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Backscattering off a driven Rashba impurity at the helical edge
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The spin degree of freedom is crucial for both understanding and exploiting the particular properties of the
edges of two-dimensional topological insulators. In the absence of superconductivity and magnetism, Rashba
coupling is the most relevant single-particle perturbation in this system. Since Rashba coupling does not break
time reversal symmetry, its influence on transport properties is visible only if processes that do not conserve the
single-particle energy are included. Paradigmatic examples of such processes are electron-electron interactions
and time-dependent external drivings. We analyze the effects of a periodically driven Rashba impurity at the
helical edge, in the presence of electron-electron interactions. Interactions are treated by means of bosonization,
and the backscattering current is computed perturbatively up to second order in the impurity strength. We
show that the backscattering current is nonmonotonic in the driving frequency. This property is a fingerprint
of the Rashba impurity, being absent in the case of a magnetic impurity in the helical liquid. Moreover, the
nonmonotonic behavior allows us to directly link the backscattering current to the Luttinger parameter K ,
encoding the strength of electron-electron interactions.
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I. INTRODUCTION

Since their theoretical prediction [1–3] and subsequent ex-
perimental discovery [4], quantum spin Hall (QSH) systems
have attracted significant attention in view of their possible
applications in spintronics [5–9] and topological quantum
computation [10]. Accordingly, the number of host materials
for QSH systems is increasing. In addition to semiconducting
heterostructures, such as HgTe/CdTe- [4] and InAs/GaSb-
[11] based systems, bismuthene on SiC [12], WTe2 [13],
and jacutingaite [14] have been shown to be two-dimensional
topological insulators. The bulk band gap, and hence the
temperature range in which the QSH effect can be seen,
is, in the latter materials, substantially enhanced. However,
in order to employ the QSH effect in applications, it is
crucial to be able to generate one-dimensional helical chan-
nels with long coherence length and to develop technologies
enabling their manipulation. In this respect, HgTe-based het-
erostructures still present advantages. In such systems, in fact,
the coherence length can reach several micrometers [15,16].
Moreover, the QSH effect can sustain strong magnetic fields
[17–20], and the possibility to induce superconductivity has
been demonstrated [21,22]. Recently, quantum constrictions
between edges on different sides of the sample were also
realized [23]. The combination of these particularities make
certain functionalities viable [24–28].

The mechanisms allowing for the manipulation of helical
edge states share the common trait of enabling the coupling
among particles (electrons or holes) with different spins. This
necessity essentially emerges due to spin-momentum locking.

Several possibilities along these lines have been considered.
Magnetic barriers [29–33], which could, in principle, allow
for the implementation of many interesting proposals, have
not been experimentally achieved in QSH systems yet. Al-
ternatively, the possibility of locally manipulating Rashba
coupling by means of external gates has been analyzed
[34,35]. It opens the way to interesting electron quantum
optics applications [36,37].

At the same time, Rashba coupling at the helical edge has
been the object of intense research with the aim of understand-
ing the possible mechanisms that generate backscattering,
even in the absence of explicit time reversal symmetry break-
ing [38–41]. While the combination of strictly local spin-orbit
coupling, interactions invariant under spin rotations, and an
unbounded linear spectrum does not lead to backscattering
[40], relaxing any of these conditions can, indeed, imply a
backscattering current [41]. This effect manifests itself in two
different configurations: A Rashba scatterer in an otherwise
standard helical Luttinger liquid [38,39,41] and a normal scat-
terer in the so-called generic interacting helical liquid [42–45].
A generic helical liquid is a helical liquid in which the spin
quantization axis defined by spin-momentum locking depends
on the quasimomentum [42,46–48]. In both cases the com-
bined effect of a spin-dependent term and an interaction term
mixing the single-particle states matters.

The possibility of mixing single-particle states at the he-
lical edge is not exclusive to electron-electron interactions.
Time-dependent processes can result in similar effects. Re-
cently, this principle was used to demonstrate that the effect of
current noise in a generic helical liquid in the presence of spin-
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independent impurities can, indeed, result in a backscattering
current [49].

