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We study the dynamical polarization function and plasmon modes for spin-orbit coupled noncentrosymmetric
metals such as Li2(Pd1−xPtx )3B. These systems have different Fermi surface topologies for Fermi energies above
and below the spin degenerate point, which is also known as the band touching point (BTP). We calculate
the exact dynamical polarization function numerically and also provide its analytical expression in the long
wavelength limit. We obtain the plasmon dispersion within the framework of random phase approximation. In
noncentrosymmetric metals, there is a finite energy gap in between intra- and interband particle-hole continuum
for vanishing excitation wave vector. In the long wavelength limit, the width of the interband particle-hole
continuum behaves differently for Fermi energies below and above the BTP as a clear signature of the Fermi
surface topology change. We find a single undamped optical plasmon mode lying in between the intra- and
interband particle-hole continuum for Fermi energies above and below the BTP within a range of parameters. The
plasmon mode below the BTP has smaller velocity than that of above the BTP. It is interesting to find that as we
tune the Fermi energy around the BTP, the plasmon mode becomes damped within a range of electron-electron
interaction strengths. For Fermi energies above and below the BTP, we also obtain an approximate analytical
result of plasma frequency and plasmon dispersion which match well with their numerical counterparts in the
long wavelength limit. The plasmon dispersion is ∝ q2 with q being the wave vector for plasmon excitation in the
long wavelength limit. We find that varying the carrier density with fixed electron-electron interaction strength or
vice versa does not change the number of undamped plasmon modes, although damped plasmon modes can be
more in number for some values of these parameters. We demonstrate our results by calculating the loss function
and optical conductivity, which can be measured in experiments.
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I. INTRODUCTION

For several decades, the ubiquitous role of spin-orbit in-
teractions [1–3] in various condensed matter systems [4–6]
exhibiting exotic phenomena has been observed [7–16]. The
charge carrier’s spin is not a conserved quantity in spin-
orbit coupled systems, which facilitate control of the spin
by simple electric manipulation. The study of response func-
tions in the presence of external perturbations in spin-orbit
coupled systems with electron-electron interactions plays a
vital role in understanding several fundamental many-body
properties of the systems. Single-particle excitation spectra
and the collective modes of the systems are determined by
the dynamical response functions which incorporate the dy-
namical screening of Coulomb interaction [17,18], whereas
the static response function governs the transport properties
of the systems through the scattering by charge impurities
in the presence of screened Coulomb interaction [17,18].
Also, many-body properties such as dielectric function and
collective excitation spectrum of systems with spin-orbit in-
teraction (SOI) have importance in terms of understanding
the many-body correlations and observation of SOI effects
in these systems [19–22,24]. Two-dimensional electron-hole
gas (2DEG/2DHG) with Rashba SOI (RSOI) and Dresselhaus
SOI (DSOI) in a single quantum well hosts isotropic and
anisotropic plasmon spectra when considering one type of

SOIs and both SOIs, respectively [22,23]. Moreover, 2DEG
with RSOI in a double quantum well hosts both lower energy
acoustic and optical plasmon modes with charge density os-
cillating out of phase and in phase in a neutralizing positive
background [24].

In recent years, there have been several theoretical and
experimental studies on materials showing spin-orbit interac-
tion much higher than that of semiconductor heterostructures.
Examples of such materials are three-dimensional (3D) topo-
logical insulators [25,26], Bi/Ag(111) surface alloy [27], and
three-dimensional (3D) bipolar semiconductor BiTeX (X =
Cl, Br, I) [28–32]. In BiTeX compounds, both in bulk and
surface, the giant RSOI arises due to the local electric field
as a consequence of inversion asymmetry. According to the
k · p perturbation theory [29], the RSOI in these materials
have a planar form like α(σ × k)z, with α being the strength
of RSOI, σ being a vector of spin Pauli matrices, and k being
the electron’s wave vector. In addition to BiTeX compounds,
B20 [33] compounds and noncentrosymmetric metals such as
Li2(Pd1−xPtx )3B [34] also show strong RSOI due to lack of
inversion symmetry. The leading-order SOI experienced by
conduction electrons in these materials is described by ασ · k,
which is quite different from the bipolar semiconductor com-
pounds. These systems with strong RSOI possess the distinct
property that the Fermi surface topology changes as one tunes
the Fermi energy across the band touching point (BTP) of two
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spin-split bands. It has been verified both theoretically and ex-
perimentally [35,36] that the system changes its behavior from
paramagnetic to diamagnetic as Fermi energy sweeps across
the BTP from below. There are also several studies in BiTeX
compounds [37–49] and noncentrosymmetric metals [49–55]
in the context of transport, magnetic, thermoelectric, and op-
tical response showing distinct behavior below and above the
BTP due to change in the Fermi surface topology. All these
electronic properties are mainly based on the single-particle
excitations of the systems. Moreover, collective modes in
BiTeX compounds have been studied thoroughly [45]. The
study of collective modes in noncentrosymmetric metals is
still lacking. The focus of this paper is to look into several
aspects of the charge collective modes of noncentrosym-
metric metals by studying the full dynamical polarization
function within the random phase approximation (RPA) in
detail.

