
PHYSICAL REVIEW B 102, 195412 (2020)

Quantum mechanical modeling of anharmonic phonon-phonon scattering in nanostructures
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The coherent quantum effect has become increasingly important in the heat dissipation bottleneck of semicon-
ductor nanoelectronics with the characteristic size recently shrinking down to a few nanometers scale. However,
the quantum mechanical model remains elusive for anharmonic phonon-phonon scattering in extremely small
nanostructures with broken translational symmetry. It is a long-term challenging task to correctly simulate
quantum heat transport including anharmonic scattering at a scale relevant to practical applications. In this
article, we present a clarified theoretical formulation of anharmonic phonon nonequilibrium Green’s function
(NEGF) formalism for both one- and three-dimensional nanostructures, through a diagrammatic perturbation
expansion and an introduction of Fourier’s representation to both harmonic and anharmonic terms. A parallelized
computational framework with first-principle force constants input is developed for large-scale quantum heat
transport simulation. Some crucial approximations in numerical implementation are investigated to ensure the
balance between numerical accuracy and efficiency. A quantitative validation is demonstrated for the anharmonic
phonon NEGF formalism and computational framework by modeling cross-plane heat transport through a
silicon thin film. The phonon-phonon scattering is shown to appreciably enhance the thermal resistance or
conductance in extremely small homogeneous or heterogeneous thin films. The present methodology provides a
robust platform for the device quantum thermal modeling, as well as a study on the transition from coherent
to incoherent heat transport in nanophononic crystals. This work thus paves the way to understand and to
manipulate heat conduction via the wave nature of phonons.
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I. INTRODUCTION

The manipulation and control of heat transport in a di-
electric crystal mediated by phonons has been a significant
issue in modern technology and industrial applications. The
aim of low phonon thermal conductivity is pursued in thermo-
electric [1] and thermal barrier coating materials [2], whereas
high phonon thermal conductivity is desired for heat dissi-
pation problems in nanoelectronics [3]. In the past several
decades, fruitful efforts have been made in controlling the heat
transport by tailoring the mean free path (MFP) of phonons
through nanostructures [4–7]. These efforts are mainly based
on the particle nature of phonons [8,9], since the charac-
teristic size of the system is usually much larger than the
dominant width (or so-called coherence length) of phonon
wave packets. With the development of nanofabrication and
manufacturing technology in recent years, heat conduction
tuning via the wave nature of phonons based on nanophononic
crystals (PnCs) also becomes possible [10–13]. Distinctive
behaviors of phonon heat transport have been experimen-
tally demonstrated in this wave regime: the period-controlled
lattice thermal conductivity minimum of superlattices (SLs)
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[14], the order of nano-PnC slowing down the heat propaga-
tion [15], nanodot induced Anderson localization of thermal
phonons in SLs [16], the aperiodicity of SLs reducing ther-
mal conductivity via multiple localization [17], and so on
[18–20].

The modeling of phonon heat transport in this wavelike
coherent regime to particlelike incoherent regime remains,
however, a challenging task. The widely adopted semiclassi-
cal phonon Boltzmann equation has become no longer valid
[21,22] as it describes only the evolution of phonon-particle
population whereas it ignores the crucial phase information
(interference effect) of phonon modes in this situation. There
has been some theoretical effort to describe such coherent heat
transport by a lattice dynamical model [15,23,24], with the
anharmonic phonon scattering included by an imaginary wave
vector component dependent on MFP in a phenomenological
way. The molecular dynamics (MD) simulation is another
popular approach to study the transition from coherent to in-
coherent heat transport in nano-PnC such as SLs [25–28]. As
MD is a classical method, some essential quantum behavior
of phonons would be lost at relatively low temperatures or
in extremely small nanostructures. On the other hand, the
empirical atomic interaction potential employed in MD might
not be sufficiently accurate or even not available sometimes.
Therefore, a full quantum mechanical model without any em-
pirical input parameters is highly desired, which is the main
focus of this work.
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The nonequilibrium Green’s function (NEGF) method
[29–32] represents such a full quantum mechanical approach
which could principally account for the coherent interaction
and the incoherent scattering in the same footprint. In com-
parison to the Boltzmann transport theory, the NEGF method
describes the evolution of both population and coherences of
phonon modes [33] such that it will be able to capture the
wavelike to particlelike behaviors of phonon heat transport.
The NEGF formalism was originally proposed around the
middle of the last century [34–36] during the development
of quantum field theory [37] mainly for electrons, and has
been relatively well established and widely applied in quan-
tum transport modeling of nanoelectronic devices [38–41].
Later the NEGF method was introduced to model phonon
transport in the early years of this century attributed to several
pioneering works [42–45]. Due to the large computational
cost, the phonon NEGF has been often applied for ballistic
heat transport through relatively simple structures like low-
dimensional nanostructures (ultrathin nanowire [42,46,47],
nanotubes [45,48], molecular junctions [49], 2D structures
[50–52], etc.), interfaces [53–58], and SLs [17,59–61]. Very
few works [43,44,62–66] directly take into account the anhar-
monic phonon-phonon scattering, yet often consider few-atom
systems like the atomic chain or junction [43,44,62,63], and
single-unit-cell interface [66]. An indirect treatment of inco-
herent phonon scattering was also proposed by the Büttiker
probe approach [67–69] inspired by its counterpart in elec-
tron NEGF, yet it relies on fitting the anharmonic scattering
rates with empirical expressions. The challenge in NEGF
modeling of anharmonic heat transport comes from not only
the difficulty in numerical implementation, but also the less
established theoretical formalism. As will be declared later in
Sec. II, the crucial self-energy expressions for phonon-phonon
scattering remain still diverse in several prototypical works in
the literature [43,44,64]. As a result, more work still needs to
be done to form a solid quantitative validation of the anhar-
monic phonon NEGF formalism. Another important issue in
phonon NEGF modeling is the input of the force constant (FC)
matrix. The empirical atomic interaction potential is usually
adopted to extract the harmonic FC matrix [42,45–47,49–
53,55,56] and anharmonic FC matrix [43,44,62–65]. In recent
years, attributed to the advance in density-functional theory
(DFT) [70] and computational power, the first-principle input
has been also introduced into phonon NEGF codes, yet mostly
harmonic FC matrix in ballistic heat transport [48,54,57–61],
except for a recent work [66] also considering the anharmonic
one.

The aim of the present work includes several aspects.
Firstly, we aim to present a clarified formulation of the an-
harmonic phonon NEGF method through a diagrammatic
perturbation expansion of Green’s function and a thorough
comparison to existing results. As a further step, we will
extend the formalism to anharmonic heat transport through
3D nanostructures with transverse periodicity by introduc-
ing a Fourier’s representation to both the harmonic and
anharmonic terms. Secondly, we aim to develop a first-
principle-based numerical framework for large-scale quantum
heat transport simulation by introducing advanced compu-
tation techniques as well as DFT input of harmonic and
anharmonic FCs. Finally, a quantitative validation of the an-
harmonic phonon NEGF formalism and numerical framework

will be demonstrated by several benchmark studies. The cru-
cial approximations beyond the treatment in a previous work
[64] by one of the coauthors will be elucidated to ensure feasi-
ble yet still accurate large-scale simulation. The remainder of
this article will be arranged as follows: The theoretical formu-
lations and numerical implementation of the phonon NEGF
method will be described in Sec. II; the results and related
discussions will be shown in Sec. III; concluding remarks are
made in Sec. IV.

II. MATHEMATICAL AND NUMERICAL MODELS

In this section, we will present a clarified anharmonic
phonon NEGF formalism for each relevant physical system.
Section II A will firstly focus on 1D nanostructures without
periodicity. Then a Fourier’s representation is introduced to
the anharmonic formalism in Sec. II B for 3D nanostructures
with transverse periodicity, which is a paradigm for quantum
heat transport across thin films, interfaces, SLs, and multilayer
nanostructures. In Sec. II C, the numerical implementation
of the phonon NEGF formalism will be elucidated in de-
tail, including the computational strategies and techniques for
large-scale simulation. In Sec. II D, the input of harmonic and
anharmonic FC matrices from first-principle (DFT) calcula-
tion will be introduced.

A. Anharmonic phonon NEGF formalism for 1D nanostructures

In this subsection, we firstly consider quantum heat trans-
port through a 1D nanostructure without any translational
periodicity, as shown in Fig. 1(a). The governing equation for
the retarded Green’s function of the device in a matrix notation
is [43,64]

GR(ω) = [ω2I − � − �R(ω)]−1, (1)

where I denotes the unity matrix, � denotes the second-order
FC matrix [cf. Eq. (A4) in Appendix A], and the superscript
“−1” means the inverse of a matrix. Note that throughout
this work the bold character represents a matrix, whereas its
component is denoted by a regular character. ω represents
the frequency of the phonon modes through the system. The
retarded self-energy matrix includes the contribution from
both of the two contacts and the anharmonic phonon-phonon
scattering within the device:

�R(ω) = �R
1 (ω) + �R

2 (ω) + �R
s (ω). (2)

The retarded contact self-energy matrix �R
1(2)(ω) in Eq. (2)

is related to the surface Green’s function of the contacts,
which are calculated by the decimation technique [32,71]. For
brevity, the subscript “1(2)” is introduced to refer to contact 1
or contact 2 hereafter. The calculation of the retarded scatter-
ing self-energy �R

s (ω) will be introduced later.
For ballistic heat transport problems, usually we only need

to resolve the retarded Green’s function of the device in
Eq. (1) to get the transmission through the system using
the Caroli formula [29,42,45]. However, for anharmonic heat
transport, we also have to compute the greater/lesser Green’s
function as [43,64]

G>, <(ω) = GR(ω)�>, <(ω)GA(ω), (3)

where the advanced Green’s function of the device is the Her-
mitian conjugate of the retarded Green’s function: GA(ω) =
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FIG. 1. Schematic of the physical model in phonon NEGF formalism: (a) 1D nanostructure; (b) 3D nanostructure with transverse
periodicity.

[GR(ω)]†. The greater/lesser self-energy matrix also includes
the contribution from both of the two contacts and the anhar-
monic phonon-phonon scattering in the device:

�>,<(ω) = �>,<
1 (ω) + �>,<

2 (ω) + �>,<
s (ω). (4)

The greater/lesser contact self-energy matrix in Eq. (4) is
related to the retarded contact self-energy matrix as

�>
1(2)(ω) = [1 + f eq(ω, T1(2) )]

{
�R

1(2)(ω) − [
�R

1(2)(ω)
]†}

,

(5)

�<
1(2)(ω) = f eq(ω, T1(2))

{
�R

1(2)(ω) − [
�R

1(2)(ω)
]†}

, (6)

where f eq(ω, T1(2) ) denotes the Bose-Einstein equilibrium
phonon distribution at the contact temperature T1(2). Equations
(5) and (6) are crucial relations to introduce the isothermal
boundary conditions to the steady-state heat transport in an-
harmonic phonon NEGF simulation.

A crucial part of the anharmonic phonon NEGF formalism
is the calculation of the greater/lesser scattering self-energy
matrix �>,<

s (ω) in Eq. (4). The retarded scattering self-energy
matrix in Eq. (2) is then related to the greater/lesser scattering
self-energy matrix as [64]

�R
s (ω) = 1

2
[�>

s (ω) − �<
s (ω)]

+ iP
∫ ∞

−∞

dω′

2π

�>
s (ω′) − �<

s (ω′)
ω − ω′ . (7)

The second term on the right-hand side of Eq. (7) is the
Cauchy principal integral, and is often neglected for compu-
tational simplicity [64]. This term represents the frequency
shift of phonon modes due to the anharmonic phonon-phonon

scattering and is usually very small for most applications.
In terms of the greater/lesser scattering self-energy, we find
similar expressions as available in the literature yet with
different coefficients [43,44,64], as summarized in Table I.
For a clear comparison, we keep the notation of third-order
FC in the original literature whereas we rewrite the notation
of other variables (atomic displacement, Green’s function,
and self-energy) to be consistent with that in this work.
This discrepancy might be due to the very complicated
derivation process of the anharmonic scattering self-energy
through the diagrammatic perturbation expansion of phonon
Green’s function, the details of which are often not provided
[43,44,64]. Since there is no concretely validated and widely
accepted expression of anharmonic scattering self-energy for
heat transport in nanostructures, our strategy to resolve this
issue includes a twofold procedure: (1) Firstly we conduct
a diagrammatic perturbation derivation of the self-energy ex-
pression by ourselves; (2) then we demonstrate a quantitative
validation of the theoretical formalism.