In this paper, we take a complementary point of view.
We consider a standard helical liquid in the presence of a
periodically driven Rashba scatterer. Moreover, since inter-
actions at the helical edge are material dependent [23,50–
52] and potentially important [53,54], we include them by
means of bosonization [55]. We perturbatively compute the
backscattering current as a function of the frequency of the
driving. We find that, even in the weak interaction regime, the
dependence is nonmonotonic. This is in striking contrast to
the behavior of the usual time-dependent impurities in single-
channel Luttinger liquids [56–59] (we refer to this case as
“magnetic impurity” [60] throughout the paper). Furthermore,
we use such nonmonotonicity to define a quantity that depends
on only the Luttinger parameter K , encoding the strength of
electron-electron interactions. This dependence can, in prin-
ciple, allow for a determination of K , a notoriously difficult
task, without the need to consider power-law dependencies.

The rest of the paper is structured as follows. In Sec. II, we
present the model and the formalism we use for the compu-
tation of the backscattering current. In Sec. III, we present
the general result. In Sec. IV, we focus on the discussion
of the nonmonotonic behavior and its implications. We then
present the analysis of some relevant limiting cases in Sec. V.
Finally, in Sec. VI, we draw our conclusions. Some details of
the calculation are described in three Appendixes.

II. MODEL

A. Fermionic representation

The edge states of a QSH insulator are characterized by
spin-momentum locking, meaning that right and left movers
are uniquely associated with a specific spin polarization
[53]. We define the fermionic operators ψR(x) ≡ ψR↑(x) and
ψL(x) ≡ ψL↓(x). The edge Hamiltonian in the presence of
an external bias V can be written as Ĥedge = Ĥ0 + Ĥint + ĤV ,
with

Ĥ0 =
∫

dx[−ivF (ψ†
R∂xψR − ψ

†
L∂xψL )], (1)

Ĥint = 2πvF g2

∫
dx[ψ†

R(x)ψ†
L (x)ψL(x)ψR(x)], (2)

ĤV =
∫

dx[μLψ
†
L (x)ψL(x) − μRψ

†
R(x)ψR(x)] . (3)

The helical liquid is characterized by the first two terms:
The noninteracting part Ĥ0 describes linear dispersing helical
fermions with Fermi velocity vF ; Ĥint is the only relevant
contact-interaction term allowed by spin-momentum locking
if the system is not at half-filling [53]. The external bias enters
our description through ĤV , with eV = μL − μR [56], with
e being the electron charge; for clarity, we take μR = 0. We
imagine that before the addition of any other perturbation, the
system has reached a quasiequilibrium state with respect to the
external leads. These leads are assumed to be space separated
enough that it makes sense to assign a different chemical
potential to each of the fermionic species, mimicking the
effect of a finite voltage [61]. Additionally, we introduce the
perturbation, a single time-dependent Rashba impurity. The

associated Hamiltonian is [39] ĤR = ∫
dxHR(x), with

HR(x) = α(x, t )[∂xψ
†
R(x)ψL(x) − ψ

†
R(x)∂xψL(x) + H.c.],

(4)
where α(x, t ), assumed to be real, is the Rashba matrix ele-
ment. In an experimental setting, such a term can be induced
with a local, time-dependent electric field, via gating or a
scanning tunneling microscope tip. We consider the impurity
to be turned on only after the system has reached quasiequi-
librium with the leads. Moreover, it must be situated far away
from both leads. In this case, the quasiequilibrium distribution
functions of left and right movers are not substantially affected
if the driving period is smaller than the electron injection time
[62,63]. We assume zero temperature for simplicity.

B. Bosonic representation

In order to treat electron-electron interaction in a compact
way, we employ bosonization [55,64,65]. Fermionic operators
are then expressed as

ψR/L(x) = κR/L√
2πa

e±i
√

4π�R/L (x)e±ikF x. (5)

In Eq. (5), �R/L(x) are Hermitian bosonic fields, κR/L are
the Klein factors, kF is the Fermi momentum, and a is
a short-distance cutoff. The usual dual fields are defined
as �(x) = �R(x) + �L(x) and �(x) = �R(x) − �L(x) and
satisfy canonical commutation relations [�(x), ∂y�(y)] =
−iδ(x − y). The density of right movers is related to the
bosonic fields by ρ̂R(x) = 1√

π
∂x�R(x), with similar notation

for left movers. We obtain ĤLL = Ĥ0 + Ĥint in the standard
form:

ĤLL = h̄
v

2

∫
dx

[
1

K
[∂x�(x)]2 + K[∂x�(x)]2

]
. (6)

