro-
gen atoms decreases sharply past the first nearest neighbors.
Retaining only the nearest-neighbor interaction gives rise to
a single energy band EH

q = ε + h f2,q, where ε is the on-site
energy, h is the hopping term, and f2,q = 2[cos(d1 · q) +
cos(d2 · q) + cos ((d1 − d2) · q)]. Note that f2,q is also the
phase of the second nearest neighbor hopping in graphene. For
h < 0, this hydrogen band has a minimum at �, a maximum
at K , and a saddle point at M.

When graphene is introduced, hydrogen couples to its pz

orbitals and any degeneracy between the pz and the hydrogen
bands is lifted. In Fig. 3(a), this level repulsion takes the form
of the avoided crossing at ≈3 eV between the green impurity
band and the blue π branch.
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To describe the interaction between the hydrogen lattice
and graphene, we write the TB Hamiltonian as

Hq =
⎛
⎝ ε + h f2,q V0 + V2 f2,q V1 f1,q + V3 f3,q

V0 + V2 f2,q HAA HAB

V1 f ∗
1,q + V3 f ∗

3,q H∗
AB HBB

⎞
⎠,

(1)

where Vj is the coupling to the jth nearest neighbor of a given
hydrogen atom and f j,q is the corresponding phase factor. The
bottom-right 2 × 2 block is the seventeen-parameter graphene
TB Hamiltonian. [22] Note that we modify the carbon on-
site energy from Ref. [22] to ensure that the Dirac point
is at E = 0.

There are several methods available to determine the six
parameters in Eq. (1). One would be to perform a least-squares
fitting of the bands computed from Eq. (1) to the relevant DFT
bands over the entire BZ. The main weakness of this approach
in the present context comes from the fact the the upper band
of Eq. (1) lies in the range where the coupling with high-
energy bands is substantial, except at certain high-symmetry
points, making the fit unreliable. This can be understood from
Fig. 3(a), where the top pz is seen to mix strongly with
other bands. Another approach, followed here, is to choose
six energies λk at high-symmetry points composed of the
relevant orbitals and, by enforcing det (Hq − λk ) = 0, obtain
ε, h, V0, V1, V2, and V3. The states that we pick are the highest-
and lowest-energy Hs/Cpz states at the K point and the two
lowest Hs/Cpz states at the � and M points. Using the lower
band energies at the � and M points ensures that the fit is
performed on the states with the correct composition. At the
K point, the middle-energy state is composed entirely of the
nonhost pz orbital, while the other two states are made up al-
most exclusively of the host pz and the adsorbate orbital. The
resultant parameter values are ε ≈ 2.44 eV, h ≈ −0.457 eV,
V0 ≈ −5.55 eV, V1 ≈ −0.245 eV, V2 ≈ 0.0026 eV, and V3 ≈
0.0734 eV.

The TB fit, plotted in Fig. 3(c), shows an excellent agree-
ment with the DFT results for the lowest band and the
low-energy portion of the middle band. At higher energies,
mixing with the orbitals not considered in our model becomes
important. Nevertheless, it is still possible to resolve the traces
of the top band in the DFT results, Fig. 3(a), by following the
states containing the pz orbitals.

Finally, we address the relaxed SH system, whose band
structure is shown in Fig. 3(b). The buckling increases the dis-
tance between the hydrogen atoms and their hosts’ neighbors,
leading to a reduced coupling between them. To illustrate the
effects of this reduced coupling, we again turn to TB. Due to
the increased distance, we set, as a first approximation, V1,3 =
0. For simplicity, we also neglect V2 because of its smallness.
The results of the TB calculations are shown in Fig. 3(d). This
simplified model correctly captures the flatter dispersion of
the middle band and is in a fairly good agreement with the
lowest band, even though the fit was calculated for a system
with a substantially different structure.

III. INDIVIDUAL ADATOMS

We begin this section by constructing an analytical model
for a general arrangement of adatoms. We then demonstrate

the quality of this model by comparing the spectral functions
obtained from it to the projected density of states (PDOS)
calculated using DFT for a single hydrogen adatom. We stress
that while our analysis focuses on individual hydrogen ad-
sorbates, the formalism presented below is general and can
be used for arbitrary numbers of different impurity species.
The method provided here is reminiscent of the approach in
Refs. [4,15,23]. The main difference is that our formalism
allows for the simultaneous treatment of multiple impurities
of different types. Finally, we use DFT to show how buckling
promotes the formation of magnetic states.