Through the diagrammatic perturbation expansion, we ob-
tain the expression of the greater/lesser self-energy matrix for
third-order anharmonic phonon scattering as

�
>, <i j
s, ll ′ (ω) = 1

2
ih̄

∑
l1l2l3l4

∑
j1 j2 j3 j4

∫ ∞

−∞

dω′

2π
�

i j1 j2
ll1l2

�
j j3 j4
l ′l3l4

× G>, < j1 j4
l1l4

(ω′)G>, < j2 j3
l2l3

(ω − ω′), (8)

where �
i j1 j2
ll1l2

is the component of the third-order FC matrix [cf.
Eq. (A5) in Appendix A], whereas the subscripts l (l1, l2, · · · )
denote the atomic index, and the superscripts i, j denote the
Cartestian coordinate index (x, y, z). The detailed derivation

TABLE I. Summary of expressions for greater/lesser anharmonic phonon scattering self-energy.

Third-order term in Hamiltonian Scattering self-energy References∑
i jk V (3)

i jk uiu juk i�<
s,in(ω) = h̄

∑
jklm

∫ ∞
−∞ V (3)

i jk G<
jl (ω

′)G<
km(ω − ω′)V (3)

lmndω′ Equation (27) in Ref. [43]

1
3

∑
i jk Ti jkuiu juk �<

s, jk (ω) = 2ih̄
∑

lmrs TjlmTrsk

∫ ∞
−∞ G<

lr (ω′)G<
ms(ω − ω′) dω′

2π
First term of Eq. (13) in Ref. [44]

1
3!

∑
i jk

∑
lmn dV (3)i jk

lmn ui
l u

j
muk

n

�>, <i j
s, nm (ω) = 2ih̄

∑
k1k2k3k4

∑
l1l2 l3l4

∫ ∞
−∞

dω′
2π

dV (3)ik1k2
nl1l2

dV (3)k3k4 j
l3l4m

×G >, <k1k3
l1l3

(ω + ω′)G <, >k4k2
l4l2

(ω′)
Equation (7) in Ref. [64]

1
3!

∑
nml

∑
i jk �

i jk
nml u

i
nu j

muk
l

�
>, <i j
s, ll ′ (ω) = 1

2 ih̄
∑

l1l2 l3l4

∑
j1 j2 j3 j4

∫ ∞
−∞

dω′
2π

�
i j1 j2
ll1l2

�
j j3 j4
l ′ l3l4

× G>, < j1 j4
l1l4

(ω′)G>, < j2 j3
l2 l3

(ω − ω′)
Present
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process of Eq. (8) is given in Appendix A. In comparison
to the expressions of anharmonic scattering self-energy in
Refs. [43,64], there exists a factor difference of π /9 and 4,
respectively, with respect to the present result of Eq. (8).
Considering that the third-order FC (Ti jk in Table I) is half of
the present one (�i jk

nml ), the part of the self-energy correspond-
ing to the three-phonon anharmonic scattering in Ref. [44]
is actually consistent with the present expression. A further
theoretical corroboration of Eq. (8) will be shown in Sec. II B
when we compare it to the expression of anharmonic phonon
scattering self-energy in bulk materials. Up to now, Eqs. (1),
(3), (7), and (8) constitute a closed set of coupled matrix
equations, which have to be solved through an iterative pro-
cess called the self-consistent Born approximation (SCBA)
[41,64]. Note Eqs. (1) and (3) are the steady-state limit of the
equations of motion for real-time Green’s functions, which
have to be solved for transient problems such as ultrafast
heat transport [72,73]. It is computationally very challenging
to model transient quantum heat transport by phonon NEGF
formalism due to the memory effect in temporal integration
of Green’s function and self-energy. There has been much
progress in electron NEGF for modeling transient phenomena,
such as the generalized Kadanoff-Baym ansatz framework
[74]. It is a good strategy to borrow the techniques from the
transient electron NEGF, which are well summarized in a very
recent review [74].

B. Anharmonic phonon NEGF formalism for 3D nanostructures

In this subsection, we consider quantum heat transport
through 3D nanostructures with transverse periodicity as

shown in Fig. 1(b). Attributed to this periodicity in the trans-
verse direction, the phonon NEGF formalism in Sec. II A can
be rewritten into a Fourier’s representation by introducing a
transverse wave vector q⊥ and the following Fourier trans-
form for the Green’s function:

Gi j
ll ′ (ω) = 1

N

∑
q⊥

exp (iq⊥ · �R⊥)Gi j
lx l ′x (ω; q⊥), (9)

Gi j
lx l ′x (ω; q⊥) =

∑
�R⊥

exp (−iq⊥ · �R⊥)Gi j
ll ′ (ω), (10)

where N is the number of transverse wave vectors, and
�R⊥ = (ly − l ′

y)a2 + (lz − l ′
z )a3 with a2 and a3 the lattice

vectors along the y and z directions, respectively. Here l ≡
(lx, ly, lz ) denotes the index of the lattice unit cell in the device
along the x, y, and z directions. Note that in the Green’s
function (and related variables such as self-energy matrix and
FCs matrix), the subscript l includes the index of atoms within
the corresponding lattice unit cell, i.e., Gi j

ll ′ (ω) ≡ Gi j
lκ, l ′κ ′ (ω)

with κ the atomic index in a lattice unit cell. For the sake of
clarity, we only keep the index of the lattice unit cell.

With the help of Eqs. (9) and (10), the formalism in
Sec. II A can be rewritten into the Fourier’s representation,
and the main governing equations Eqs. (1), (3), (7), and (8)
become

GR(ω; q⊥) = [ω2I − �̃(q⊥) − �R(ω; q⊥)]−1, (11)

G>,<(ω; q⊥) = GR(ω; q⊥)�>,<(ω; q⊥)GA(ω; q⊥), (12)

�R
s (ω; q⊥) = 1

2
[�>

s (ω; q⊥) − �<
s (ω; q⊥)] + iP

∫ ∞

−∞

dω′

2π

�>
s (ω′; q⊥) − �<

s (ω′; q⊥)

ω − ω′ , (13)

�
<, >i j
s, lx l ′x (ω; q⊥) = 1

2
ih̄

∑
l1x l2x l3x l4x

∑
j1 j2 j3 j4

1

N

∑
q′

⊥

�̃
i j1 j2
lx l1x l2x

(q′
⊥, q⊥ − q′

⊥)�̃ j j3 j4
l ′x l3x l4x

(q′
⊥ − q⊥,−q′

⊥)

×
∫ ∞

−∞

dω′

2π
G<, > j1 j4

l1x l4x
(ω′; q′

⊥)G<, > j2 j3
l2x l3x

(ω − ω′; q⊥ − q′
⊥). (14)

In Eq. (11), the Fourier’s representation of the harmonic
FC matrix is defined as

�̃
i j
lx l ′x (q⊥) =

∑
�R⊥

�
i j
ll ′ exp (−iq⊥ · �R⊥), (15)

which is consistent with the definition in the previous ballistic
NEGF formalism [53,58]. In Eq. (14), the Fourier’s represen-
tation of the third-order anharmonic FC matrix is defined as

�̃
i j1 j2
lx l1x l2x

(q⊥, q′
⊥) =

∑
�R⊥

∑
�R′

⊥

�
i j1 j2
ll1l2

exp (−iq⊥ · �R⊥)

× exp (−iq′
⊥ · �R′

⊥), (16)

with �R⊥ = (ly − l1y)a2 + (lz − l1z )a3, �R′⊥ =
(ly − l2y)a2 + (lz − l2z )a3 here. The third-order FC matrix
has a dependence on two transverse wave vectors since the
three-body interaction depends on two relative displacements
(�R⊥ and �R′⊥) in the cross-sectional direction. Due to
the translational invariance along the transverse direction,
the right-hand summation term in Eq. (16) will no longer be

dependent on the (ly, lz) pair. The basic idea for the derivation
of Eq. (14) is to put Eq. (9) and the inverse transform of
Eq. (16) into Eq. (8). The detailed derivation process is a bit
cumbersome and is shown in Appendix B.

In a recent contribution to the anharmonic phonon NEGF
formalism for 3D interfaces [66], a different third-order tensor
Fourier’s decomposition using the P matrix is developed for
the anharmonic FC matrix. The authors obtain the anharmonic
phonon scattering self-energy matrix below [66]:

�<, >
s, ur (ω; q⊥) = ih̄

∑
vwpq

∑
q′

⊥

Ṽuvw(q⊥, q′
⊥)Ṽpqr (q⊥, q′

⊥)
∫ ∞

−∞
dω′

× G<, >
qv (ω′; q′

⊥)G<, >
wp (ω − ω′; q′

⊥), (17)

where we have kept most of the notations therein. In spite
of a similar mathematical form, our result of Eq. (14) is
different from Eq. (17) in terms of the following three aspects:
(1) a factor difference since their development is based on
the anharmonic phonon scattering self-energy in Ref. [43],
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FIG. 2. Feynman diagram for three-phonon anharmonic scatter-
ing in 3D nanostructures with transverse periodicity.

as is already shown in Table I; (2) both the energy conser-
vation [ω = ω′ + (ω − ω′)] and the momentum conservation
[q⊥ = q′⊥ + (q⊥ − q′

⊥)] are automatically satisfied in our
expression (as explicitly shown in the Feynman diagram in
Fig. 2) whereas only the energy conservation is ensured in
Eq. (17); (3) a normalization over the number of transverse
wave vectors is also included before the sum over q′⊥ in our
formulation.

The expression of anharmonic phonon-phonon scattering
self-energy in Eq. (14) can be further corroborated by its
counterpart in bulk material. In comparison to the present
3D nanostructures with transverse periodicity, the bulk ma-
terial also has periodicity in the transport direction. Through
a diagrammatic perturbation expansion of the phonon Green’s
function similar to that in Appendix A, one could obtain the
self-energy for three-phonon anharmonic scattering in bulk
material as follows [75]:

�<
s (ω; q) = 2ih̄

∑
q1q2

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π
2πδ(ω − ω1 − ω2)

× |F (−q, q1, q2)|2G(0)<(ω1; q1)G(0)<(ω2; q2),
(18)

where q is the 3D wave vector in bulk material,
|F (−q, q1, q2)|2 = F (−q, q1, q2) × F ∗(−q, q1, q2) with
F ∗(−q, q1, q2) = F (q,−q1,−q2). Here F (q1, q2, q3) is the
third-order anharmonic dynamic matrix contributing to the
anharmonic term in the Hamiltonian as [75]

V = 1

3

∑
q1q2q3

F (q1, q2, q3)Aq1 Aq2 Aq3 , (19)

where Aq = √
h̄/2ωq(aq + a†

−q) is the phonon normal co-
ordinate operator, with aq, a†

q the phonon destruction and
creation operator, respectively. Due to the translational sym-
metry of the 3D lattice, F (q1, q2, q3) includes a delta function
as �(q1 + q2 + q3) which will be nonvanishing only when
q1 + q2 + q3 = 0 or a reciprocal lattice vector [75,76]. Thus
Eq. (18) can be rewritten into

�<
s (ω; q) = 2ih̄

∑
q1

∫ ∞

−∞

dω1

2π
F (−q, q1, q − q1)

× F (q,−q1, q1 − q)G(0)<(ω1; q1)

× G(0)<(ω − ω1; q − q1). (20)

Considering the different notations in the third-order term
of the Hamiltonian between Eq. (19) and that [Eq. (A3) in
Appendix A] in the present work (a factor 1/3 versus 1/3!),
Eq. (20) will be exactly consistent with Eq. (14) once the

TABLE II. General relations between the nonequilibrium
phonon Green’s functions for 1D and 3D nanostructures.

1D nanostructures [62] 3D nanostructures (present result)

[G>(ω)]T = G<(−ω) [G>(ω; q⊥)]T = G<(−ω; −q⊥)
[G<(ω)]† = −G<(ω) [G<(ω; q⊥)]† = −G<(ω; q⊥)
[GR(ω)]∗ = GR(−ω) [GR(ω; q⊥)]∗ = GR(−ω; −q⊥)
[GR(ω)]† = GA(ω) [GR(ω; q⊥)]† = GA(ω; q⊥)

periodicity of the transport direction is released. Note that the
normalization factor 1/N is included in |F (−q, q1, q2)|2 [75].

Finally, some general symmetry relations between the
nonequilibrium phonon Green’s functions for 3D nanostruc-
tures with transvese peridocity are derived:

[G>(ω; q⊥)]T = G<(−ω; −q⊥), (21)

[G<(ω; q⊥)]† = −G<(ω; q⊥), (22)

[GR(ω; q⊥)]∗ = GR(−ω; −q⊥), (23)

[GR(ω; q⊥)]† = GA(ω; q⊥). (24)

The superscript “T” in Eq. (21) denotes the transpose of a
matrix. We provide a detailed proof of Eq. (21) in Appendix C.
The other relations can be proved in a similar way and are
not shown here. A comparison to similar general relations
between the phonon Green’s function for 1D nanostructures
[62] is summarized in Table II.