The parameter K = √
(1 − g2)/(1 + g2) encodes the interac-

tion strength: 0 < K < 1 means a repulsive interaction, with
K → 1 being the noninteracting limit. In what follows, we
restrict ourselves to K > 1/2, as it is typical for QSH edge
states. The Hamiltonian in Eq. (6), supplemented by the
chirality-dependent chemical potential given in Eq. (3), can
also be interpreted in terms of the inhomogeneous Luttinger
liquid model [66–70] in the case in which the interacting
helical liquid is coupled to noninteracting electron reservoirs.
The inhomogeneous Luttinger liquid model describes one-
dimensional fermions subject to a space-dependent interaction
strength which is assumed to be slowly varying on the scale
of the Fermi wavelength. Such variation is then modeled by
position-dependent parameters K and v. In helical liquids, the
bosonic sound velocity is not renormalized by interactions in
the usual Luttinger liquid fashion, i.e., vK �= vF . This is due to
broken Galilean invariance at low energies in a quantum spin
Hall system at the edge, related to the linearity of the spec-
trum. In fact, the dependence of the velocity on the parameter
K can be derived as [65,71]

v = vF

[
1 −

(
1 − K2

1 + K2

)2
]1/2

≡ vF λ(K ). (7)
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The Rashba Hamiltonian instead becomes [38,71–73]

ĤR =
∫

dx

[
α(x, t )i

κLκR√
πa

∑
m=±

e2imkF x

×
(

∂x�(x)eim
√

4π�(x) + m
eim

√
4π�(x)

√
πa

)]
. (8)

Moreover, the bias term can be written as ĤV =∫
dx μL

2
√

π
[∂x�(x) − ∂x�(x)]. It can be shown that the presence

of this term is equivalent to the following shift in bosonic
fields [61,71]:

� → � + ω0t√
4π

,

(9)

∂x� → ∂x� − eV√
4πvF

,

with ω0 = eV/h̄. We remark that, following the approach of
Ref. [61], we consider the electron reservoirs to be spatially
extended and noninteracting. Consequently, we consider the
zero modes of the system to be noninteracting as well, given
the influence of the leads [71]. For this reason, vF , rather than
vK , appears in Eq. (9).

C. Form of the backscattering current

In the absence of impurities, the current passing through
a helical liquid is e2V/h, meaning that the system shows
perfect conductance quantization [66–68]. Here, we want to
consider the impact of a periodically driven Rashba impu-
rity to lowest order in the impurity strength. For simplicity,
we consider a perfectly localized impurity, parametrized by
α(x, t ) = α0a sin(ωt )δ(x − x0). The variation of the current is
associated with the rate of variation in the number of right and
left movers. Therefore, we need to calculate the expectation
value of the operator,

ÎBS (t ) ≡ e( ˙̂nR − ˙̂nL ) = 2e ˙̂nR = −2
i

h̄
e[n̂R, ĤR], (10)

where the (normal ordered) number operator is defined
as n̂R = ∫

dxρ̂R(x) = ∫
dx : ψ

†
R(x)ψR(x) :. As we show in

Appendix A, the bosonized version of the backscattering cur-
rents reads

ÎBS (t ) = −
∫

dx α(x, t )2e
κLκR√
π h̄ a

∑
m=±

e2imkF x

×
(

m ∂x�(x)eim
√

4π�(x) + eim
√

4π�(x)

√
πa

)
. (11)

We remark that the shifts in Eq. (9) have to be implemented
in the current operator as well. In order to calculate its ex-
pectation value at a generic time t , we treat the impurity as
a time-dependent perturbation and use a Kubo-like approach,
which has been used in similar impurity problems (see, for
example, Refs. [49,56,57,59,74]),

〈ÎBS (t )〉 = i

h̄

∫ t

−∞
dt ′〈0|[ĤR(t ′), ÎBS (t )]|0〉. (12)

In Eq. (12), |0〉 is the ground state of ĤLL in Eq. (6), which
generates also time evolution for the operators. If we did not

perform any shift in the bosonic fields, |0〉 should be the
ground state of ĤLL + ĤV .