A. Analytical model

To describe an infinitely large graphene system hosting
multiple impurity states simultaneously, we use the following
Hamiltonian:

Ĥ =
∑

q

c†
q

(
HG

0,q − μ
)
cq +

∑
k

g†
k (εk − μ)gk

+
∑

jk

[
c†

R j
I jVj,kgk + g†

k (Vj,k )∗IT
j cR j

]
+

∑
jl

c†
R j

I j� jl I
T
l cRl . (2)

Here, HG
0,q is the pristine graphene Hamiltonian matrix, μ

is the chemical potential, and c†
q = (a†

q b†
q) is a vector of

the creation operators for the carbon pz orbitals for the two
sublattices in momentum space, while c†

R is its real-space
counterpart. g†

k is the creation operator for the impurity state
of energy εk . The second line describes the coupling between
the impurity states and graphene atoms at unit cells with
coordinates R j . Importantly, the sum j runs over all the atoms
impacted by the impurities, either by directly interacting with
them or because the induced lattice deformation changes their
coupling to other graphene atoms. To keep track of matrix
dimensions, we denote the number of affected atoms by M and
the number of impurity states by K . The quantity IT

j = (1 0)
or (0 1), depending on the sublattice of the atom j, and
Vj,k is atom j’s interaction strength with the impurity state
k. Finally, the last line gives the perturbation of the graphene
Hamiltonian due to the lattice deformation. As with the line
above, the sum includes all the modified atoms.

Before proceeding further, we highlight three important
aspects of the model. First, what we refer to as the “impurity
state” is not just the adatom orbital. Rather, as a consequence
of hybridization, it also includes contributions from graphene
orbitals not included in the model. As a consequence, the en-
ergy εk can depend on the carbon-adatom bond length, among
other factors, as it influences the magnitude of the orbital in-
teraction. Second, the impurity states are not orthogonal to the
graphene Wannier functions due to a finite overlap integral.
Equation (2) assumes that the overlap is small and neglects it
by treating all the states in the system as orthogonal. While
it is possible to extend the treatment to nonorthogonal states,
this is outside the scope of our paper. Finally, even though the
Hamiltonian in Eq. (2) includes only the carbon pz orbitals,
the subsequent derivation does not depend on this fact. Put
differently, to include more orbitals in the model, one simply
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needs to modify HG
0,q and adjust the dimensions of I j in the

final result. In this case, the j and l summations run over
orbitals, not atoms.

Using c†
R = N−1/2 ∑

q c†
qe−iR·q, where N is the number of

unit cells in the system, we write

∑
j

c†
R j

I jVj,k = 1√
N

∑
q

c†
q

(∑
j

e−iR j ·qI jVj,k

)
︸ ︷︷ ︸

�
†
qIV,k

, (3)

where �q is a column vector of 12×2eiR j ·q for all R j , I is
a diagonal matrix of I j , and V,k is a column vector of Vj,k .
Similarly,∑

jk

c†
R j

I j� jkIT
k cRk = 1

N

∑
qq′

c†
q�

†
qI�IT �q′cq′ , (4)

where � is an M × M matrix.
Plugging Eqs. (3) and (4) into Eq. (2), we transcribe the

Hamiltonian into the imaginary time action

S =
∑
ωnqq′

ψ̄ωnq

−G−1
iωn+μ,qq′︷ ︸︸ ︷[

(−iωn − μ)δqq′ + HG
qq′

]
ψωnq′

+
∑
ωnk

γ̄ωn,k

−�−1
0,iωn+μ,k︷ ︸︸ ︷

(−iωn − μ + εk ) γωn,k

+ 1√
N

∑
ωnkq

(ψ̄ωn,q�
†
qIV,kγωn,k

+ γ̄ωn,kV
†
,kIT �qψωn,q). (5)

Note that we have combined the q-diagonal and non-diagonal
portions of the graphene Hamiltonian into HG

qq′ . The quantity
ωn is the fermionic Matsubara frequency, and γ and ψ are
Grassmann fields. Integrating e−S over all the fields yields the
partition function