C. Numerical implementation

The numerical implementation of the anharmonic phonon
NEGF formalism by the SCBA iterative solution of Eqs. (11)–
(14) is challenging for large-scale simulations because of the
computational time cost and memory cost. The large time
cost is mainly due to the intensive calculation of multiple
summations and integrations in the anharmonic scattering
self-energy in Eq. (14). Furthermore, the memory cost and
time cost related to the matrix storage and operation will be
proportional to (NxNd )2 and (NxNd )3, respectively, if the full
matrix of the device is directly resolved [39]. Here the device
consists of Nd slabs as shown in Fig. 3, with the matrix size for
each slab being Nx. Two advanced computational techniques
are introduced in this subsection to retrieve the situation: (1)
the recursive algorithm in Sec. II C 1; (2) the parallelization
scheme in Sec. II C 2. We will also briefly introduce the
macroscopic variable calculation in Sec. II C 3.

FIG. 3. Schematic of recursive algorithm for numerical imple-
mentation of phonon NEGF. “LC” and “RC” denote left contact
(contact 1) and right contact (contact 2) respectively, and the device
is divided into Nd slabs.
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1. Recursive algorithm

The recursive algorithm was originally proposed in elec-
tron NEGF codes for large-scale nanoelectronic device
modeling [77], and has been also applied in anharmonic
phonon NEGF modeling of heat transport in nanowires [64].
A similar variant of the recursive algorithm was also devel-
oped in ballistic phonon NEGF [55]. The motivation of the
recursive algorithm arises from the fact that only the diagonal
blocks and first off-diagonal blocks of Green’s functions are
required to compute the relevant macroscopic observables
(i.e., local density and current) of the system. The recursive
algorithm only deals with matrices for each slab and its adja-
cent slabs such that the memory cost and time cost will be
linearly proportional to the system size along the transport
direction as (Nx )2Nd and (Nx )3Nd , respectively [39]. In this
work, we adopt the recursive algorithm [39,77] to compute
the Nx × Nx diagonal blocks and first off-diagonal blocks of
the retarded Green’s function and the greater/lesser Green’s
functions. We also make other approximations in the numeri-
cal implementation as follows: (I) only the interaction within
neighboring slabs in Fig. 3 is considered for harmonic FC;
(II) only the atomic nearest-neighbor interaction is consid-
ered for third-order anharmonic FC; (III) only the Nx × Nx

diagonal blocks of anharmonic scattering self-energy are con-
sidered, and within each diagonal block only the dominant
terms between each atom and its nearest-neighbor atoms are
computed; (IV) the anharmonic phonon-phonon scattering is
considered only in the device region whereas the contacts are
harmonic. The approximation (II) has also been adopted in a
previous work [64] based on the empirical valence-force-field
model, and shall be more or less reasonable for weakly anhar-
monic materials like silicon considered in this work, as will be
shown later in Sec. II D. In principle, more neighbors should
be considered in the third-order FC for strongly anharmonic
materials such as oxides, yet it remains computationally very
challenging for large-scale simulations. Concerning approx-
imation (III), an even simpler approximation is assumed in
Ref. [64] where only the 3 × 3 diagonal blocks of the an-
harmonic scattering self-energy matrix are computed. We will
show in Sec. III C that the approximation in Ref. [64] will
significantly overestimate the anharmonic scattering rate and
thus underestimate the thermal conductance. In terms of ap-
proximation (IV), it has been shown that the harmonic or
anharmonic contact has a negligibly small influence on the
thermal transport properties [64].

2. Parallelization scheme

With a multiple-CPU (central processing unit) computer
facility, the iterative solution of Eqs. (11)–(14) can be
parallelized based on the message-passing-interface (MPI)
standard [78]. The MPI parallelization scheme has been
widely adopted in electron NEGF for large-scale device simu-
lations [41,79], and is also used in anharmonic phonon NEGF
in a previous work [64] by one of the coauthors. In compar-
ison to the parallelization scheme in Ref. [64] for nanowire
(1D nanostructures) simulations that require data exchange
between different frequency points as shown in Eq. (8), here
we also have to exchange the data between different transverse
wave vectors for simulation of 3D nanostructures as shown in
Eq. (14). Thus, we build a dual-level parallelization scheme

FIG. 4. Schematic of the discretization of (a) frequency and (b)
transverse wave vector in phonon NEGF simulation. The frequency
interval is computed as �ω = 2ωm/(Nm–1), with ωm the maximum
crystal phonon frequency and Nm the number of frequency points.
The transverse reciprocal lattice vectors are defined as bi · a j =
2πδi j , where i, j = 2, 3.

for the transverse wave vector and frequency points, both of
which are uniformly discretized as shown in Fig. 4. In the first
level, all the transverse wave vectors are parallelly treated, i.e.,
one wave vector will be allocated to each CPU. In the second
level, the frequency points are divided into several intervals
which are parallelly treated, i.e., each CPU will receive a seg-
ment with several frequency points. For ballistic heat transport
simulation, the problem is embarrassingly parallelized, i.e.,
the retarded Green’s function and transmission of each mode
(ω; q⊥) is independently calculated in each CPU without the
need of data exchange during computation. For anharmonic
heat transport simulation, the situation is more complicated
as the Green’s function of one mode (ω; q⊥) is coupled with
many other modes as inferred from Eq. (14). Since the phonon
Green’s functions for each mode are often distributed in dif-
ferent CPUs, data exchange is needed when computing the
anharmonic scattering self-energy. We design an algorithm
for the data exchange, the details of which are provided in
Appendix D.

3. Macroscopic variable calculation

The local heat flow from the qth slab to the (q + 1)th slab
shown in Fig. 3 is related to the first off-diagonal blocks of the
lesser phonon Green’s function [64] and can be computed as

Jq→q+1 = −
∑
n∈q

∑
m∈q+1

∑
i j

1

N

∑
q⊥

∫ ∞

0
h̄ω

[
�̃i j

nm(q⊥)

× G<, ji
mn (ω; q⊥) − G<,i j

nm (ω; q⊥)�̃ ji
mn(q⊥)

]dω

2π
(25)

Equation.(25) can be written as Jq→q+1 =
1
N

∑
q⊥

∫ ∞
0 J (ω; q⊥) dω

2π
, with the heat flow contributed by
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each mode expressed as

J (ω; q⊥) = −
∑
n∈q

∑
m∈q+1

∑
i j

h̄ω
[
�̃i j

nm(q⊥)G<, ji
mn (ω; q⊥)

− G<,i j
nm (ω; q⊥)�̃ ji

mn(q⊥)
]
. (26)

The local heat flow distribution is used as a criterion of
convergence of the SCBA scheme. After each iteration, the
local heat flow is computed based on Eq. (25). The SCBA
convergence is reached when the conservation of heat flow is
fullfilled along the transport direction, i.e., the local heat flow
is the same for all the slabs within a certain allowed numerical
error (1% in the present work).

For purely coherent heat transport, the definition of local
temperature is usually not relevant. However, when con-
sidering anharmonic phonon-phonon scattering, the local
temperature can be computed based on the local energy con-
servation condition within one slab:∫ ∞

0
ρ(ε, Rn)

2h̄ω

h̄2 h̄ω
d (h̄ω)

2π

=
∫ ∞

0
LDOS(ε, Rn) f eq(ω, Teff )

2h̄ω

h̄2 h̄ω
d (h̄ω)

2π
, (27)

where Rn denotes the spatial position of the qth slab, and ε ≡
ω2 is the eigenvalue of the harmonic FC matrix. f eq(ω, Teff )
is the Bose-Einstein equilibrium phonon distribution at an
effective local temperature Teff . The local phonon number in
Eq. (27) is related to the diagonal blocks of the lesser phonon
Green’s function [80] and is computed as

ρ(ε, Rn) = Tr

[
1

N

∑
q⊥

iG<
nn(ω; q⊥)

]
, (28)

with “Tr” denoting the trace of a square matrix, and the sub-
script “nn” represents the sub-block of G< corresponding to
the qth slab. The local density of states (LDOS) in Eq. (27)
is defined as LDOS(ε, Rn) = Tr[Ann(ω)], with the spectral
function matrix computed as

Ann(ω) = 1

N

∑
q⊥

Ann(ω; q⊥)

= 1

N

∑
q⊥

i[G>
nn(ω; q⊥) − G<

nn(ω; q⊥)]. (29)

In a previous work on coupled electron-phonon NEGF
modeling [80], a different definition of local temperature was
adopted based on the local phonon number conservation con-
dition. This approach amounts to removing one h̄ω in the
integration on both sides of Eq. (27). Here we keep the con-
vention of using local energy density to characterize the local
temperature in nonequilibrium transport as currently done in
the heat transport community [21,67–69].

D. First-principle input

In this work, the material properties of silicon are adopted
for the nanostructures and are obtained by first-principle
(DFT) calculation. The DFT calculation is implemented in
the open-source package QUANTUM ESPRESSO (QE) [81] with
norm-conserving pseudopotential and the LDA (local density

approximation) exchange-correlation functional for silicon. A
kinetic energy cutoff of 60 Ry is used for the wave func-
tion and a self-consistent convergence threshold of 10−12 is
adopted after independence check. Firstly, a relaxation pro-
cess on a primitive unit cell is run to obtain an optimized
lattice constant of 5.4018 Å with an electronic wave vector
grid of 8 × 8 × 8. For the harmonic FC, the finite dis-
placement method is used as implemented in the open-source
package PHONOPY [82] combined with the DFT calculation
in QE. A supercell of 3 × 3 × 3 conventional unit cells
(216 atoms) is considered, with all the interactions within
the supercell included. An electronic wave vector of 2 × 2
× 2 is used in DFT calculation. For the third-order anhar-
monic FC, the finite displacement method is also used as
implemented in the open-source package THIRDORDER [83]
combined with the DFT calculation in QE. A supercell of
2 × 2 × 2 conventional unit cells (64 atoms) is adopted. In
terms of the atomic interaction range, we consider, respec-
tively, the first, second, and third nearest-neighbor shells to
compare the results. An electronic wave vector of 1 × 1 × 1 is
taken in DFT calculation. After extracting both the harmonic
and third-order anharmonic FCs, we use them to calculate
the bulk thermal conductivity of silicon (with nature isotope
abundancy) in the open-source package SHENGBTE [83]. The
results at room temperature (300 K) calculated (based on
the primitive unit cell) with a phonon wave vector 24 × 24
× 24 are, respectively, 120.69, 136.46, and 147.13 (W/m K)
when the atomic interaction within the first, second, and third
nearest-neighbor shells are separately considered in calculat-
ing the third-order FC. The thermal conductivity result is very
close to the experimental value (148W/m K) when the third
nearest-neighbor shell is considered, which demonstrates the
good quality of DFT harmonic and anharmonic FCs. Due
to the challenge of large computational cost, we consider
only the first nearest-neighbor shell for the third-order FC in
NEGF, which underestimates the bulk thermal conductivity
at 300 K by about 20%. Since the present work is mainly
focused on the demonstration of the anharmonic phonon
NEGF methodology, such a simplified treatment captures the
dominant third-order interaction and is acceptable from the
perspective of microscopic modeling. The supercells in the
DFT calculation of harmonic and anharmonic FCs have a
limited size. The DFT FC matrices obtained for the super-
cells are then used to reconstruct the larger FC matrices for
nanostructures as input into the large-scale phonon NEGF
simulation. In our simulation, one conventional unit cell of
silicon is chosen as one slab of the device in Fig. 3. The
reconstruction procedure of both harmonic and third-order
FC matrices for the device nanostructures is provided in
Appendix E.

III. RESULTS AND DISCUSSIONS

In this section, we mainly aim to demonstrate the va-
lidity and application of the phonon NEGF formalism and
computational framework introduced in Sec. II. Firstly, a
simple case of ballistic heat transport at a Si/Ge interface is
considered in Sec. III A. The quantitative validation of the
anharmonic phonon NEGF formalism remains challenging
due to its limited computational capability for extremely small
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FIG. 5. Phonon NEGF simulation of ballistic heat transport through Si/Ge interface: (a) schematic of numerical model; blue (green)
spheres represent Si (Ge); (b) frequency-dependent interfacial transmission; (c) frequency-dependent interfacial transmissivity (interfacial
transmission divided by the transmission of pure Si). The circles and diamonds represent the results of ballistic phonon NEGF with DFT input
from Refs. [54,57], respectively, whereas the solid line represents the result of the present work.

structures and/or the usual empirical anharmonic FC input
in previous works. In Sec. III B, we tackle this challenge
by modeling anharmonic heat transport across a silicon thin
film with a thickness larger than 10 nm through our DFT-
based large-scale NEGF simulation. We discuss some crucial
approximations in the treatment of anharmonic phonon scat-
tering self-energy in Sec. III C. Finally in Sec. III D, we show
an application of the anharmonic phonon NEGF to heat trans-
port through a heterogeneous Si/Ge thin film and discuss some
perspectives as well.