In this work, we calculate the dynamical polarization func-
tion (also known as Lindhard function) numerically and also
provide its analytical form for small q. The spin-orbit cou-
pled systems possess intra- and interband single particle-hole
continuum (PHC). The latter is also known as Rashba con-
tinuum. In the long wavelength limit, the width of Rashba
continuum responds to the change in the Fermi surface topol-
ogy and shows different behavior for Fermi energies above
and below the BTP. In noncentrosymmetric metals (NCMs),
interband PHC starts at finite energy at q = 0. In the presence
of electron-electron interaction within the framework of the
jellium model, we calculate the plasmon dispersion within
RPA. Due to isotropic nature of the band structure, we find a
single optical undamped plasmon mode in between the intra-
band PHC and Rashba continuum within a range of material
parameters of NCMs. In the long wavelength limit, we provide
an approximate analytical formula for plasma frequency and
plasmon dispersion. The plasmon dispersion is ∝ q2 in the
long wavelength limit is similar to that of ordinary 3D elec-
tron gas [17]. The plasmon dispersion and plasma frequency
extracted from both numerical and analytical results match
well for small q. For Fermi energies below BTP, we find that
the plasmon mode has smaller velocity than that of Fermi
energies above BTP. This plasmon mode becomes damped for
Fermi energies near the BTP due to the shift in the Rasbha
continuum toward zero energy within a range of electron-
electron interaction strengths. We also find only one single
undamped plasmon mode by varying the electron-electron
interaction strength, although there are more plasmon modes
lying within the Rashba continuum for a range of interaction
strengths for Fermi energies below and above the BTP. We
calculate the loss function and optical conductivity within
RPA to demonstrate the plasmon mode which can be observed
in experiments.

The remainder of this paper is organized in the following
manner. In Sec. II, the necessary ground-state properties of
NCMs are given. In Sec. III, we discuss the intra- and inter-
band PHC derived from the dynamical polarization function.
The static Lindhard function and its singularities are also dis-
cussed. Section IV describes the plasmon dispersion in detail
together with the energy loss function and optical conductiv-
ity, which can be measured experimentally. We summarize our
results in Sec. V.

II. GROUND-STATE PROPERTIES

The low-energy conduction electrons in a 3D noncen-
trosymmetric metal can be effectively described by the follow-
ing noninteracting Hamiltonian near the � point [33,52,56]:
H = H0 + HD, where

H0 = h̄2k2

2m∗ σ0 + α σ · k (1)

and

HD = β
[
kxσx

(
k2

y − k2
z

) + kyσy
(
k2

z − k2
x

) + kzσz
(
k2

x − k2
y

)]
.

Here m∗ is the effective mass of an electron, σ0 is 2 × 2 unit
matrix, σ = {σx, σy, σz} is a vector of Pauli spin matrices,
k = {kx, ky, kz} is the electron’s wave vector, α characterizes
the strength of the RSOI, and β is the strength of cubic
spin-orbit coupling term which breaks the C4 symmetry. It
has been argued that the presence of the cubic spin-orbit
coupling term in the Hamiltonian does not change transport
and magnetic properties qualitatively [33]. In this work, we
ignore the cubic spin-orbit coupling (HD). As helicity oper-
ator k · σ/k commutes with the Hamiltonian H0, from now
onward we will work in the eigenbasis of the helicity op-
erator having eigenvalues λ = ±1. Thus, the eigenstates of
the above Hamiltonian will be ψk,λ(r) = φk,λeik·r/

√
V , where

V is volume of the system, λ = ±1 represents two opposite
helicities, and φk,λ is helicity eigenstate which takes the fol-
lowing forms:

φk,+ =
[

cos(θ/2)
eiφ sin(θ/2)

]
, φk,− =

[
sin(θ/2)

−eiφ cos(θ/2)

]
. (2)

Here, θ and φ are the polar and azimuthal angles, respectively,
which represent the orientation of k. The energy dispersion
consists of two spin-split bands corresponding to λ = ± hav-
ing the structure ξk,λ = h̄2k2/(2m∗) + λαk. Due to distinct
spin-momentum locking, these systems have different Fermi
surface topologies for energy ξ > 0 (convex-convex shape)
and ξ < 0 (concave-convex shape) as shown in Fig. 1. There

are two Fermi wave vectors kF
λ = −λkα +

√
k2
α + 2m∗ξF /h̄2

with kα = m∗α/h̄2, corresponding to λ = ± bands for ξF > 0.
The density of states for λ = ± bands becomes

D>
λ (ξF ) = D0

[
ξF + 2ξα√

ξF + ξα

− λ
√

4ξα

]
, (3)

where D0 = 1
4π2 ( 2m∗

h̄2 )
3
2 and ξα = h̄2k2

α/2m∗. The total den-

sity of states is given by D>(ξF ) = 2D0
(ξF +2ξα )√

ξF +ξα
. For ξF < 0,

the λ = − band is characterized by the two branches with

the Fermi wave vectors kF
η = kα − (−1)η−1

√
k2
α + 2m∗ξF /h̄2

with η = 1, 2. The density of states within two concentric
spherical shells with radii k1 and k2 is given by

D<
η (ξF ) = D0

[
ξF + 2ξα√

ξF + ξα

− (−1)η−1
√

4ξα

]
, (4)

with total density of states D<(ξF ) = 2D0
(ξF +2ξα )√

ξF +ξα
. For ξ < 0,

the λ = − band has a nonmonotonic behavior and has a van
Hove singularity in the density of states at ξ = −ξα with
ξmin = −ξα , similar to the conventional 1D electron gas.
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FIG. 1. (a) Energy dispersion of noncentrosymmetric metals:
The k = 0 point where two bands touch is known as band touching
point (BTP). In panels (b) and (d), the cross sections of the Fermi
surfaces for ξF > 0 and ξF < 0 are shown, respectively. The Fermi
surface topology is different in both cases, having convex-convex
shape and concave-convex shape for ξF > 0 and ξF < 0, respec-
tively. (c) There is only one Fermi surface at BTP (ξF = 0) where
the change in the Fermi surface topology occurs.

In the T → 0 limit, the Fermi energy ξF can be extracted
from the following equation,

(4ξα + ξF )
√

ξα + ξF = (
ξ 0

F

)3/2
, (5)

where ξ 0
F = h̄2

2m∗ (3π2ne)2/3 is the Fermi energy for ordinary
3D electron gas, with ne being the density of the conduction
electrons in NCMs. It can be easily seen from the above
equation that ne = nt with nt = 4k3

α/3π2 is the critical density
of electrons where the Fermi surface topology changes which
also defines the band touching point (BTP).

III. DYNAMICAL POLARIZATION FUNCTION

Within the linear response theory for translationally in-
variant systems, the dynamical polarization function or
density-density correlation function of the two-level system in
response to a time-dependent perturbation in Fourier space be-
comes (see Appendix A) χ0

ρρ (q, ω) = ∑
λλ′ χ0

λλ′ (q, ω), with

χ0
λλ′ (q, ω + i0+) =

∑
k

Fλλ′ (k, k + q)

V
nF

k,λ − nF
k+q,λ′

h̄� + ξk,λ − ξk+q,λ′
,

(6)

where h̄� = h̄(ω + i0+) and nF
k,λ = 1/[eβ(ξk,λ−μ) + 1]

with β = (kBT )−1, T being the temperature. Also Fλλ′

(k, k + q) = |φ†
k,λφk+q,λ′ |2 = 1

2 [1 + λλ′ k·(k+q)
|k||k+q| ] describes

the overlap between the states labeled by |k, λ〉 and
|k + q, λ′〉. In the above notation of dynamical polarization
function, the subscript ρρ indicates that it is a density-density
correlation function. Utilizing the isotropic nature of the
band structure, we choose q = qẑ for simplicity. With
x = k/kα , xF