Z=
∏
ωn

∣∣−βG−1
iωn+μ

∣∣∣∣∣∣−β

(
�−1

0,iωn+μ−V †IT �Giωn+μ�†IV
N

)∣∣∣∣
=

∏
ωn

∣∣−β�−1
0,iωn+μ

∣∣∣∣∣∣−β

(
G−1

iωn+μ− �†IV �0,iωn+μV †IT �

N

)∣∣∣∣,
(6)

where � as a row vector of �q and V is an M × K-
dimensional matrix. Defining a pristine graphene Green’s
function G0

z = (z − HG
0 )−1, we get

Gz =
[(

G0
z

)−1 − 1

N
�†I�IT �

]−1

= G0
z + 1

N
G0

z �
†I�(1 − IT �zI�)−1IT �G0

z , (7)

where �z = �G0
z �

†/N with entries � jk
z = �

R j−Rk
z and

�R
z = 1

N

∑
q

G0
zqeiR·q. (8)

Gz is the graphene Green’s function including the lattice de-
formation, but not the effects of the impurity states.

In the parentheses of the first line of Eq. (6), we identify
the inverse of the full impurity Green’s function, denoted by
�−1

z :

�z = (
�−1

0,z − V †�zV
)−1

= �0,z + �0,zV
†�z(1 − V �0,zV

T �z )−1V �0,z, (9)

�z = IT �zI[1 + �(1 − IT �zI�)−1IT �zI]. (10)

Also, from the parentheses of the second line in Eq. (6), we
obtain the inverse of the full graphene Green’s function, given
by

Gz =
[(

G0
z

)−1 − 1

N
�†I(� + V �0,zV

†)IT �

]−1

= G0
z + 1

N
G0

z �
†IDzIT �G0

z , (11)

Dz = [(� + V �0,zV
†)−1 − IT �zI]−1. (12)

Using Eq. (11), it is possible to calculate the
real-space graphene Green’s function Gs

iωn+μ,R =
N−1 ∑

qq′ 〈ψ̄ s
ωnqψ

s
ωnq′ 〉ei(q′−q)·R, where s denotes the sublattice

and the correlation functions are the diagonal elements of the
[Giωn+μ]q′q blocks:

Gz,R = �0
z +

∑
jk

�
R−R j
z (IDzIT ) jk�

Rk−R
z

= �0
z + (�R−R1

z · · ·)IDzIT

(
�R1−R

z
...

)
. (13)

By taking the kth diagonal entry of −2 Im [�ω+i0+ ] and
−2 Im [Gs

ω+i0+,R], we obtain the spectral functions for the kth
impurity and the corresponding carbon atom, respectively.
These spectral functions can be compared directly to the DFT-
computed PDOS. By integrating the Green’s functions along
the complex axis, we can obtain the occupation number of a
graphene orbital or the impurity state. Finally, using the fact
that the Helmholtz free energy F = −T lnZ , one can obtain
the impurity interaction energy.

B. Spectral function and PDOS

To model individual hydrogen atoms using DFT, we in-
crease the size of the graphene supercell hosting a single
impurity to 10 × 10 unit cells. As before, we perform calcu-
lations using both planar and relaxed graphene while setting
the carbon-hydrogen bond length to the value obtained for
the relaxed configuration (1.13 Å). For the relaxed lattice, the
bond length between the host carbon and its nearest neigh-
bors is 1.50 Å with a vertical distance of 0.35 Å. The first
neighbors, on the other hand, sit about 0.15 Å above the
original plane (close to 0.08 Å above the second neighbors).
As one goes farther from the impurity, the height difference
between neighbors continues to decrease. We saw in the case
of SH graphene that the vertical displacement of 0.25 Å does
not drastically impact the band structure. In the present case,
since, except for the host atom, all neighbors have a relative
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FIG. 4. (a) PDOS of the hydrogen s orbital for a 10 × 10 unit
cell. (b) Spectral function of the impurity state.

vertical displacement that is substantially less than the SH
value, it is reasonable to treat the rest of the lattice as flat.

The PDOS for the hydrogen s orbital is given in Fig. 4(a).
While qualitatively similar, the flat and the relaxed results
exhibit some differences. First, the peak around E = 0 is sub-
stantially broader for the flat configuration. This feature will
become important when we discuss the system magnetization.
Second, the broad low-energy peak for the flat PDOS is below
the relaxed PDOS one.