A. Validation: Ballistic heat transport

We consider ballistic heat transport through a Si/Ge inter-
face as shown in Fig. 5(a), with only one unit cell (uc) in the
device region. The lattice constant and harmonic FC of Ge are
assumed the same as those of Si, with only the atomic mass
difference taken into account, to be consistent with already

reported studies [54,57]. This approximate treatment is rather
reasonable since the lattice structure of Ge is indeed very
similar to that of Si. After a numerical convergence test, a fre-
quency mesh of Nm = 201 and transverse wave vector mesh
of 20 × 20 are adopted in the present NEGF simulation with
the effect of anharmonic phonon-phonon scattering turned off.
Note that the mesh of both frequency and transverse wave
vector for the present Si/Ge interface transport shall be much
denser than that in homogeneous Si film to be discussed in
Sec. III B. This is due to the very different cutoff frequencies
(almost twofold difference) in the phonon bandstructures of Si
and Ge. The ballistic transmission is calculated based on the
Caroli formula [29,54]. The spectral transmission and trans-
missivity through the Si/Ge interface are shown in Figs. 5(b)
and 5(c), respectively, which demonstrates an overall good
agreement with respect to previous studies [54,57]. The minor
difference may arise from the slightly different DFT harmonic
FCs calculated by different groups.
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FIG. 6. Schematic of the numerical model for phonon NEGF
simulation of anharmonic heat transport across a silicon thin film
with a thickness d . The cross-section period is a conventional unit
cell of silicon with eight atoms, and the total number of atoms in
the device region is eight times the number of unit cells along the
transport direction. Here both the cross section and its two transverse
periodic images are shown.

B. Validation: Anharmonic heat transport

In this subsection, we present a validation of the theoretical
model of anharmonic scattering self-energy in the phonon
NEGF formalism. A classical case of heat transport across a
silicon thin film with a thickness d around T0 is considered, as
shown in Fig. 6. The temperatures of the left contact (contact
1) and the right contact (contact 2) are set at T0 + �T/2 and
T0 − �T/2, respectively (with a temperature difference �T).
We consider cases of T0 = 50, 100, 200, and 300 K, with the
temperature difference �T = 4, 4, 10, and 10 K respectively.
The heat transport under such a temperature difference still
lies within a linear regime based on our numerical test under
a tiny temperature difference of 0.1 K. A frequency mesh of
101 and a transverse wave vector mesh 6 × 6 are adopted
after a numerical convergence test at 300 K as summarized in
Table III. Denser meshes produce thermal conductance within
about 2% variation compared to the present mesh. We con-
sider a series of thicknesses for the silicon thin film up to 24
uc (13 nm) due to computational cost limitations. For all the
cases, the SCBA iterative solution of the governing equations
in Sec. II B converges within ten iterations. Usually more it-
erations are needed for larger thickness or higher temperature
due to stronger anharmonic phonon-phonon scattering. The
computational time cost is about 1–36 h for all the cases in this
subsection with 3636 CPUs. The position-dependent spectral

heat flow and heat flow across the thin film with a thickness of
20 uc (10.8 nm) at 300 K are shown in Fig. 7, which demon-
strates the good validity of heat flow conservation along the
transport direction. After the convergence of SCBA iteration,
the thermal conductance of the thin film is computed by G =
J/(Ac�T ), with J the average heat flow across the thin film
and Ac the cross-section area of the device region (Ac = a2 · a3

here). The effective thermal conductivity of the thin film is
then calculated from the thermal conductance as κeff = Gd .

To provide benchmark data to the anharmonic phonon
NEGF simulation result, we conduct a Monte Carlo (MC)
solution of the phonon Boltzmann equation for the same
cross-plane heat transport with consistent DFT input. In prin-
ciple, NEGF and Boltzmann formalisms should provide very
similar results in the transport regime where the particle pic-
ture of phonons is valid and the coherent effects are negligible.
For cross-plane heat transport through a silicon thin film at
room temperature, a recent study has shown that the phonon
Boltzmann equation could work down to a thickness of about
10 nm [84]. This critical thickness is sound since the dominant
phonon coherence length of silicon at room temperature is
about 1 nm [6]. Thus for a thickness larger than 10 nm,
the Monte Carlo solution could be a good benchmark for
the anharmonic phonon NEGF result. We adopt an efficient
energy-based deviational phonon MC scheme [85] for solv-
ing the Boltzmann equation under the single-mode relaxation
time (SMRT) approximation, which is a very good model
for silicon with weak normal phonon scattering [9,83]. The
phonon dispersion and relaxation time are computed from the
same DFT harmonic and anharmonic FCs as those for the
phonon NEGF, and then converted into average isotropic ones
[86] as input into the MC scheme. To treat the isothermal
boundary conditions, the deviational particles emitted from
the two contacts follow the Bose-Einstein equilibrium distri-
bution [85], which is consistent with the treatment in phonon
NEGF by Eqs. (5) and (6). We use 106–5 × 106 deviational
particles in the MC simulation at different film thicknesses
and temperatures to ensure small statistical fluctuations. As
a validation of the present MC code, the thickness-dependent
cross-plane thermal conductivity of a silicon thin film at 300 K
is shown in Fig. 8(a) when the third nearest-neighboring shell
is considered in the third-order DFT FC. The MC result shows
very good agreement with (i) the previous MC study consid-
ering DFT input [87]; (ii) a recent experimental measurement
[88].

TABLE III. Mesh independence verification for phonon NEGF simulation of anharmonic heat transport across a silicon thin film with a
thickness d = 5 uc (1 uc = 5.4018 Å) at 300 K.

Frequency mesh Transverse wave vector mesh Ballistic thermal conductance (MW/m2 K) Thermal conductance (MW/m2 K)

61 4 × 4 1130.18 937.73
81 4 × 4 1090.59 928.05
81 6 × 6 1069.35 894.55
101 4 × 4 1074.60 894.32
101 6 × 6 1040.03 890.97
101 8 × 8 1053.53 872.05
121 6 × 6 1061.24 883.33
121 8 × 8 1065.81 893.08
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FIG. 7. Heat flow across a silicon thin film with a thickness of 20 uc (10.8 nm) at 300 K by phonon NEGF: (a) position-dependent spectral
heat flow by anharmonic NEGF with DFT input; (b) position-dependent heat flow by ballistic NEGF with DFT input (dashed line) and by
anharmonic NEGF with DFT input (solid line with circles).

Since only the first nearest-neighboring shell is considered
in the third-order DFT FC input in the anharmonic phonon
NEGF simulation, we also consider the same FC input in
MC. The cross-plane thermal conductivity of a silicon thin
film with a thickness of 20 uc (10.8 nm) and 24 uc (13 nm)
at 300 K is shown in Table IV. It is seen that the result
predicted by the present NEGF simulation is very close to
the corresponding MC result. The ∼10% underestimation of
the NEGF formalism comes from the fact that we still neglect
some terms in the diagonal blocks and all the terms in the
first off-diagonal blocks of the phonon scattering self-energy
as explained in Sec. II C 1. Although these terms are small, in-
cluding more terms in the scattering self-energy is expected to

increase the thermal conductivity a bit, as will be inferred later
in Sec. III C. Taking into account such effect, this comparison
can act as a quantitative validation of the present anhar-
monic phonon NEGF formalism and numerical framework.
As a comparison to the result by the scattering self-energy in
previous anharmonic NEGF formalism in Refs. [43,64], we
conduct a simulation in the present numerical framework by
including the corresponding factor of π/9 and 4 (cf. Sec. II A),
respectively, before the right-hand side of Eq. (14). The silicon
thin film with a thickness of 20 uc (10.8 nm) is simulated
for the former comparison, and the thicknesses of 3 and 5
uc for the latter one. The scattering self-energy in Ref. [43]
overestimates the thermal conductance (867.20 MW/m2 K)

FIG. 8. Thickness-dependent cross-plane thermal conductivity of silicon thin film at 300 K: (a) comparison of the result by the present
Monte Carlo (MC) with DFT input considering third nearest-neighboring shell in the third-order FC to previous result by MC with DFT
input [87] and experimental data [88]; (b) comparison of the present ballistic and anharmonic NEGF with DFT input with the present MC
with DFT input considering first nearest-neighboring shell in the third-order FC (consistent with that in anharmonic NEGF). The dashed
line represents the ballistic solution of the Boltzmann transport equation (BTE) with the same DFT input: κeff = Gballisticd where the ballistic
thermal conductance is computed by Gballistic = ∑

s

∫
vgx (q,s)>0 vgx (q, s)h̄ω(q, s)∂ f eq/∂T dq/(2π )3.
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TABLE IV. The cross-plane thermal conductivity of silicon thin film at 300 K predicted by Monte Carlo (MC) and by the present
anharmonic phonon NEGF with consistent DFT input.

Film thickness d Thermal conductivity by MC + DFT (W/m K) Thermal conductivity by the present NEGF + DFT (W/m K)

20 uc (10.8 nm) 8.4640 7.4489
24 uc (13 nm) 9.7662 8.4025

by 26% compared to the present result (689.45 MW/m2 K)
for the simulated case. In contrast, the scattering self-energy
in Ref. [64] underestimates the thermal conductance (744.76
and 642.16 MW/m2 K) by 21% and 28% separately com-
pared to the present results (941.72 and 890.97 MW/m2 K)
for the considered two cases. The amount of underestimation
is expected to increase with increasing film thickness due
to stronger anharmonic scattering. In summary, the previous
scattering self-energy expressions [43,64] will underestimate
or overestimate appreciably the phonon-phonon interaction
strength.

It is also interesting to note that the results of the phonon
Boltzmann equation and the present phonon NEGF formal-
ism also agree well for a film thickness smaller than 10
nm, as shown in Fig. 8(b). This indicates that the phonon
Boltzmann equation seems to still work for cross-plane heat
transport through a silicon thin film of a few nanometers.
In principle, the phonon coherence shall play an important
role in extremely small nanostructures, yet it does not man-
ifest explicitly in the present cross-plane case. The underlying
physical mechanism remains to be investigated in the future.
Quantifying the coherence of phonons and its contribution to
heat transport remains an open question. Since the computed
thermal conductivities have some difference when the first and
the third nearest-neighboring shell are, respectively, consid-
ered, we show the thickness-dependent cross-plane thermal
conductivity normalized by the corresponding bulk value in
Fig. 9. At small thickness, the present anharmonic phonon
NEGF result agrees well with the general trend of nondimen-
sional thermal conductivity from different reference data.

We also provide the results of local temperature distribu-
tion across the silicon thin film with a thickness of 20 uc (10.8
nm) and 24 uc (13 nm) at 300 K in Fig. 10. The results by the
present anharmonic phonon NEGF simulation show a good
agreement with those of the MC simulation with the same
DFT input. A large temperature jump near the two contacts
is obtained due to the strong nonequilibrium effect between
the thin film and contacts, which is well known in the heat
transport community and has been already reported [6,7].
This represents a further demonstration of the accuracy of
the present formalism and numerical framework. Moreover,
the large deviation of local temperature distribution from the
result in the ballistic limit indicates that the phonon-phonon
scattering is appreciable even at thicknesses around 10 nm.
This is also clearly visible in the difference between ballistic
and anharmonic results in Fig. 8(b), where about 20% reduc-
tion of thermal conductivity is obtained due to anharmonic
phonon-phonon scattering. Physically this reduction mainly
comes from the scattering of optical phonons and LA (longi-
tudinal acoustic) phonons, as is inferred from the spectral heat
flow distribution in Fig. 11.

Finally, we demonstrate the temperature-dependent results
for the thin film with a thickness of 20 uc (10.8 nm) in Fig. 12.
With decreasing temperature, the phonon-phonon scattering
rate will decrease due to smaller amplitude of lattice atomic
vibration and thus weaker anharmonicity. As a result, the re-
duction of thermal conductivity due to anharmonic scattering
will also decrease with temperature, as shown in Fig. 12(a).
Below 100 K, the heat transport across the silicon thin film
becomes almost ballistic. This is also seen in the dimension-
less temperature distribution in Fig. 12(b). As the phonon
scattering weakens at lower temperature, the thermalization
within the thin film is more difficult. Thus larger temperature
jump occurs near the contacts and the temperature distribution
turns to be closer to the uniform profile in the ballistic limit.
The present anharmonic phonon NEGF formalism generally
captures well the behaviors of heat transport from the low
temperature regime, wherein the quantum effect is impor-
tant, to the room temperature regime. It still works well at
higher temperature, where the anharmonic phonon scattering
becomes even stronger. We do not discuss such situation for
this case due to the very large computational cost.

FIG. 9. Thickness-dependent nondimensional cross-plane ther-
mal conductivity of silicon thin film at 300 K: experimental data
(filled squares with error bar) [88], previous Monte Carlo (MC)
with DFT input (squares) [87], nonequilibrium molecular dynamics
(NEMD) and Boltzmann transport equation (BTE) with the same
Tersoff potential input (triangles) [84], present MC with DFT input
considering third (circles) and first (diamonds) nearest-neighboring
shell in the third-order FC, the present anharmonic NEGF with DFT
input, considering only first nearest-neighboring shell in the third-
order FC (triangles with line).
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FIG. 10. Temperature distribution in cross-plane heat transport through a silicon thin film with different thicknesses under a contact
temperature difference of 10 K around 300 K: (a) d = 20 uc (10.8 nm); (b) d = 24 uc (13 nm). The squares represent the result by the
present anharmonic phonon NEGF with DFT input, the solid line represents the result by the present Monte Carlo (MC) with the same DFT
input considering only the first nearest-neighboring shell in the third-order FC, whereas the dashed line represents the uniform distribution in
purely ballistic limit.