III. ANALYTIC RESULT OF THE
BACKSCATTERING CURRENT

We focus on the dc component of the current, e.g., 〈Îdc
BS〉 =

1
τ

∫ t1+τ

t1
dt〈ÎBS (t )〉, where t1 is a generic time after the impurity

has been completely switched on and τ is the driving period
(so there is no dependence on the initial phase of the impu-
rity). As a result of a tedious but straightforward calculation
(reported in Appendix B), we obtain

〈
Îdc
BS

〉 = e
α2

0 a2K

2π h̄2v2(K+1)

2K + 1

K �(2 + 2K )

×
∑
r=±

r|ω + rω0|2K+1sgn(ω + rω0)

− e
α2

0a2K

π h̄2v2K+1

ω0

vF

1

�(2K + 1)

∑
r=±

|ω + rω0|2K

+ e
α2

0a2K

2π h̄2v2K

ω2
0

2v2
F

1

�(2K )

×
∑
r=±

r|ω + rω0|2K−1sgn(ω + rω0). (13)

In Eq. (13), ta = a/v is a short-time cutoff, and �(x) is the
Euler gamma function. For the sake of simplicity, we ne-
glected exponential factors of the kind exp −(ta|ω ± ω0|)
because we are considering ω,ω0 � Eg, with Eg being the
bulk gap. In our model, the bulk gap Eg can, indeed, be
identified with h̄v/a (the high-energy cutoff). It is convenient
to introduce the dimensionless parameter

γ (K ) ≡ α2
ad(akF )2K

4πK2 �(2K ) λ2(K+1)(K )k2
F

, (14)

which contains a dimensionless version of the impurity matrix
element αad = α0akF /h̄vF , while λ(K ) is defined in Eq. (7).
In this way, the backscattering current can be written as

〈
Îdc
BS

〉 = e

(
h̄

EF

)2K

γ (K )I(K, ω, ω0), (15)

where EF = h̄vF kF . The function I in Eq. (15), which has the
dimensions 1/s2(K+1), is instead given by the sum of three con-
tributions, each one containing different K-dependent powers
of ω ± ω0:

I(K, ω, ω0) = f2K+1 + f2K + f2K−1, (16)

with

f2K+1(ω,ω0) =
∑
r=±

r|ω + rω0|2K+1sgn(ω + rω0), (17a)

f2K (ω,ω0) = −2λKω0

∑
r=±

|ω + rω0|2K , (17b)

f2K−1(ω,ω0) = (λKω0)2
∑
r=±

r|ω + rω0|2K−1sgn(ω + rω0).

(17c)
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FIG. 1. Zoom around ω = ω0 of 〈Îdc
BS〉, measured in units of

[eα2
0k2

F (kF a)(2K )/(h̄2ω0)] for K = 0.8 (violet), K = 0.7 (green), and
K = 0.6 (red). We further set h̄ = 1 and EF = 0.1h̄ω0.

The analytic expression for the backscattering current repre-
sents the main result of the paper. It is hence important to
comment on its validity. As in the case of the driven magnetic
impurity [56], the divergence of the backscattering current
for K � 1/2 at ω = ω0 makes our perturbative result, in the
proximity of that point and for strong interactions, unreliable.
Moreover, 〈Îdc

BS〉 should be a small correction to e2V/h. This
is true for a certain range of ω. As ω grows, at some point,
we leave the validity regime of the perturbation theory. A
reasonable estimate, with α = 0.16 nm eV, kF = 0.05 nm−1,
vF = 5.5 × 10−5m/s, kF a ≈ 1, gives, for the case in Fig. 1, a
ratio 〈Îdc

BS〉/(e2V/h) ≈ 15%, confirming the consistency of our
perturbative scheme.

IV. NONMONOTONICITY OF 〈Îdc
BS〉

For a moderately interacting helical liquid with K > 1/2,
〈Îdc

BS〉 is a continuous function of ω: f2K−1 presents a diver-
gence only in its derivatives. Far away from ω = ω0, f2K−1 is
negligible, and 〈Îdc

BS〉, as a function of ω, always has a positive
derivative. Close to ω0 this is not true because the term pro-
portional to |ω − ω0|2K−1 in f2K−1 contributes with a negative
diverging derivative. Therefore, 〈Îdc

BS〉 is not monotonously
growing, but rather exhibits a kink across ω0, as shown in
Fig. 1. To quantify this kink, we call ωmax the local maximum
to the left of ω0 and ωmin the local minimum to the right of ω0

and define the relative jump as

J ≡
〈
Îdc
BS

〉
(ωmax) − 〈

Îdc
BS

〉
(ωmin)〈

Îdc
BS

〉
(ωmax)