λ = kF
λ /kα , Q = q/kα , and Dα = m∗kα/(4π2h̄2),

performing the θk integration exactly, the Lindhard function

takes following form for ξF > 0 (for T → 0):

χ0
ρρ (q,�) = Dα

∑
λs

∫ xF
λ

0

dx

Q

[
Cs

λ ln

(
t s
λ+ − 2Qx

ts
λ+ + 2Qx

)

+ Gs
λ ln

(
t s
λ− − 2Qx

ts
λ− + 2Qx

)]
, (7)

with s = ±1, ζ s
λ = sh̄�/ξα + 2λx − Q2, t s

λ± = s(ζ s
λ +

2) ± 2
√

(x + λ)2 + sh̄�/ξα , as
λ = x(ζ sω

λ + 2λx), bs
λ =

s(λ − x), Cs
λ = (as

λ + bs
λt s

λ+)/(t s
λ+ − t s

λ−), and Gs
λ =

−(as
λ + bs

λt s
λ−)/(t s

λ+ − t s
λ−). Now it is easy to evaluate this 1D

integration numerically with the cost of s = ±1 summation.
After a similar calculation, the Lindhard function for ξF < 0
(for T → 0) is

χ0
ρρ (q,�) = Dα

∑
s

∫ xF
2

xF
1

dx

Q

[
Cs

− ln

(
t s
−+ − 2Qx

ts−+ + 2Qx

)

+ Gs
− ln

(
t s
−− − 2Qx

ts−− + 2Qx

)]
, (8)

with s = ±1 and xF
1 = kF

1 /kα , xF
2 = kF

2 /kα . Here kF
η with η =

1, 2 is Fermi wave vector for the η branch of the λ = − band
for ξF < 0. While deriving the above equation, we have used
the fact that nF

k,λ = 0 for all k above the BTP. We use Eqs. (7)
and (8) to present all our numerical results.

Nonzero Imχ0
ρρ (q, ω) for a given (q, ω) describes the ex-

citation (with excitation energy h̄ω) of an electron from an
occupied state k below the Fermi energy to an unoccupied
state k + q above the Fermi energy and thus leaving a hole
(empty state) below the Fermi level. The collection of all such
points in the (q, ω) plane is known as the particle-hole contin-
uum (PHC). In other words, the system can absorb incoming
energy by exciting electron-hole pairs in the region where
Imχ0

ρρ (q, ω) �= 0. Outside the PHC, the system cannot absorb
energy by this mechanism. For NCMs, intra- and interband
PHC are shown in Fig. 2. The full PHC of NCMs below and
above the BTP are of similar nature. The intraband PHC is
similar to that of noninteracting 3D electron gas. It is worth
mentioning here that in NCMs, for q → 0, there is a finite-
energy gap in between intra- and interband PHC similar to
2D systems with spin-orbit coupling, but it is in contrast to
BiTeX semiconductor compounds where the interband PHC
starts at zero energy. For ξF > 0 (<0), the minimum and
maximum energy for electron-hole pair excitation with q → 0
is h̄ω = 2αkF

+ (2αkF
1 ) and h̄ω = 2αkF

− (2αkF
2 ), respectively.

The width of interband PHC for q → 0 is �> = 8ξα for
ξF > 0 and �< = 8

√
ξ 2
α + ξαξF for ξF < 0. Due to different

Fermi surface topology of NCMs for ξF > 0 and ξF < 0, �>

and �< show different behaviors with respect to the change in
the carrier density. Note that �> depends only on the Rashba
energy ξα , but �< depends on both the carrier density and
the Rashba energy [55]. This different behavior of width of
interband PHC acts as a probe to observe the distinct Fermi
surface topology of NCMs for Fermi energies below and
above the BTP.

Figure 3 shows the variation of Reχ0
ρρ (q, 0) with respect

to the wave vector q. Note that Reχ0
ρρ (q, 0) is of different

nature than that of conventional 3DEG for small q but has
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FIG. 2. Intraband and interband PHC for ξF > 0 (left) and ξF <

0 (right). Minimum and maximum excitation energies for interband
transitions with q = 0 are 2αkF

+ (2αkF
1 ) and 2αkF

− (2αkF
2 ) for ξF > 0

(<0), respectively. For ξF > 0 (ξF < 0), zero-energy intraband tran-
sitions ends at q = 2kF