C. Assessment of approximations in numerical implementation

In this subsection, we discuss the numerical approxima-
tions implemented for the calculation of the anharmonic
phonon scattering self-energy, which is crucial to ensure
a balance between accuracy and efficiency in large-scale
quantum heat transport simulation. As already mentioned in
Sect. II C 1, a simpler treatment of the scattering self-energy
matrix, by considering only the 3 × 3 diagonal blocks, is
adopted in a previous work by one of the coauthors [64]. Here
we also include this approximation into our computational

FIG. 11. Spectral heat flow in cross-plane heat transport through
a silicon thin film with a thickness of 20 uc (10.8 nm) at 300 K: The
dashed line denotes the result by ballistic phonon NEGF, the solid
line represents the result by anharmonic phonon NEGF. The spectral
heat flow has been averaged over the 20 slabs of the device for both
cases.

framework and compare the obtained results with those of the
present approximation, i.e., considering the dominant terms
in the Nx × Nx diagonal blocks (cf. Sec. II C 1). The heat
transport across a silicon thin film with two thicknesses of 3
and 5 uc at room temperature is simulated. For the thickness of
3 uc, the thermal conductance predicted based on the present
approximation and the previous one is, respectively, 939.72
and 867.65 (MW/m2 K). For the thickness of 5 uc, the thermal
conductance based on the present and previous approximation
is, respectively, 890.97 and 784.09 (MW/m2 K). Comparing
to the present approximation, the 3 × 3 diagonal approxi-
mation will underestimate ∼8% and ∼12% of the thermal
conductance of silicon thin film with a thickness of 3 and
5 uc, respectively. The underestimation will increase with
increasing film thickness due to the stronger phonon-phonon
scattering rate. The underlying reason can be understood from
the spectral heat flow results shown in Fig. 13. It is seen that
considering only the 3 × 3 diagonal blocks of the anharmonic
scattering self-energy matrix will significantly overestimate
the scattering rate of low-frequency TA (transverse acous-
tic) phonons which mainly contribute to heat transport. In
principle, the incorporation of more terms into the scattering
self-energy matrix in the present approximation will help in
retrieving the underestimation of thermal conductivity shown
in Table IV and Fig. 8(b). However, since the dominant
terms have already been considered, the present treatment
constitutes a good balance between the computational ac-
curacy and efficiency. Note that a further approximation
was made to the product of the greater/lesser Green’s func-
tion matrix in the phonon scattering self-energy of Eq. (8)
[64]:

�
>, <i j
s, ll (ω) = 1

2
ih̄

∑
l1l2

∑
j1 j2 j3 j4

∫ ∞

−∞

dω′

2π
�

i j1 j2
ll1l2

�
j j3 j4
ll2l1

× G>, < j1 j4
l1l1

(ω′)G>, < j2 j3
l2l2

(ω − ω′), (30)
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FIG. 12. Temperature-dependent cross-plane heat transport through silicon thin film with a thickness of 20 uc (10.8 nm): (a) thermal
conductivity and (b) dimensionless temperature distribution by the present anharmonic NEGF and by the Monte Carlo (MC) with consistent
DFT input considering only the first nearest-neighbor shell in the third-order FC; the dashed lines denote the ballistic solution of the
Boltzmann transport equation (BTE) with the same DFT input. The dimensionless temperature is defined as (T –Tc )/(Th–Tc ), with Th and
Tc the temperatures of two contacts.

where the matrix product is simplified into the product of
their 3 × 3 diagonal blocks. Such kind of local diagonal
approximation is usually assumed in electron NEGF [41,80]
and will speed up the simulation and reduce the computa-
tional cost. Yet based on our numerical test, it is a too large
simplification for phonon NEGF which will lead to a further
overestimation of the phonon-phonon scattering rate and will
make the SCBA iteration diverge. The physical interpretation
may be that the self-energy for electron-phonon scattering is
linearly proportional to the electron Green’s function, whereas
the self-energy for phonon-phonon scattering is a quadratic
function of the phonon Green’s function, which is a more

complicated nonlinear problem. This could be a possible ex-
planation for the large scaling of empirical valence-force-field
anharmonic FCs to fit the experimental thermal conductivity
of silicon therein [64].

D. Application and perspective

The present nonequilibrium Green’s function formalism
is specially applicable for nanostructures with broken trans-
lational symmetry, where the usual phonon picture and
Boltzmann transport theory do not work any more. In this

FIG. 13. Spectral heat flow in cross-plane heat transport through silicon thin film with different thicknesses at 300 K: (a) 3 uc, (b) 5 uc.
The dashed line and solid line represent, respectively, the result of the present ballistic and anharmonic NEGF with DFT input; the dash-dotted
line represents the result of the anharmonic NEGF considering only 3 × 3 diagonal blocks of the anharmonic phonon scattering self-energy
matrix.
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FIG. 14. Heat transport through a multilayer Si/Ge thin film by phonon NEGF: (a) schematic of physical model; the blue (green) spheres
represent Si (Ge); (b) temperature-dependent ballistic and anharmonic thermal conductance; (c) ballistic and anharmonic spectral heat flow at
300 and 600 K; the result is averaged over the spectral heat flow from the first slab to the second one and that from the second slab to the third
one (the two spectral heat flows are almost the same); (d) local density of states in different slabs.

subsection, we show a NEGF simulation of heat transport
through a multilayer Si/Ge heterogeneous thin film with a
thickness of only 3 uc, shown in Fig. 14(a). The embedded
Ge layer plays the role of a potential barrier to the heat con-
duction. Both the second- and third-order FCs of the Ge are
assumed to be the same as those of Si with only the atomic
mass difference taken into account [66]. A frequency mesh of
121 and a transverse wave vector mesh of 8 × 8 are adopted in
the simulation. In contrast to the usual reduction effect, here
the anharmonic phonon-phonon scattering enhances apprecia-
bly the thermal conductance compared to the ballistic limit,
as shown in Fig. 14(b). Such an enhancement increases with
increasing temperature, and reaches close to 20% at 600 K.
The underlying physical mechanism is that the anharmonicity
opens transport channels across the Ge barrier layer via the
interaction between phonons with different frequencies. The
spectral contribution of heat flow in Fig. 14(c) elucidates
indeed stronger interaction within 2–6 THz and 8–12 THz,
which correspond to the frequency range with good overlap

of local density of states in the Si layer and Ge layer, as given
in Fig. 14(d).

Another important case where the phonon Boltzmann
equation fails and the present anharmonic phonon NEGF
method becomes indispensable is the heat conduction through
superlattices with small periods. The anharmonic phonon-
phonon scattering plays a crucial part in destroying the
coherence of phonons, especially when the total thickness
is large and the system temperature is high [19], which was
instead modeled by ballistic phonon NEGF [59] due to the
limitation of methodology development. The present numeri-
cal framework provides an avenue to modeling such partially
coherent heat transport. As this work is mainly focused on the
methodology development and demonstration, the discussion
of the superlattices case is beyond the scope of the current
article and is pending in our future work. Note that recently a
generalized transport equation based on the Wigner distribu-
tion function [89] or Green-Kubo formalism [90] beyond the
Boltzmann equation is developed to model heat conduction in
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crystals and glasses in a unified way. One difference between
this generalized transport model and the anharmonic NEGF
is that the former still relies on a unit cell of the system
to compute its eigenstates and eigenenergies as input. The
present NEGF formalism only requires the FC matrix of the
system, which may not have any translational periodicity to
define a unit cell such as the case in Fig. 14(a) and the case
of aperiodic superlattices [17]. In addition, the generalized
transport model [89,90] is currently designed for the calcu-
lation of bulk thermal conductivity of crystals and glasses. To
directly model heat conduction in finite-size nanostructures,
the boundary treatment remains a challenging task due to the
difficulty in specifying the off-diagonal terms of the gener-
alized distribution function matrix. In comparison, it is quite
convenient in NEGF to treat both the boundary scattering and
anharmonic scattering via the self-energy concept.

IV. CONCLUSIONS

In summary, we present a nonequilibrium Green’s func-
tion (NEGF) computational framework with the first-principle
input for large-scale quantum heat transport simulations ac-
counting for the anharmonic phonon-phonon scattering. The
theoretical formulation of anharmonic scattering self-energy
is clarified through a careful diagrammatic perturbation anal-
ysis, with a Fourier’s representation further introduced, which
satisfies both the energy and momentum conservation for
nanostructures with transverse periodicity. A quantitative
validation of the anharmonic phonon NEGF formalism is
demonstrated through a comparison to the results by the
Boltzmann equation in the particle transport regime based on
a classical cross-plane heat transport in a silicon thin film.
The phonon-phonon scattering is shown to be non-negligible
even for films with a thickness as small as 10 nm and to
introduce a 20% reduction of thermal conductivity at room
temperature. The widely used local diagonal approximation of
the scattering self-energy in electron NEGF is shown to signif-
icantly overestimate the phonon-phonon interaction strength.
In heat conduction through an extremely thin heterogeneous
film, the anharmonic phonon scattering opens transport chan-
nels and enhances the thermal conductance up to around 20%
at 600 K. The present computational framework provides
a potential platform for first-principle prediction of thermal
boundary conductance at the interface, and for investigation
of the transition from coherent to incoherent heat transport in
nanophononic crystals such as superlattices, which is pending
in the near future. This study thus opens opportunities for
the understanding and tuning of phonon heat transport in the
coherent quantum wave regime.
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APPENDIX A: DERIVATION OF ANHARMONIC
SCATTERING SELF-ENERGY THROUGH

DIAGRAMMATIC PERTURBATION EXPANSION

For heat transport in 1D nanostructures without any trans-
lational periodicity, the total Hamiltonian operator of the
system in the Heisenberg representation is expressed as [8]

H (t ) = H0(t ) + V (t ), (A1)

where H0(t ) and V(t) are the exactly solvable harmonic part
and the third-order anharmonic perturbation part, respectively,

H0(t ) = 1

2

∑
n,i

u̇i
n(t )u̇i

n(t ) + 1

2

∑
nm

∑
i j

�i j
nmui

n(t )u j
m(t ), (A2)

V (t ) = 1

3!

∑
nml

∑
i jk

�
i jk
nml u

i
n(t )u j

m(t )uk
l (t ), (A3)

where n, m, l denote the atomic index, whereas i, j, k denote
the Cartesian coordinate index (x, y, z). ui

n(t ) is the atomic dis-
placement operator rescaled with atomic mass (ui

n = ri
n

√
Mn,

with ri
n the real atomic displacement operator and Mn the

atomic mass). The dot on the atomic displacement operator
means the time derivative (corresponding to atomic velocity).
The normalized second-order and third-order force constants
�

i j
nm and �

i jk
nml are defined as

�i j
nm = 1√

MnMm

∂2E

∂ri
n∂r j

m

∣∣∣∣
0

, (A4)

�
i jk
nml = 1√

MnMmMl

∂3E

∂ri
n∂r j

m∂rk
l

∣∣∣∣∣
0

, (A5)

where E denotes the atomic interaction potential, and the
subscript “0” denotes the equilibrium position of the crystal
lattice.

The starting point of the diagrammatic perturbation expan-
sion is the definition of the contour-ordered phonon Green’s
function [43,44]:

Gi j
nm(τ, τ ′) = −i

〈
TC

[
ui

n(τ )u j
m(τ ′)

]〉
, (A6)

where TC is the contour ordering operator, and the times τ, τ ′
are on the contour. Note that in the present derivation we
adopt the convention of h̄ = 1 [91], which shall be recovered
in the final expression. Transforming from the Heisenberg
representation to the interaction representation of Eq. (A6),
we obtain the following expression for the contour-ordered
phonon Green’s function:

Gi j
nm(τ, τ ′) = −i

〈
TC

[
SCûi

n(τ )û j
m(τ ′)

]〉
0, (A7)

where 〈· · · 〉0 denotes the expectation over the exactly solv-
able harmonic part at equilibrium with the density matrix,

FIG. 15. Connected Feynman diagrams for three-phonon anhar-
monic scattering process.
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ρ0 = exp(−βH0)/Tr[exp(−βH0)], where β = 1/kBT . The caret on the operators denotes the interaction representation. The
evolution operator in Eq. (A7) is defined as [37,40]

SC = exp

[
−i

∫
C

dτ1V̂ (τ1)

]
=

∞∑
n=0

(−i)n

n!

∫
C

dτ1

∫
C

dτ2 · · ·
∫

C
dτnV̂ (τ1)V̂ (τ2) · · · V̂ (τn), (A8)

where the third-order perturbation part of the Hamiltonian in the interaction representation is

V̂ (τ ) = 1

3!