For the spectral function, we need to calculate �R
z in

Eq. (8), which requires HG
0,q. In the discussion above, we used

a seventeen-parameter tight-binding Hamiltonian. While it is
also possible to do so here, the necessary two-dimensional
integrals significantly increase the numerical cost without
substantially changing the qualitative picture. Therefore, we
use the nearest-neighbor hopping Hamiltonian as it allows
us to take one of the momentum integrals analytically. The
loss of accuracy is not a major concern here since we expect
inaccuracies in the results for high-energy states even for
the more elaborate model because of the mixing with other
bands. Furthermore, the minimal nearest-neighbor model used
here captures the qualitative behavior of the low-energy states
reasonably well. We refer the reader to the Appendix for the
calculation of �R

z .

To make use of Eqs. (9) and (13), we assume that the
hydrogen adatom can interact with four carbon atoms (the host
and its nearest neighbors) and that the hopping in graphene
is modified only between the host and its neighbors. The
motivation behind this assumption is to produce the minimal
model that exhibits the principal features. The treatment is
easily extendable to include more neighbors if greater nu-
merical accuracy is desired. We use the information obtained
in the previous section to make reasonable choices for the
single-impurity TB parameters. For the hydrogen-carbon cou-
pling, we take into account the reduced carbon-hydrogen bond
length, as compared to the SH system, and use V0 = −7 eV.
To highlight the difference between the flat and the relaxed
lattices, we set V1 = −0.2 eV for the flat configuration and
V1 = 0 for the relaxed one, similar to the quantities we used
for the SH graphene systems. We also reduce the hopping en-
ergy between the host and its neighbors by 5% for the relaxed
system. Finally, we set ε = 0.5 eV. This value is smaller than
what we obtained in the SH case and is guided by the position
of the PDOS peak. We stress that the qualitative behavior of
the spectral function is quite insensitive to the exact parameter
choice.

The spectral function for the impurity, shown in Fig. 4(b),
agrees well with the impurity PDOS in the energy range
where the mixing with higher-energy bands can be neglected.
Below the π -band range, the spectral function contains a pole
corresponding to a localized state. If σ bands are included,
this localized state mixes with them and broadens the peak,
which is precisely what we observe in the PDOS.

It is important to note the spectral function peak at the
Dirac point carries less than 10% of the impurity state’s spec-
tral weight. The fact that most of the impurity spectral weight
is distributed over the bandwidth of the pz graphene band is
inconsistent with the vacancy picture. We also include the “va-
cancy” spectral function for the hydrogen atom, calculated by
setting the coupling between the host carbon and its neighbors
to zero.

We additionally calculate the PDOS and spectral function
for the host carbon, as well as its first, second, and third
nearest neighbors. The results are shown in Fig. 5, where it
is clear that the salient DFT PDOS features are preserved
across all corresponding spectral function panels. To improve
the quantitative agreement between the two types of calcula-
tions, one can use a more complete TB model for the spectral
function. This would bring the van Hove singularities closer
to the Dirac point and produce a particle-hole asymmetry, as
observed in the DFT PDOS of panels (c) and (e). Another
source of differences between PDOS and the spectral function
is the presence of additional bands in the DFT calculations,
giving rise to extra features at low and high energies. A
more complete Hamiltonian with additional orbitals and more
hydrogen-carbon coupling terms is expected to produce a
better agreement, especially if the nonorthogonality of the
impurity state with respect to the graphene orbitals is taken
into account.

The vacancy model is included in the TB plots of the spec-
tral function. As expected, the greatest difference between the
vacancy model and the adsorbate approach can be observed
for the host carbon. As one moves farther away from the
adsorption sites, the vacancy and adsorbate spectral functions
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FIG. 5. PDOS (left column) and the spectral function (right column) for the pz orbital of the host carbon (top row), and of the first, second,
and third nearest neighbors (second, third, and fourth rows).

become progressively more similar, explaining why the super-
cell PDOS for the vacancy looks so much like the PDOS for
a supercell with a single hydrogen adsorbate [14,15,17,18]:
the supercell PDOS is dominated by a large number of more
distant neighbors. By comparing the PDOS to the spectral
function for individual carbon orbitals, however, one can see

that the adsorbate approach replicates the DFT features more
faithfully, even capturing the (broadened) poles below the
bottom band edge.