− (q = 2kF
2 ). It is interesting to note that for

all carrier densities (ne) intraband PHC of NCMs is always bigger
than that of conventional 3DEG, because 2k0

F < 2kF
− (2k0

F < 2kF
2 ) for

ξF > 0 (<0) with k0
F = (3π 2ne)2/3 being the Fermi wave vector of

conventional 3DEG. Parameters: m∗ = 0.5m0 with m0 being the bare
electron mass, α = 1 eVÅ. For the left panel ne = 16nα and for the
right panel ne = 2nα with nα = k3

α/(3π 2).

similar nature for large q. Interestingly, the static Lindhard
function of NCMs has distinct second and third derivative
singularities owing to the nature of distinct Fermi surface
topology for ξF > 0 and ξF < 0. The singularities in the static
Lindhard function arise because of the fact that there is a large
mismatch of number of states contributing significantly to it
below and above the singular point. At the singular point,
the static Lindhard function changes sharply. Another way
of identifying these singular points is to look for those q for
which the original Fermi surface ξk,λ and the shifted Fermi

FIG. 3. Absolute static Lindhard function for NCMs Reχ0
ρρ (q, 0)

and for conventional 3DEG [17] Reχ n0
ρρ (q, 0) (in units of total density

of states of respective systems) vs q for ne = 16nα (left panel) and
ne = 2nα (right panel). Reχ 0

ρρ (q, 0) is obtained by doing the 1D
numerical integration of Eqs. (7) and (8) for ξF > 0 and ξF < 0,
respectively. At ne = 2nα , ξF < 0 for NCMs. In this figure, qi’s (in
units of 2k0

F ) denote the wave vectors where the Lindhard function
or its derivative is singular. In the left panel, these are given as
q1 = kF

− − kF
+, q2 = 2kF

+, q3 = kF
− + kF

+, q4 = 2k0
F , and q5 = 2kF

− in
units of 2k0

F . In the right panel, the singular points are q1 = 2kF
1 ,

q2 = kF
2 − kF

1 , q3 = kF
2 + kF

1 , q4 = 2k0
F , and q5 = 2kF

2 in units of
2k0

F . Parameters are m∗ = 0.5m0, α = 1 eV Å.

surface ξk+q,λ′ touch each other. We also show the singular
points qi (in units of 2k0

F ) in Fig. 3. For ξF > 0, the static
susceptibility has second derivative singularity at q3 = kF

− +
kF
+ = 2

√
k2
α + 2m∗ξF /h̄2 > (kF

− − kF
+) due to interband tran-

sitions similar to the conventional 3DEG and third derivative
singularity at q2 = 2kF

+, q5 = 2kF
− arising from the intraband

transitions. The third derivative singularity at q1 = kF
− − kF

+ =
2kα is weak. For ξF < 0, the second derivative singular-

ity arises at q2 = kF
2 − kF

1 = 2
√

k2
α + 2m∗ξF /h̄2 < (kF

2 + kF
1 )

due to interbranch transitions and third derivative singulari-
ties arise at q1 = 2kF

1 , q5 = 2kF
2 . Also, the third derivative

singularity at q3 = kF
2 + kF

1 = 2kα is weak. Note that the
second derivative singularity in the static Lindhard function
happens at the addition (difference) of Fermi wave vectors of
two bands (branches) for ξF > 0(< 0) as a consequence of
change in the Fermi surface topology at the BTP, although
the functional dependence of this singular point on α and
ξF is the same for ξF > 0 and ξF < 0. The similar nature of
singularities in the static Lindhard function was also reported
in bilayer honeycomb lattice with ultracold atoms [57].

IV. PLASMONS

Using the equation of motion technique within RPA, the
final expression of the Lindhard function in the presence of
the electron-electron interaction χ i

ρρ (q,�) is given as [see
Appendix C]

χ i
ρρ (q,�) =

∑
λλ′

χ i
λλ′ (q,�) = χ0

ρρ (q,�)

1 − V (q)χ0
ρρ (q,�)

. (9)

Here χ0
ρρ (q, ω) is the dynamical polarization function in the

absence of electron-electron interaction, which is described in
the previous section. The plasmons are described by the poles
of the above response function, i.e., zeros of the dielectric
function,