∑
nml

∑
i jk

�
i jk
nml û

i
n(τ )û j

m(τ )ûk
l (τ ). (A9)

The evolution operator is the basis for the diagrammatic perturbation expansion. Considering the infinite series in Eq. (A8)
within second order and substituting into Eq. (A7), we obtain

Gi j
nm(τ, τ ′) = G(0)i j

nm (τ, τ ′) + G(1)i j
nm (τ, τ ′) + G(2)i j

nm (τ, τ ′), (A10)

where the zeroth-, first-, and second-order terms are, respectively,

G(0)i j
nm (τ, τ ′) = −i

〈
TC

[
ûi

n(τ )û j
m(τ ′)

]〉
0, (A11)

G(1)i j
nm (τ, τ ′) = (−i)2

∫
C

dτ1
〈
TC

[
ûi

n(τ )V̂ (τ1)û j
m(τ ′)

]〉
0, (A12)

G(2)i j
nm (τ, τ ′) = (−i)3

2

∫
C

dτ1

∫
C

dτ2
〈
TC

[
ûi

n(τ )V̂ (τ1)V̂ (τ2)û j
m(τ ′)

]〉
0. (A13)

The first-order term in Eq. (A12) will be vanishing since it involves an odd number of atomic displacement operators. The
full expression of the second-order term will be

G(2)i j
nm (τ, τ ′) = (−i)3

2

∫
C

dτ1

∫
C

dτ2
1

3! · 3!

∑
n1m1l1

∑
i1 j1k1

∑
n2m2l2

∑
i2 j2k2

�
i1 j1k1

n1m1l1
�

i2 j2k2

n2m2l2

× 〈
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[
ûi

n(τ )ûi1
n1

(τ1)û j1
m1

(τ1)ûk1
l1

(τ1)ûi2
n2

(τ2)û j2
m2

(τ2)ûk2
l2

(τ2)û j
m(τ ′)

]〉
0
. (A14)

Wick’s theorem [37,91] will be applied for the decomposition of the expectation of the product of eight displacement
operators, where only the connected diagrams shown in Fig. 15 are considered. These represent the physically feasible
three-phonon anharmonic scattering process. There are 3 × 3 × 2 pairing combinations for each case in Fig. 15, and totally
36 equivalent pairing combinations such that Eq. (A14) becomes

G(2)i j
nm (τ, τ ′) = (−i)3

2

∫
C

dτ1

∫
C

dτ2
36

3! · 3!

∑
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∑
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∑
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∑
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�
i1 j1k1

n1m1l1
�

i2 j2k2

n2m2l2

× 〈
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ûi
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]〉

0

〈
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û j1
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m2
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0

〈
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ûk1
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n2
(τ2)

]〉
0

〈
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[
ûk2

l2
(τ2)û j

m(τ ′)
]〉

0
, (A15)

which can be rewritten into

G(2)i j
nm (τ, τ ′) = i

2

∫
C

dτ1

∫
C

dτ2

∑
n1m1l1

∑
i1 j1k1

∑
n2m2l2

∑
i2 j2k2

�
i1 j1k1

n1m1l1
�

i2 j2k2

n2m2l2
G(0)ii1

nn1
(τ, τ1)G(0) j1 j2

m1m2
(τ1, τ2)G(0)k1i2

l1n2
(τ1, τ2)G(0)k2 j

l2m (τ2, τ
′).

(A16)

Putting Eqs. (A11) and (A16) into Eq. (A10), we obtain the contour-order phonon Green’s function within second order as

Gi j
nm(τ, τ ′) = G(0)i j

nm (τ, τ ′) + i

2

∫
C

dτ1

∫
C

dτ2

∑
n1m1l1

∑
i1 j1k1

∑
n2m2l2

∑
i2 j2k2

�
i1 j1k1

n1m1l1
�

i2 j2k2

n2m2l2

× G(0)ii1
nn1

(τ, τ1)G(0) j1 j2
m1m2

(τ1, τ2)G(0)k1i2
l1n2

(τ1, τ2)G(0)k2 j
l2m (τ2, τ

′). (A17)

Comparing Eq. (A17) to Dyson’s equation it follows [37,40] that

Gi j
nm(τ, τ ′) = G(0)i j

nm (τ, τ ′) +
∫

C
dτ1

∫
C

dτ2

∑
n1l2

∑
i1k2

G(0)ii1
nn1

(τ, τ1)�i1k2
s, n1l2

(τ1, τ2)Gk2 j
l2m(τ2, τ

′), (A18)

and we get the expression of anharmonic phonon scattering self-energy as

�i j
s, nm(τ1, τ2) = i

2

∑
m1l1n2m2

∑
j1k1i2 j2

�
i j1k1

nm1l1
� ji2 j2

mn2m2
Gj1 j2

m1m2
(τ1, τ2)Gk1i2

l1n2
(τ1, τ2), (A19)

where the unperturbed Green’s function has been replaced by the full Green’s function based on the self-consistent Born
approximation. Note that the factor of 4 in the scattering self-energy expression in Ref. [64] with respect to the present expression
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comes from the repeated count of the combinations in Eq. (A15) because the middle two pairings such as 〈TC[û j1
m1 (τ1)û j2

m2 (τ2)]〉0

are distinguished from 〈TC[û j2
m2 (τ2)û j1

m1 (τ1)]〉0 [92]. Such two terms are actually the same since the definition of the contour-order
phonon Green’s function is irrelevant to the order of atomic displacement operators. Regarding the factor of π /9 in the scattering
self-energy in Ref. [43] with respect to the present one, it is difficult to clarify the reason for this difference since we cannot find
any details of the derivation in the literature [43].

Through the analytic continuation process based on the Langreth theorem [40], we get the greater/lesser scattering self-energy
in real time from Eq. (A19):

�>, <i j
s, nm (t1, t2) = i

2

∑
m1l1n2m2

∑
j1k1i2 j2

�
i j1k1

nm1l1
� ji2 j2

mn2m2
G>, < j1 j2

m1m2
(t1, t2)G>, <k1i2

l1n2
(t1, t2). (A20)

For the stationary state heat transport considered in this work, the dependence on t1 and t2 will be reduced to the dependence
on (t1–t2). For convenience, the following Fourier transform and its inverse transform are introduced [91]:

�>, <i j
s, nm (t1, t2) = �>, <i j

s, nm (t1 − t2) =
∫ ∞

−∞

dω

2π
exp [−i(t1 − t2)ω]�>, <i j

s, nm (ω), (A21)

�>, <i j
s, nm (ω) =

∫ ∞

−∞
dt1 exp [iω(t1 − t2)]�>, <i j

s, nm (t1 − t2). (A22)

Fourier transforms of Eqs. (A21) and (A22) are also applicable to the Green’s function in Eq. (A20). After the Fourier
transform, Eq. (A20) becomes

�>, <i j
s, nm (ω) = i

2

∑
m1l1n2m2

∑
j1k1i2 j2

∫ ∞

−∞

dω′

2π
�

i j1k1

nm1l1
� ji2 j2

mn2m2
G>, < j1 j2

m1m2
(ω′)G>, <k1i2

l1n2
(ω − ω′), (A23)

which is exactly Eq. (8) in the main text. It is also seen from Eq. (A23) that the energy conservation is automatically satisfied in
the three-phonon scattering process: ω = ω′ + (ω − ω′).

APPENDIX B: FOURIER’S REPRESENTATION OF THE ANHARMONIC PHONON-PHONON
SCATTERING SELF-ENERGY MATRIX

The starting point of the derivation is the expression of anharmonic phonon scattering self-energy matrix Eq. (8) for 1D
nanostructures:

�
>, <i j
s, ll ′ (ω) = 1

2
ih̄

∑
l1l2l3l4

∑
j1 j2 j3 j4

∫ ∞

−∞

dω′

2π
�

i j1 j2
ll1l2

�
j j3 j4
l ′l3l4

G>, < j1 j4
l1l4

(ω′)G>, < j2 j3
l2l3

(ω − ω′). (B1)

The inverse transform of the Fourier’s representation, Eq. (16), for the anharmonic FC matrix is

�
i j1 j2
ll1l2

= 1

N2

∑
q⊥

∑
q′

⊥

�̃
i j1 j2
lx l1x l2x

(q⊥, q′
⊥) exp (iq⊥ · �R⊥) exp (iq′

⊥ · �R′
⊥). (B2)

For convenience of later derivation, Eq. (B2) is slightly rewritten into

�
i j1 j2
ll1l2

= 1

N2

∑
q⊥

∑
q′

⊥

�̃
i j1 j2
lx l1x l2x

(q⊥, q′
⊥) exp [i(q⊥ + q′

⊥) · �R⊥] exp
(
iq′

⊥ · �R′′
⊥
)
, (B3)

with �R′′⊥ = �R′⊥ − �R⊥ = (l1y − l2y)a2 + (l1z − l2z )a3.
The Fourier’s representation of the scattering self-energy, Green’s function, and third-order FC matrix in Eq. (B1) can be

expressed as follows:

�
<, >i j
s, ll ′ (ω) = 1

N

∑
q

exp (iq · �R)�<, >i j
s, lx l ′x (ω; q), (B4)

G<, > j1 j4
l1l4

(ω′) = 1

N

∑
q1

exp (iq1 · �R1)G<, > j1 j4
l1x l4x

(ω′; q1), (B5)

G<, > j2 j3
l2l3

(ω − ω′) = 1

N

∑
q2

exp (iq2 · �R2)G<, > j2 j3
l2x l3x

(ω − ω′; q2), (B6)

�
i j1 j2
ll1l2

= 1

N2

∑
q3

∑
q4

�̃
i j1 j2
lx l1x l2x

(q3, q4) exp [i(q3 + q4) · �R3] exp (iq4 · �R4), (B7)

�
j j3 j4
l ′l3l4

= 1

N2

∑
q5

∑
q6

�̃
j j3 j4
l ′x l3x l4x

(−q5,−q6) exp [i(q5 + q6) · �R5] exp (iq6 · �R6), (B8)
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where all the subscripts “⊥” are omitted to keep a simple notation, and the relative displacements are defined as follows:

�R = (ly − l ′
y)a2 + (lz − l ′

z )a3, (B9)

�R1 = (l1y − l4y)a2 + (l1z − l4z )a3, (B10)

�R2 = (l2y − l3y)a2 + (l2z − l3z )a3, (B11)

�R3 = (ly − l1y)a2 + (lz − l1z )a3, (B12)

�R4 = (l1y − l2y)a2 + (l1z − l2z )a3, (B13)

�R5 = (l3y − l ′
y)a2 + (l3z − l ′

z )a3, (B14)

�R6 = (l4y − l3y)a2 + (l4z − l3z )a3. (B15)

Substitution of Eqs. (B4)–(B8) into Eq. (B1) gives rise to

1

N

∑
q

exp (iq · �R)�<, >i j
s, lx l ′x (ω; q)

= ih̄

2

∑
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∑
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∑
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�̃
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× 1
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∑
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�̃
j j3 j4
l ′x l3x l4x

(−q5,−q6) exp [i(q5 + q6) · �R5] exp (iq6 · �R6)

×
∫ ∞

−∞

dω′
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1

N

∑
q1

exp (iq1 · �R1)G<, > j1 j4
l1x l4x

(ω′; q1)
1

N

∑
q2

exp (iq2 · �R2)G<, > j2 j3
l2x l3x

(ω − ω′; q2). (B16)

Since �R = �R3 + �R4 + �R2 + �R5, multiplying exp(−iq′ · �R) on both sides of Eq. (B16) and summing over (ly, lz ), we
re-form the left-hand side term as

1

N

∑
q

∑
�R

exp [i(q − q′) · �R]�<,>i j
s, lx l ′x

(ω; q) = �
<,>i j
s, lx l ′x

(ω; q′), (B17)

where a classical relation in lattice dynamics has been used [8,76]:∑
�R

exp [i(q − q′) · �R] = N�(q − q′). (B18)

The right-hand side term becomes

ih̄

2

∑
l1l2l3l4

∑
j1 j2 j3 j4

1

N2

∑
q3

∑
q4

�̃
i j1 j2
lx l1x l2x

(q3, q4)
∑
�R3

exp [i(q3 + q4 − q′) · �R3] exp [i(q4 − q′) · �R4]

× 1

N2

∑
q5

∑
q6

�̃
j j3 j4
l ′x l3x l4x

(−q5,−q6) exp [i(q5 + q6 − q′) · �R5] exp (iq6 · �R6)

×
∫ ∞

−∞

dω′

2π

1

N

∑
q1

exp (iq1 · �R1)G<, > j1 j4
l1x l4x

(ω′; q1)
1

N

∑
q2

exp [i(q2 − q′) · �R2]G<, > j2 j3
l2x l3x

(ω − ω′; q2)

= ih̄

2

∑
l1l2l3l4

∑
j1 j2 j3 j4

1

N

∑
q4

�̃
i j1 j2
lx l1x l2x

(q′ − q4, q4) exp [i(q4 − q′) · �R4]

× 1

N2

∑
q5

∑
q6

�̃
j j3 j4
l ′x l3x l4x

(−q5,−q6) exp [i(q5 + q6 − q′) · �R5] exp (iq6 · �R6)

×
∫ ∞

−∞

dω′

2π

1

N

∑
q1

exp (iq1 · �R1)G<, > j1 j4
l1x l4x

(ω′; q1)
1

N

∑
q2

exp [i(q2 − q′) · �R2]G<, > j2 j3
l2x l3x

(ω − ω′; q2). (B19)
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In the derivation of Eq. (B19), we have identified the sum over (ly, lz ) as a sum over �R3, and also used the relation Eq. (B18).
Therefore, the scattering self-energy is

�
<, >i j
s, lx l ′x (ω; q′) = ih̄

2

∑
l1l2l3l4

∑
j1 j2 j3 j4

1

N

∑
q4

�̃
i j1 j2
lx l1x l2x

(q′ − q4, q4) exp [i(q4 − q′) · �R4]

× 1

N2

∑
q5

∑
q6

�̃
j j3 j4
l ′x l3x l4x

(−q5,−q6) exp [i(q5 + q6 − q′) · �R5] exp (iq6 · �R6)

×
∫ ∞

−∞

dω′

2π

1

N

∑
q1

exp (iq1 · �R1)G<, > j1 j4
l1x l4x

(ω′; q1)
1

N

∑
q2

exp [i(q2 − q′) · �R2]G<, > j2 j3
l2x l3x

(ω − ω′; q2).