. (18)

The dependence of J on K is shown in Fig. 2. This definition is
convenient since all the prefactors to I in Eq. (15), containing
system-specific parameters such as the Fermi velocity, cancel
out. Moreover, J does not depend on the external bias eV since
we can write I(K, ω, ω0) = ω2K+1

0 I′(K, ω/ω0). Therefore, J
depends only on the interaction strength K . Thus, J can serve
as an alternative way to extract K from transport measure-
ments without the need to measure a power-law behavior. We
remark that in the case of a magnetic impurity these consid-
erations do not apply, as the related backscattering current
decreases monotonously as ω increases [56].

0

0.02

0.04

0.06

0.08

0.1

0.12

0.6 0.8 1

J

K

FIG. 2. The relative jump defined in the text as a function of the
interaction parameter K .

V. LIMITS

A. Static limit

As a first sanity check, we calculate the static impurity
limit, ω → 0, of the backscattering current in Eq. (13) and
compare it with Ref. [71]. By using Eq. (7), we obtain

lim
ω→0

〈
Îdc
BS

〉 = 2eγ (K )

(
h̄

EF

)2K

(vK − vF )2|ω0|2K+1sgn(ω0).

(19)

As realized in Ref. [71], the possibility that vK �= vF when
interactions are present implies a single particle contribution
to the backscattering current, which scales as ∼V 2K+1.

B. Noninteracting limit

In the noninteracting limit K = 1, v = vF , the dc compo-
nent of the current of Eq. (13) becomes

lim
K→1

〈
Îdc
BS

〉 = + e
α2

0a2

2π h̄2v4

(
ω3

0 + 3ω2ω0
)

− e
α2

0a2

2π h̄2v4
2ω0

(
ω2 + ω2

0

)
+ e

α2
0a2

2π h̄2v4
ω3

0

⇒ lim
K→1

〈Îdc
BS〉 = α2

0a2

2π h̄3v4
F

ω2e2V. (20)

We have used �(n + 1) = n!. The fermionic calculation in
Appendix C confirms the formula above and elucidates its
interpretation, which is the following: The backscattering
current at second order originates from one-photon resonant
processes that transfer electrons from one branch of the linear
spectrum to the opposite one, together with a change in energy
of ±h̄ω. This process is, in principle, equally probable for
both fermionic species. However, for an energy window set
by the external bias (of size eV ) the electrons from the branch
with lower chemical potential energy cannot backscatter into
the opposite one because of Pauli principle. Therefore, the net
effect is a decrease of the current originally set by the external
bias. This result is in agreement with the results of Ref. [49]
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for noninteracting QSH edge electrons with a generic spin tex-
ture in momentum space. The ω2 factor in Eq. (20) ensures the
absence of backscattering current in the static limit ω → 0, as
expected [71].

VI. CONCLUSIONS

We have analytically computed the backscattering current
due to a δ-like harmonically driven Rashba scatterer in a
helical Luttinger liquid, up to second order in the impurity
strength. The result is qualitatively different from the case of
a time-dependent magnetic barrier. It can hence help elucidate
the role of impurities on the transport properties of quantum
spin Hall systems. Interestingly, our results allow for the def-
inition of an experimentally accessible quantity that depends
only on the strength of electron-electron interactions, through
the Luttinger parameter K . Such a quantity could allow for a
measurement of K without the need of measuring power-law
dependencies.
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APPENDIX A: BACKSCATTERING CURRENT OPERATOR

In this Appendix, we calculate explicitly the commutator
in Eq. (10) that gives the expression for the backscatter-
ing current operator, making use of the bosonized version
for the density operator ρ̂R(x) = 1√

π
∂x�R(x) and the Rashba

Hamiltonian, Eq. (8). With the help of [A, eB] = CeB, if
C = [A, B] and [A,C] = [B,C] = 0, we can compute the first
commutator

[∂x�R(x), ei
√

4π�(y)] = −√
πδ(x − y)ei

√
4π�(y),

where we used standard identities from bosonization
[65]. Moreover, we obtain for the other commutator
[∂x�R(x), ∂y�(y)] = i

2∂y[δ(x − y)] directly from the canon-
ical commutation relation of the dual fields. The associated
term, when integrated over space, vanishes because we are
considering that limx→±∞ α(x) = 0. Putting everything to-
gether, we obtain the expression for the backscattering current
operator in Eq. (11).