Beyond giving a better agreement with the DFT results for
distant neighbors, the adsorbate model provides the freedom
to include more impurity effects. For example, one can treat
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FIG. 6. Density of states of the planar SH cell (a) and 10 × 10
supercell (b) for spin-polarized and non-spin-polarized calculations.

the adsorbate as an Anderson impurity or allow it to couple
to multiple carbon atoms simultaneously, both of which are
impossible in the vacancy approach.

C. Buckling and spin polarization

The lattice deformation is important when one considers
spin effects. It is known [5] that, in the presence of spin-orbit
coupling, the mixing of graphene σ and π bands leads to
spin-flip processes. Additionally, as we show below, the lattice
deformation and the corresponding weakening of the adatom’s
coupling to more distant carbon atoms facilitate the formation
of impurity-induced magnetization.

All ab initio electronic structure calculations so far were
performed without spin polarization (i.e., the explicit inclu-
sion of both spin up and down electrons in the description of
the electronic density). Figure 6 shows the DOS of the planar
SH cell and 10 × 10 supercell, both with and without spin
polarization, from which we can see that the impact of spin
polarization is minimal on the total DOS.

The situation is quite different for the relaxed lattice
(Fig. 7), where the spin-polarized DOS of SH graphene and
the 10 × 10 supercell demonstrate a clear peak splitting near
the Fermi level which is absent in the non-spin-polarized
cases and which leads to a finite magnetic moment. The peak
splitting in the supercell is quite small [3] and is seen more
clearly in the inset of Fig. 7(b).

FIG. 7. Density of states of the relaxed SH cell (a) and 10 × 10
supercell (b) for spin-polarized and non-spin-polarized calculations.
The inset shows the region around the Dirac point of graphene.

To understand how graphene buckling leads to magnetiza-
tion, we turn again to Fig. 4. The reduced coupling between
the impurity and its more distant neighbors in a buckled
system, as compared to the flat one, produces a narrower
spectral peak at the Dirac point. Let us now treat the impurity
following Anderson’s prescription [21], i.e., as a localized
state with an on-site repulsion. It is known [21,24,25] that,
for a fixed repulsion U , increasing the coupling between an
Anderson impurity and the bulk suppresses the magnetiza-
tion by reducing the window of the chemical potential where
the system becomes magnetic. This relationship between in-
creased coupling and reduced magnetization is consistent with
our results, supporting the validity of treating the adsorbate as
an Anderson impurity.

IV. LOCAL ELECTRON DENSITY

In addition to calculating spectral functions, our approach
is well-suited for calculating the local impurity-induced elec-
tronic density, obtained by integrating the second term of
Eq. (13) with z → iω + μ for −∞ < ω < ∞. To demonstrate
the utility of our formalism, we plot the electronic density
induced by six impurity states in Fig. 8. We reiterate that
these results are obtained by treating all the impurities simul-
taneously in a nonperturbative fashion. The distance between
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FIG. 8. Impurity-induced electronic density due to six impurities
(light green dots). Here, the TB parameters are the same ones used
for the buckled adsorbates and the chemical potential μ = 0.4 eV.
The difference between the two panels is the scale of �ρ given in
electrons per atom. The x and y axes labels are in angstroms. The
lower panel clearly illustrates the Friedel oscillations.

the two most-separated impurities is 1.5 nm. In contrast to
DFT calculations, which would be infeasible such an impurity
configuration, our formalism is able to efficiently deal with
this system since the computational load does not change with
the impurity separation.

By plotting the charge density using two different scales,
we demonstrate nontrivial charge modulation close to the
impurities give way to Friedel oscillations farther away. Note
that the charge density in the two sublattices do not have the
same phase, as expected. [11,12]

We also show how our approach handles impurities of
different types in Fig. 9. In addition to having two single-site
impurities on the left and on the right of the region of interest,
we position a single impurity in the middle, allowing it to cou-
ple to two neighboring carbon atoms. Fig. 9(b) demonstrates
a nontrivial interference pattern as the Friedel oscillations

FIG. 9. Impurity-induced electronic density due to three impuri-
ties for μ = 0.4 eV. Two of them (on the left and on the right) attach
to a single carbon host, just like the adatoms in Fig. 8. The impurity
in the middle couples to two neighboring carbon atoms from opposite
sublattices.

originating from the hydrogen-like absorbates become mixed
by the central impurity.