ε(q,�) = 1 − V (q)χ0
ρρ (q,�), (10)

with Fourier transform of the Coulomb potential V (q) =
e2/(ε∞q2), where ε∞ = 20ε0 with ε∞ being the background
dielectric constant and ε0 is the permittivity of the vacuum.
We solve ε(q,�) = 0 numerically using Eqs. (7) and (8) for
ξF > 0 and ξF < 0, respectively. We first look for plasmon
modes for Fermi energy well below and above the BTP. In
this case, we get two solutions of ε(q,�) = 0 for a given q.
Out of these two, the higher energy solution lies in between
the intra- and interband PHC, where both Re[ε(q, ω)] = 0 and
Im[ε(q, ω)] = 0, which describes the undamped optical plas-
mon mode. Inside intra- or interband PHC, Imχ0

ρρ (q, ω) �= 0,
which is responsible for the dissipation in the system. Before
reaching the PHC, this plasmon mode with zero dissipation is
an oscillatory eigenmode of the system with infinite life time.
Inside the PHC, this plasmon mode is not an exact eigenmode
of the system and acquires a finite lifetime ∝ Imχ0

ρρ (q, ω).
So, in this region, it becomes damped; i.e., it decays to
particle-hole excitations, also known as Landau damping. The
other solution falls inside the PHC where Im[ε(q, ω)] �= 0,
and therefore it is not a solution of ε(q, ω) = 0. The plasmon
dispersion together with the PHC for a Fermi energy above
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FIG. 4. Left panel: Density plot of natural logarithm of loss
function defined by Eq. (11) for ξF > 0. Sharp bright line shows the
undamped plasmon mode outside the PHC. Right panel: Plasmon
dispersion together with PHC for ξF > 0. The solid curve shows
the plasmon dispersion obtained with the use of Eq. (10) with exact
dynamical polarization function calculated numerically. The dashed
curve (apart from the PHC edges) shows the approximate plasmon
dispersion given in Eq. (17). Parameters: m∗ = 0.5m0, α = 1 eV Å,
ε∞ = 20ε0, ne = 16nα .

and below the BTP is shown in the right panels (solid curve)
of Figs. 4 and 5, respectively. Here we note that there is only a
single undamped optical plasmon mode in NCMs for a range
of parameters.

Now it would be interesting to compare our results with
that of in BiTeX semiconductor compounds [45]. There are
two plasmon modes owing to their anisotropic band struc-
ture nature in BiTeX semiconductor compounds [45]. One
out-of-plane plasmon mode is independent of the in-plane
spin-orbit coupling (SOC). The other in-plane plasmon mode
is dependent on the in-plane SOC but lies within the Rasbha
continuum and hence it is Landau damped. In these bipolar
semiconductor systems, the Rashba continuum is present for
all energies in contrast to 2D Rashba systems [22,24], where
it starts at finite energy at q = 0. So, the plasmon mode lies
within the Rashba continuum for realistic material parameters

FIG. 5. Left panel: Density plot of natural logarithm of loss
function defined by Eq. (11) for ξF < 0. Sharp bright line shows the
undamped plasmon mode outside the PHC. Right panel: Plasmon
dispersion together with PHC for ξF < 0. The solid curve shows
the plasmon dispersion obtained with the use of Eq. (10) with exact
dynamical polarization function calculated numerically. The dashed
curve (apart from the PHC edges) shows the approximate plasmon
dispersion given in Eq. (17). Parameters: m∗ = 0.5m0, α = 1 eV Å,
ε∞ = 20ε0, ne = 2nα .

of these systems and hence decays into particle-hole excita-
tions.

Plasmon modes can be directly observed in the electron-
energy loss and Raman scattering experiments by measuring
the dynamical structure factor. The dynamical structure factor
is proportional to the loss function −Im[1/ε(q, ω)]. In the left
panels of Figs. 4 and 5, we show the density plot of the loss
function for the Fermi energy well above and below the BTP
in the (q, ω) plane. The loss function can be expressed as

−Im

[
1

ε(q, ω)

]
= V (q)Im

[
χ0

ρρ

]
(
1 − V (q)Re

[
χ0

ρρ

])2 + (
V (q)Im

[
χ0

ρρ

])2 .