APPENDIX B: DETAILS ON THE BOSONIZATION CALCULATION

We show here the details of the calculation of Eq. (12) in the bosonic language. Upon substituting Eq. (8) [with α(x, t ) =
α0(t )aδ(x − x0)] and (11) and using the fact that 〈κLκRκLκR〉 = −1, we obtain

〈ÎBS (t )〉 = i

h̄

∫ t

−∞
dt ′

{ ∑
m1,m2=±

ie
2α0(t )α0(t ′)

π h̄
e2i(m1+m2 )kF x0 eiω0(m1t ′+m2t )

[
m2

(
IV∑
j=I

Cj
R(x0, t ; x0, t ′; m1, m2)

)

− eV

2h̄vF
a(1 + m1m2)CI

R(· · · ) + e2V 2

4h̄2v2
F

a2m1C
I
R(· · · ) − eV

2h̄vF
a
(
CIV

R (· · · ) + m1m2C
III
R (· · · )

)] − c.c.

}
. (B1)

In Eq. (B1), (· · · ) stands for (x0, t ; x0, t ′; m1, m2). The correlation functions are defined as

CI
R(x, t ; x′, t ′; m1, m2) = m1m2

πa2
〈0|ei

√
4πm1�(x′,t ′ )eim2

√
4π�(x,t )|0〉, (B2a)

CII
R (x, t ; x′, t ′; m1, m2) = 〈0|∂x′�(x′, t ′)eim1

√
4π�(x′,t ′ )∂x�(x, t )eim2

√
4π�(x,t )|0〉, (B2b)

CIII
R (x, t ; x′, t ′; m1, m2) = m1√

πa
〈0|eim1

√
4π�(x′,t ′ )∂x�(x, t )eim2

√
4π�(x,t )|0〉, (B2c)

CIV
R (x, t ; x′, t ′; m1, m2) = m2√

πa
〈0|∂x�(x′, t ′)eim1

√
4π�(x′,t ′ )eim2

√
4π�(x,t )|0〉. (B2d)

Performing standard bosonization calculations [64,65], we obtain

IV∑
j=I

Cj
R(x0, t ; x0, t ′; m1, m2) = δm1,−m2

1

a2

2K + 1

2πK

(
ta

ta + i(t ′ − t )

)2(K+1)

,

where ta = a/v, with v being the bosonic excitation velocity. In general, every correlation function gives a δm1,−m2 factor, so that
the first term in the second line vanishes. We also derive

CI
R(· · · ) = −δm1,−m2

1

πa2

(
ta

ta + i(t ′ − t )

)2K

,

CIV
R (· · · ) + m1m2C

III
R (· · · ) = −δm1,−m2

2

πa

(
ta

ta + i(t ′ − t )

)2K+1

, (B3)
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and with that

〈ÎBS (t )〉 = −2

h̄
Im

∫ t

−∞
dt ′ie

2α0(t )α0(t ′)
π h̄

{
(e−iω0(t ′−t ) − eiω0(t ′−t ) )

[
2K + 1

2πKa2

(
ta

ta + i(t ′ − t )

)2(K+1)

+ e2V 2

4h̄2v2
F

(
ta

ta + i(t ′ − t )

)2K]

+ eV

2h̄vF
(eiω0(t ′−t ) + e−iω0(t ′−t ) )

2

πa

(
ta

ta + i(t ′ − t )

)2K+1
}

. (B4)

We now consider a time-periodic impurity α0(t ) = α0 sin(ωt ) as in the main text and switch to the integration variable τ = t ′ − t
in such a way that the dc component of the current is

〈
Îdc
BS

〉 = − e
α2

0

2π h̄2

∫ ∞

−∞
dτeiωτ (e−iω0τ − eiω0τ )

{
2K + 1

2πKa2

[( ta
ta + iτ

)2(K+1)

− c.c.

]
+ e2V 2

4h̄2v2
F

[( ta
ta + iτ

)2K

− c.c.

]}

− α2
0

π2h̄2a3

eV

h̄vF

∫ ∞

−∞
dτeiωτ (eiω0τ + e−iω0τ )

[( ta
ta + iτ

)2K+1

+ c.c.