(B20)

Since only �R5 depends on (l ′
y, l ′

z ), summing both sides of Eq. (B20) over (l ′
y, l ′

z ) (identified as a sum over �R5) and using
again the relation Eq. (B18), we could reduce Eq. (B20) to

N�
<, >i j
s, lx l ′x (ω; q′)

= ih̄

2

∑
l1l2l3l4

∑
j1 j2 j3 j4

1

N

∑
q4

�̃
i j1 j2
lx l1x l2x

(q′ − q4, q4) exp [i(q4 − q′) · �R4]
1

N

∑
q6

�̃
j j3 j4
l ′x l3x l4x

(q6 − q′,−q6) exp (iq6 · �R6)

×
∫ ∞

−∞

dω′

2π

1

N

∑
q1

exp (iq1 · �R1)G<, > j1 j4
l1x l4x

(ω′; q1)
1

N

∑
q2

exp [i(q2 − q′) · �R2]G<, > j2 j3
l2x l3x

(ω − ω′; q2). (B21)

Since �R4 = �R1 − �R2 + �R6, Eq. (B21) is reformulated into

N�
<, >i j
s, lx l ′x (ω; q′) = ih̄

2

∑
l1l2l3l4

∑
j1 j2 j3 j4

1

N

∑
q4

�̃
i j1 j2
lx l1x l2x

(q′ − q4, q4)
1

N

∑
q6

�̃
j j3 j4
l ′x l3x l4x

(q6 − q′,−q6) exp [i(q6 + q4 − q′) · �R6]

×
∫ ∞

−∞

dω′

2π

1

N

∑
q1

exp [i(q1 + q4 − q′) · �R1]G<, > j1 j4
l1x l4x

(ω′; q1)

× 1

N

∑
q2

exp [i(q2 − q4) · �R2]G<, > j2 j3
l2x l3x

(ω − ω′; q2). (B22)

In this way, the sum over (l1y, l1z ) (identified as a sum over �R1) and the sum over (l2y, l2z ) (identified as a sum over �R2)
become independent, and the relation Eq. (B18) is used to remove the dependence on �R1 and �R2. Then the sum over (l3y, l3z )
(identified as a sum over �R6) becomes independent and the relation Eq. (B18) is used again. Finally, Eq. (B22) will be reduced
to the following expression:

�
<, >i j
s, lx l ′x (ω; q′) = ih̄

2

∑
l1x l2x l3x l4x

∑
j1 j2 j3 j4

1

N

∑
q4

�̃
i j1 j2
lx l1x l2x

(q′ − q4, q4)�̃ j j3 j4
l ′x l3x l4x

(−q4, q4 − q′)

×
∫ ∞

−∞

dω′

2π
G<, > j1 j4

l1x l4x
(ω′; q′ − q4)G<, > j2 j3

l2x l3x
(ω − ω′; q4). (B23)

Introducing a variable change, q′′ = q′ − q4, and rearranging the notation (q′ → q, q′′ → q′), we get the final expression of
anharmonic phonon-phonon scattering self-energy in the Fourier’s representation as

�
<, >i j
s, lx l ′x (ω; q) = 1

2
ih̄

∑
l1x l2x l3x l4x

∑
j1 j2 j3 j4

1

N

∑
q′

�̃
i j1 j2
lx l1x l2x

(q′, q − q′)�̃ j j3 j4
l ′x l3x l4x

(q′ − q,−q′)

×
∫ ∞

−∞

dω′

2π
G<, > j1 j4

l1x l4x
(ω′; q′)G<, > j2 j3

l2x l3x
(ω − ω′; q − q′). (B24)
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APPENDIX C: PROOF OF A GENERAL RELATION
BETWEEN NONEQUILIBRIUM PHONON GREEN’S

FUNCTIONS FOR 3D NANOSTRUCTURES

Based on the definition of Fourier’s representation in
Eq. (10), the greater/lesser phonon Green’s functions are ex-
pressed, respectively, as

G>,i j
lx l ′x (ω; q⊥) =

∑
�R⊥

exp (−iq⊥ · �R⊥)G>,i j
ll ′ (ω), (C1)

G<,i j
lx l ′x (ω; q⊥) =

∑
�R⊥

exp (−iq⊥ · �R⊥)G<,i j
ll ′ (ω). (C2)

The element of the transpose of the greater Green’s func-
tion matrix is

[G>(ω; q⊥)]T,i j
lx l ′x = G>, ji

l ′x lx
(ω; q⊥)

=
∑
�R′

⊥

exp (−iq⊥ · �R′
⊥)G>, ji

l ′l (ω), (C3)

with �R′⊥ = (l ′
y − ly)a2 + (l ′

z − lz )a3 here. The following
symmetry relation is valid between the greater/lesser phonon
Green’s function for 1D nanostructures without any periodic-
ity [62]:

G>, ji
l ′l (ω) = G<,i j

ll ′ (−ω). (C4)

Substituting Eq. (C4) into Eq. (C3), we obtain

[G>(ω; q⊥)]T,i j
lx l ′x =

∑
�R′

⊥

exp (−iq⊥ · �R′
⊥)G<,i j

ll ′ (−ω). (C5)

Since we have �R′⊥ = −�R⊥, Eq. (C5) can be rewritten
into

[G>(ω; q⊥)]T,i j
lx l ′x =

∑
�R⊥

exp (iq⊥ · �R⊥)G<,i j
ll ′ (−ω). (C6)

Based on the definition in Eq. (C2), Eq. (C6) becomes
exactly

[G>(ω; q⊥)]T,i j
lx l ′x = G<,i j

lx l ′x (−ω; −q⊥), (C7)

which can be reformulated into matrix form as

[G>(ω; q⊥)]T = G<(−ω; −q⊥). (C8)

APPENDIX D: MPI SCHEME FOR PARALLELIZED
CALCULATION OF ANHARMONIC PHONON

SCATTERING SELF-ENERGY

We follow the basic procedure in the MPI scheme for
the parallelized calculation of the electron-phonon scatter-
ing self-energy matrix in electron NEGF [79]. However, the
present situation is slightly more complicated since for each
mode (ω; q⊥) we have to consider the Green’s functions of
two other modes, (ω′; q′

⊥) and (ω − ω′; q⊥ − q′
⊥), due to the

three-phonon anharmonic scattering process shown in Fig. 2.
As a first step, for each mode (ω; q⊥) in a CPU, we build
a connection table which stores the information of all the
possible connected modes (ω − ω′; q⊥ − q′

⊥) via all possible
modes (ω′; q′

⊥). The data exchange is then conducted based
on the connection table. Since each mode (ω; q⊥) requires
the data of mode (ω′; q′

⊥) and mode (ω − ω′; q⊥ − q′
⊥), the

FIG. 16. Computational time cost versus the number of CPUs:
The solid line with circles represents the present anharmonic phonon
NEGF simulation of heat transport across a silicon thin film with
a thickness of 2 uc at 300 K; a frequency mesh of Nm = 81 and a
tranverse wave vector mesh of 4 × 4 is adopted for the test. The
dashed line represents the ideal scaling.

data exchange consists of a sending substep and a receiving
substep successively: (I) for all the CPUs, send the local data
of mode (ω; q⊥) to the CPUs corresponding to all the possible
modes (ω′; q′

⊥), and also to the CPUs corresponding to all
the possible modes (ω + ω′; q⊥ + q′

⊥); (II) for all the CPUs,
receive the data of all the possible modes (ω′; q′

⊥) from the
corresponding CPUs, and also the data of all the possible
modes (ω − ω′; q⊥ − q′

⊥) from the corresponding CPUs.
Another important issue is the storage of a third-order FC

matrix in the Fourier’s representation �̃
i j1 j2
lx l1x l2x

(q⊥, q′⊥), which
will be an extremely large matrix for long nanostructures due
to its dependence on two transverse wave vectors. We reduce
the memory cost by storing its dependence on only the first
wave vector in a local CPU attributed to the full parallelization
of the transverse wave vector (the local wave vector acting as
the second wave vector). In this way, we also need to exchange
data of the third-order FC matrix when computing the anhar-
monic scattering self-energy Eq. (14). The idea and procedure
are very similar to that for the data exchange of the Green’s
function and are not repeated here for elegance. Once the data
exchange of both the Green’s function and the third-order FC
matrix is accomplished, the scattering self-energy for each
mode (ω; q⊥) can then be calculated based on Eq. (14).

The scalability of the present MPI parallelization scheme
is demonstrated in Fig. 16, which shows a scaling of compu-
tational time cost versus number of CPUs very close to the
ideal scaling limit.

APPENDIX E: RECONSTRUCTION OF HARMONIC AND
THIRD-ORDER FORCE CONSTANT MATRICES FOR

NANOSTRUCTURES

The basic idea and procedure of the reconstruction of
the harmonic FC matrix is shown in Fig. 17. Firstly, all the
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FIG. 17. Reconstruction of the harmonic FC matrices as input into the phonon NEGF simulation: (a) schematic of the supercell in DFT
calculations, and the device simulation domain, where the solid cuboid represents the central device region whereas the dashed cuboid
represents the transverse periodic units that have interaction with the device region with the interaction FC matrix denoted by �0 ∼ �8;
(b) reconstruction of the harmonic FC matrix �4 within the central region from the elementary harmonic interaction matrices in the DFT
supercell; (c) reconstruction of the representative harmonic FC matrix �0 (between the central region and the transverse periodic unit) from
the elementary harmonic interaction matrices in the DFT supercell. Other harmonic FC matrices can be reconstructed similarly. Each cube
represents a conventional unit cell.

harmonic FC matrices within the central device region, and
between the device region and the transverse periodic units
�0–�8 are reconstructed from the elementary interaction FC
matrices within the supercell. The harmonic FC matrix in
Eq. (11) is then computed based on Eq. (15) as

�̃(q⊥) = �4 +
∑

i=0, 8

�i exp [∓i(a2 + a3) · q⊥]

+
∑

i=1, 7

�i exp (∓ia2 · q⊥)

+
∑

i=3, 5

�i exp (∓ia3 · q⊥)

+
∑

i=2, 6

�i exp [∓i(a2 − a3) · q⊥], (E1)

where the “−” and “+” signs, respectively, correspond to the
first and second index of the FC matrix in the summation. The

schematic procedure of the reconstruction of the third-order
FC matrix is shown in Fig. 18. The treatment is slightly
different because the atomic interaction range for third-order
FC is very short. From the elementary interaction matrix in
the supercell, we extract the third-order FCs for each atom in
a unit cell and its neighboring atoms, i.e., a basic third-order
FC matrix �̃

i j1 j2
lx l1x l2x, 0(q⊥, q′⊥) for one unit cell (one slab) is

obtained. When any of the neighboring atoms lies within the
transverse periodic unit cell, a phase factor shall be added
based on the Fourier’s representation of a third-order FC
matrix in Eq. (16). The third-order FC matrix for the whole
device is constructed simply by repeating �̃

i j1 j2
lx l1x l2x, 0(q⊥, q′⊥)

for times equal to the number of slabs. Note that for heteroge-
neous material properties, the procedure of the reconstruction
of device FC matrices shall be slightly adapted to consider
the local variation of atomic interaction, for instance, in a
recent DFT-based ballistic phonon NEGF modeling of disor-
dered lithiated molybdenum disulfide (MoS2) nanostructures
[93].
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FIG. 18. Reconstruction of the third-order anharmonic FC matrix as input into the phonon NEGF simulation: (a) schematic of the supercell
in DFT calculation, and the device simulation domain with the corresponding third-order FC matrix �̃

i j1 j2
lx l1x l2x

(q⊥, q′
⊥); (b) reconstruction of the

third-order FC matrix from the elementary third-order FC matrix for one unit cell �̃
i j1 j2
lx l1x l2x , 0(q⊥, q′

⊥) (as explained in the main text) extracted
from the DFT supercell. Each cube represents a conventional unit cell, and the parallelpiped denotes the device region.
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[48] I. Savić, N. Mingo, and D. A. Stewart, Phonon Transport
in Isotope-Disordered Carbon and Boron-Nitride Nanotubes:
Is Localization Observable? Phys. Rev. Lett. 101, 165502
(2008).