V. METHODS

DFT calculations were performed with QUANTUM

ESPRESSO [26,27] using a projector augmented wave (PAW)
[28,29] basis and the Perdew-Burke-Ernzerhof (PBE) [30]
exchange correlation functional. The kinetic energy cutoff of
wave functions was set to 60 Ry. Structural relaxations were
performed until the forces on all atoms were below 10 meV/Å
and the energy difference between subsequent relaxation steps
was below 0.0001 Ry. For band structure calculations, the
charge densities of the systems were computed by sampling
the Brillouin zones via unit-cell-equivalent uniform meshes
of 36 × 36 k points. DOS calculations were performed
using the tetrahedron method [31], with unit-cell-equivalent
Brillouin zone samplings of 60 × 60 k points (charge density)
and 120 × 120 k points (eigenvalues). A small Gaussian
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broadening (∼ 0.03 eV) was added to the eigenvalues of all
DFT DOS plots. Numerical calculations of the model were
performed using the JULIA programming language [32].

VI. CONCLUSIONS

Using hydrogen atoms as model adsorbates, we have
performed a systematic study of the role played by lat-
tice deformation and orbital hybridization to propose a TB
formalism for dealing with multiple impurities in graphene
simultaneously. The TB results show an excellent agreement
with DFT calculations in the region of the model’s validity.
By treating the impurity orbital as a state coupled to graphene,
we are able to obtain spectral functions for the impurity and
the host atom that reproduce the most important features of
the DFT-calculated PDOS. Specifically, the spectral weights
of the host pz orbital and the impurity s orbital become dis-
tributed over the entire bandwidth of the graphene π bands.
This allows the magnetism produced by the Anderson mecha-
nism to propagate through the bulk, resulting in nonzero local
spin polarization. The numerical accuracy of the model can
be improved in a straightforward manner by adding more
neighbor couplings to the TB portion. Our nonperturbative
approach is computationally efficient, scaling only with the
number of impurities, and is able to handle arbitrary arrange-
ments of adatoms of various species. This makes our model
especially relevant for studying experimental scenarios where
impurities are too close to each other to be regarded as inde-
pendent, yet far enough to make DFT supercells unfeasibly
large.

The DFT data and the code for the numerical calculations
can be found at [33].
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APPENDIX: GRAPHENE PROPAGATOR

To compute �R
z , we first introduce

�u,v
z = 1

N

∑
q∈BZ

eiq·(ud1+vd2 )

z2 − t2| f1,q|2
(A1)

with ud1 + vd2 = d
2 (u − v,

√
3(u + v)) and t = 2.8 eV as the

nearest-neighbor hopping energy. Using q · (ud1 + vd2) =
d
2 [(u − v)qx + √

3(u + v)qy] and turning the momentum sum
into an integral yields

�u,v (z) = 1

(2π )2

∮
dx

∮
dy

× ei[(u−v)x+(u+v)y]

z2 − t2(1 + 4 cos2 x + 4 cos x cos y)
. (A2)

From∮
dθ

eilθ

w − cos θ
= 2π

(
w − √

w − 1
√

w + 1
)|l|

√
w − 1

√
w + 1

, (A3)

we get

�u,v
z = 1

2π

1

4t2

∮
dx

ei(u−v)x

cos x

(
W − √

W − 1
√

W + 1
)|u+v|

√
W − 1

√
W + 1

,

(A4)

W =
z2

t2 − 1

4 cos x
− cos x. (A5)

Finally, �R
z for R = ud1 + vd2 can be written as

�R
z =

(
z�u,v

z −t
[
�u,v

z + �u,v
+,z

]
−t

[
�u,v

z + �u,v
−,z

]
z�u,v

z

)
, (A6)

�u,v
±,z = 1

2π

1

4t2

∮
dx

× 2ei(u−v)x

(
W − √

W − 1
√

W + 1
)|u+v±1|

√
W − 1

√
W + 1

. (A7)
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