]
. (B5)

If we make use of the integrals∫ ∞

−∞
dx ei�x

[( ta
ta + ix

)2K+2

−
( ta

ta − ix

)2K+2
]

= 2πe−ta|�|t2K+2
a

�(2K + 2)
|�|2K+1sgn(�),

∫ ∞

−∞
dx ei�x

[( ta
ta + ix

)2K

−
( ta

ta − ix

)2K
]

= 2πe−ta|�|t2K
a

�(2K )
|�|2K−1sgn(�), (B6)

∫ ∞

−∞
dx ei�x

[( ta
ta + ix

)2K+1

+
( ta

ta − ix

)2K+1
]

= 2πe−ta|�|t2K+1
a

�(2K + 1)
|�|2K ,

defining ta = a/v, we arrive at

〈
Îdc
BS

〉 = e
α2

0a2K

2π h̄2v2(K+1)

2K + 1

K �(2 + 2K )

∑
r=±

re−ta|ω+rω0||ω + rω0|2K+1sgn(ω + rω0)

− e
α2

0a2K

π h̄2v2K+1

ω0

vF

1

�(2K + 1)

∑
r=±

e−ta|ω+rω0||ω + rω0|2K

+ e
α2

0a2K

2π h̄2v2K

ω2
0

2v2
F

1

�(2K )

∑
r=±

re−ta|ω+rω0||ω + rω0|2K−1sgn(ω + rω0). (B7)

If we restrict ourselves to a regime where ta|ω ± ω0| � 1, we obtain Eq. (13).

APPENDIX C: FREE-FERMION CALCULATION

The Rashba Hamiltonian in Eq. (4) with α(x, t ) =
α0(t )aδ(x − x0) has the momentum space representation

ĤR = −aα0(t )

L

∑
k1,k2

[i(k1 + k2)ĉ†
k1Rĉk2L + H.c.]. (C1)

Writing the total number of right movers as n̂R = ∑
k n̂Rk =∑

k ĉ†
kRĉkR, we can derive the expression for the backscattering

current operator again via Eq. (10). The result is

ÎBS = −2eaα0(t )

h̄L

∑
k1, k2

(k1 + k2)
(
ĉ†

k1Rĉk2L + H.c.
)
. (C2)

The Heisenberg evolution of the fermionic operators accord-
ing to the clean edge Hamiltonian Ĥ0 = h̄vF

∑
k k(n̂R − n̂L ) is

given by

ĉkR(t ) = e−ivF kt ĉkR,

ĉkL(t ) = eivF kt ĉkL.

Using these expressions, we can calculate the current with
Eq. (12). By repeatedly using Wick’s theorem, we obtain

〈ÎBS (t )〉 = − 2ea2α0(t )

L2h̄2

∫ 0

−∞
dτα0(t + τ )

∑
k′

1, k2

(k1 + k2)2

× (eivF (k1+k2 )(τ )〈0|n̂k1R − n̂k2L|0〉 + c.c.),

where τ = t ′ − t . Writing the impurity matrix element
as α0(τ + t ) = α0 sin(ωt ) cos(ωτ ) + α0 cos(ωt ) sin(ωτ ), we
see that only the first term contributes to the dc response.
Therefore, after averaging over one driving period and per-
forming the integration over τ , we obtain

〈
Îdc
BS

〉 = −ea2α2
0

L2h̄2

∑
k′

1, k2

(k1 + k2)2〈0|n̂k1R − n̂k2L|0〉π

×{δ[vF (k1 + k2) + ω] + δ[vF (k1 + k2) − ω]}. (C3)

The Dirac δ functions ensure the conservation of energy in
the one-photon processes that bring one electron into the
opposite branch of the linear spectrum. The expectation value
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with respect to the ground state of the occupation numbers
reads 〈n̂Rk〉 = θ (−k + kR

F ) and 〈n̂Lk〉 = θ (k − kL
F ), respec-

tively. With our choice of chemical potentials, we have kR
F = 0

and kL
F = −eV/h̄vF . Upon substituting these expressions into

the previous equation, forgetting about the high-energy cutoff

in the spectrum, we obtain

〈
Îdc
BS

〉 = +α2
0a2ω2e2V

2π h̄3v4
F

, (C4)

which corresponds to Eq. (20) of the main text.
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