[49] M. Galperin, A. Nitzan, and M. A. Ratner, Heat conduction
in molecular transport junctions, Phys. Rev. B 75, 155312
(2007).

[50] J.-W. Jiang, J.-S. Wang, and B.-S. Wang, Minimum thermal
conductance in graphene and boron nitride superlattice, Appl.
Phys. Lett. 99, 043109 (2011).

[51] T. Ouyang, Y. Chen, K. Yang, and J. Zhong, Thermal transport
of isotopic-superlattice graphene nanoribbons with zigzag edge,
EPL 88, 28002 (2009).

[52] Z. Zhang, Y. Xie, Q. Peng, and Y. Chen, A theoretical prediction
of super high-performance thermoelectric materials based on
MoS2/WS2 hybrid nanoribbons, Sci. Rep. 6, 21639 (2016).

[53] W. Zhang, T. Fisher, and N. Mingo, Simulation of interfacial
phonon transport in Si–Ge heterostructures using an atomistic
Green’s function method, J. Heat Transfer 129, 483 (2007).

[54] Z. Tian, K. Esfarjani, and G. Chen, Enhancing phonon
transmission across a Si/Ge interface by atomic roughness:
First-principles study with the Green’s function method, Phys.
Rev. B 86, 235304 (2012).

[55] X. Li and R. Yang, Effect of lattice mismatch on phonon trans-
mission and interface thermal conductance across dissimilar
material interfaces, Phys. Rev. B 86, 054305 (2012).

[56] Z.-Y. Ong and G. Zhang, Efficient approach for modeling
phonon transmission probability in nanoscale interfacial ther-
mal transport, Phys. Rev. B 91, 174302 (2015).

[57] B. Latour, N. Shulumba, and A. J. Minnich, Ab initio study of
mode-resolved phonon transmission at Si/Ge interfaces using
atomistic Green’s functions, Phys. Rev. B 96, 104310 (2017).

[58] C. A. Polanco and L. Lindsay, Phonon thermal conductance
across GaN-AlN interfaces from first principles, Phys. Rev. B
99, 075202 (2019).

[59] Z. Tian, K. Esfarjani, and G. Chen, Green’s function studies of
phonon transport across Si/Ge superlattices, Phys. Rev. B 89,
235307 (2014).

[60] J. Mendoza and G. Chen, Anderson localization of thermal
phonons leads to a thermal conductivity maximum, Nano Lett.
16, 7616 (2016).

[61] R. Cheaito, C. A. Polanco, S. Addamane, J. Zhang, A. W.
Ghosh, G. Balakrishnan, and P. E. Hopkins, Interplay between
total thickness and period thickness in the phonon thermal con-
ductivity of superlattices from the nanoscale to the microscale:
Coherent versus incoherent phonon transport, Phys. Rev. B 97,
085306 (2018).

[62] J. S. Wang, N. Zeng, J. Wang, and C. K. Gan, Nonequilibrium
Green’s function method for thermal transport in junctions,
Phys. Rev. E 75, 061128 (2007).

[63] J. Li, T. C. A. Yeung, C. H. Kam, Y. Peng, Q. H. Chen, X. Zhao,
and C. Q. Sun, Anharmonic phonon transport in atomic wire
coupled by thermal contacts with surface bond reconstruction,
J. Appl. Phys. 106, 014308 (2009).

[64] M. Luisier, Atomistic modeling of anharmonic phonon-phonon
scattering in nanowires, Phys. Rev. B 86, 245407 (2012).

[65] Y. Lee, M. Bescond, D. Logoteta, N. Cavassilas, M. Lannoo,
and M. Luisier, Anharmonic phonon-phonon scattering mod-
eling of three-dimensional atomistic transport: An efficient
quantum treatment, Phys. Rev. B 97, 205447 (2018).

195412-23

https://doi.org/10.1103/PhysRevB.90.165406
https://doi.org/10.1103/PhysRevB.90.014307
https://doi.org/10.1103/PhysRevB.90.195209
https://doi.org/10.1140/epjb/e2008-00195-8
https://doi.org/10.1007/s11467-013-0340-x
https://doi.org/10.1002/smtd.201700343
https://doi.org/10.1615/AnnualRevHeatTransfer.2014006986
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.1006/spmi.2000.0920
https://doi.org/10.1109/JPROC.2008.927355
https://doi.org/10.1103/PhysRevB.80.155430
https://doi.org/10.1103/PhysRevB.68.245406
https://doi.org/10.1103/PhysRevB.74.125402
https://doi.org/10.1103/PhysRevB.74.033408
https://doi.org/10.1103/PhysRevLett.96.255503
https://doi.org/10.1103/PhysRevB.79.035415
https://doi.org/10.1103/PhysRevB.76.195429
https://doi.org/10.1103/PhysRevLett.101.165502
https://doi.org/10.1103/PhysRevB.75.155312
https://doi.org/10.1063/1.3619832
https://doi.org/10.1209/0295-5075/88/28002
https://doi.org/10.1038/srep21639
https://doi.org/10.1115/1.2709656
https://doi.org/10.1103/PhysRevB.86.235304
https://doi.org/10.1103/PhysRevB.86.054305
https://doi.org/10.1103/PhysRevB.91.174302
https://doi.org/10.1103/PhysRevB.96.104310
https://doi.org/10.1103/PhysRevB.99.075202
https://doi.org/10.1103/PhysRevB.89.235307
https://doi.org/10.1021/acs.nanolett.6b03550
https://doi.org/10.1103/PhysRevB.97.085306
https://doi.org/10.1103/PhysRevE.75.061128
https://doi.org/10.1063/1.3157175
https://doi.org/10.1103/PhysRevB.86.245407
https://doi.org/10.1103/PhysRevB.97.205447


YANGYU GUO et al. PHYSICAL REVIEW B 102, 195412 (2020)

[66] J. H. Dai and Z. T. Tian, Rigorous formalism of anharmonic
atomistic Green’s function for three-dimensional interfaces,
Phys. Rev. B 101, 041301 (2020).

[67] K. Miao, S. Sadasivam, J. Charles, G. Klimeck, T. S. Fisher,
and T. Kubis, Buttiker probes for dissipative phonon quantum
transport in semiconductor nanostructures, Appl. Phys. Lett.
108, 113107 (2016).

[68] S. Sadasivam, N. Ye, J. P. Feser, J. Charles, K. Miao, T. Kubis,
and T. S. Fisher, Thermal transport across metal silicide-silicon
interfaces: First-principles calculations and Green’s function
transport simulations, Phys. Rev. B 95, 085310 (2017).

[69] Y. Chu, J. Shi, K. Miao, Y. Zhong, P. Sarangapani, T. S. Fisher,
G. Klimeck, X. Ruan, and T. Kubis, Thermal boundary resis-
tance predictions with non-equilibrium Green’s function and
molecular dynamics simulations, Appl. Phys. Lett. 115, 231601
(2019).

[70] S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi,
Phonons and related crystal properties from density-functional
perturbation theory, Rev. Mod. Phys. 73, 515 (2001).

[71] F. Guinea, C. Tejedor, F. Flores, and E. Louis, Effective two-
dimensional Hamiltonian at surfaces, Phys. Rev. B 28, 4397
(1983).

[72] Y. Guo and M. Wang, Phonon hydrodynamics for nanoscale
heat transport at ordinary temperatures, Phys. Rev. B 97,
035421 (2018).

[73] C. Hua and L. Lindsay, Space-time dependent thermal conduc-
tivity in nonlocal thermal transport, Phys. Rev. B 102, 104310
(2020).

[74] M. R. Hirsbrunner, T. M. Philip, B. Basa, Y. Kim, M. J. Park,
and M. J. Gilbert, A review of modeling interacting transient
phenomena with non-equilibrium Green functions, Rep. Prog.
Phys. 82, 046001 (2019).

[75] Y. Xu, J. S. Wang, W. H. Duan, B. L. Gu, and B. W. Li,
Nonequilibrium Green’s function method for phonon-phonon
interactions and ballistic-diffusive thermal transport, Phys. Rev.
B 78, 224303 (2008).

[76] A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of
Lattice Dynamics in the Harmonic Approximation (Academic
Press, New York, 1963).

[77] A. Svizhenko, M. Anantram, T. Govindan, B. Biegel, and R.
Venugopal, Two-dimensional quantum mechanical modeling of
nanotransistors, J. Appl. Phys. 91, 2343 (2002).

[78] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, A high-
performance, portable implementation of the MPI message
passing interface standard, Parallel Comput. 22, 789 (1996).

[79] M. Luisier, in Proceedings of the 2010 ACM/IEEE Inter-
national Conference for High Performance Computing, Net-
working, Storage and Analysis (IEEE, Piscataway, NJ, 2010),
p. 1.

[80] R. Rhyner and M. Luisier, Atomistic modeling of coupled
electron-phonon transport in nanowire transistors, Phys. Rev. B
89, 235311 (2014).

[81] P. Giannozzi et al., QUANTUM ESPRESSO: A modular and open-
source software project for quantum simulations of materials, J.
Phys.: Condens. Matter 21, 395502 (2009).

[82] A. Togo and I. Tanaka, First principles phonon calculations in
materials science, Scr. Mater. 108, 1 (2015).

[83] W. Li, J. Carrete, N. A. Katcho, and N. Mingo, SHENGBTE:
A solver of the Boltzmann transport equation for phonons,
Comput. Phys. Commun. 185, 1747 (2014).

[84] Y. Hu, T. Feng, X. Gu, Z. Fan, X. Wang, M. Lundstrom, S. S.
Shrestha, and H. Bao, Unification of nonequilibrium molecular
dynamics and the mode-resolved phonon Boltzmann equation
for thermal transport simulations, Phys. Rev. B 101, 155308
(2020).

[85] J.-P. M. Péraud and N. G. Hadjiconstantinou, Efficient simula-
tion of multidimensional phonon transport using energy-based
variance-reduced Monte Carlo formulations, Phys. Rev. B 84,
205331 (2011).

[86] C. Hua and A. J. Minnich, Analytical Green’s function of
the multidimensional frequency-dependent phonon Boltzmann
equation, Phys. Rev. B 90, 214306 (2014).

[87] B. Vermeersch, J. Carrete, and N. Mingo, Cross-plane heat
conduction in thin films with ab-initio phonon dispersions and
scattering rates, Appl. Phys. Lett. 108, 193104 (2016).

[88] P. Jiang, L. Lindsay, and Y. K. Koh, Role of low-energy
phonons with mean-free-paths >0.8 μm in heat conduction in
silicon, J. Appl. Phys. 119, 245705 (2016).

[89] M. Simoncelli, N. Marzari, and F. Mauri, Unified theory of
thermal transport in crystals and glasses, Nat. Phys. 15, 809
(2019).

[90] L. Isaeva, G. Barbalinardo, D. Donadio, and S. Baroni, Mod-
eling heat transport in crystals and glasses from a unified
lattice-dynamical approach, Nat. Commun. 10, 3853 (2019).

[91] G. D. Mahan, Many-Particle Physics (Springer, New York,
2000).

[92] Private communication.
[93] T. Bunjaku and M. Luisier, Thermal properties of disordered

LixMoS2: An ab initio study, Phys. Rev. Mater. 3, 034001
(2019).

195412-24

https://doi.org/10.1103/PhysRevB.101.041301
https://doi.org/10.1063/1.4944329
https://doi.org/10.1103/PhysRevB.95.085310
https://doi.org/10.1063/1.5125037
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/PhysRevB.28.4397
https://doi.org/10.1103/PhysRevB.97.035421
https://doi.org/10.1103/PhysRevB.102.104310
https://doi.org/10.1088/1361-6633/aafe5f
https://doi.org/10.1103/PhysRevB.78.224303
https://doi.org/10.1063/1.1432117
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1103/PhysRevB.89.235311
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1016/j.cpc.2014.02.015
https://doi.org/10.1103/PhysRevB.101.155308
https://doi.org/10.1103/PhysRevB.84.205331
https://doi.org/10.1103/PhysRevB.90.214306
https://doi.org/10.1063/1.4948968
https://doi.org/10.1063/1.4954674
https://doi.org/10.1038/s41567-019-0520-x
https://doi.org/10.1038/s41467-019-11572-4
https://doi.org/10.1103/PhysRevMaterials.3.034001