(11)

From the above expression, it is evident that the loss function
is a δ function for the plasmon mode with width of the δ

function ∝Im[χ0
ρρ]. Outside the PHC, for the undamped plas-

mon mode loss function shows a well-defined δ peak (with
very small width due to finite η), which is indicated by a
sharp bright line in the left panels of Figs. 4 and 5. As we
go inside PHC, the width of this δ function increases and
plasmon mode becomes damped. Also deep inside the PHC,
the plasmon mode is overdamped and the peak in the loss
function disappears, which is clearly shown in the left panels
of Figs. 4 and 5. We note from Figs. 4 and 5 that the plasmon
dispersion for ξF < 0 is more flat than that of ξF > 0, so the
plasmon mode has smaller velocity for the Fermi energies
below the BTP.

In Fig. 6, for fixed background dielectric constant, the
density plot of the loss function in the (h̄ω, ne/nα ) plane is
shown for small q. A sharp bright line shows the behavior of
plasma frequency ωp (defined as the first term in the plasmon
dispersion in units of h̄) with respect to the carrier density
ne/nα of the system and the lighter region compared to the
sharp bright line indicates the interband PHC for small q.
For a fixed α at carrier density, ne = nt (ξF = 0) represents
the BTP. It is interesting to find that as we tune the Fermi
energy around the BTP, the plasmon mode becomes damped
within a range of electron-electron interaction strengths. Also,
with a fixed electron-electron interaction strength when Fermi
energy is well below and above the BTP, the plasmon mode
is undamped, but near the BTP it falls in the interband PHC
and becomes damped. The reason behind this feature is that
the starting point of the Rasbha continuum 2αkF

+ (2αkF
1 ) for

ξF > 0 (<0) shifts toward h̄ω = 0 as we approach the BTP
from above and below. As a consequence of this, the zero of
Eq. (10) starts to fall within the Rashba continuum.

Here we provide another known way [45] of observing
plasmon modes through optical conductivity. It is well known
that the finite value of the real part of the longitudinal con-
ductivity Reσ (q, ω), also known as optical conductivity, is
responsible for the dissipation of energy in the system by
Joule heating, when a current J(q, ω) is flowing in the sys-
tem. The relation between Imχ0

ρρ (q, ω) and Reσ (q, ω) is
Reσ (0)(q, ω) = −ωe2Imχ0

ρρ (q, ω)/q2. So, the nonvanishing
Imχ0

ρρ (q, ω) is also related to the dissipation of the energy
in the system. From this relation, we extract the behavior
of the real part of optical conductivity Reσ (0)(q, ω) in the
absence of electron-electron interaction, which is shown in
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FIG. 6. Density plot of natural logarithm of loss function ob-
tained numerically as a function of carrier density ne (in units of
nα) and h̄ω for small q. At carrier density ne = nt , ξF = 0 which
represents the BTP. The sharp bright line outside the interband
PHC indicates that the plasmon mode is undamped only when the
Fermi energy ξF lies well below and above the BTP. Dashed curve
shows the approximate plasma frequency obtained from ω(>/<)

p ≈
ω′

p/
√

β (>/<) (derived in the main text) which matches well with
the sharp bright line representing the plasma frequency calculated
with the help of exact numerical Lindhard function. Parameters:
m∗ = 0.5m0, α = 1 eV Å, ε∞ = 20ε0, and carrier density varies from
ne = 1.1nα to ne = 16.0nα .

Fig. 7 [55]. In the presence of electron-electron interaction,
optical conductivity becomes (see Appendix D) Reσ i(q, ω) =
−ωe2Imχ i

ρρ (q, ω)/q2. Here Imχ i
ρρ (q, ω) is the dynamical

polarization function given in Eq. (9). In Fig. 7, for Fermi
energy above (left panel) and below (right panel) the BTP,

FIG. 7. Real part of optical conductivity for ξF > 0 (left panel)
and ξF < 0 (right panel). Solid curve shows the behavior of the
real part of optical conductivity in the presence of electron-electron
interaction obtained within the RPA. The peak outside the Rasbha
continuum indicates the undamped plasmon mode for q = 0.01kα .
For completeness, we also show the behavior of the real part of
optical conductivity for the noninteracting case (dashed curve) [55].
Parameters: Carrier density ne = 16nα (same as Fig. 4) for left panel
and ne = 2nα (same as Fig. 5) for left panel, ε∞ = 20ε0 (same as
Fig. 4 and Fig. 5). All other parameters are the same as Fig. 2.

we have shown the Reσ (0)(q, ω) and Reσ (i)(q, ω) by dashed
and solid lines for small q, respectively. The plasmon mode
shows up with a peak in Reσ i(q, ω) between intraband PHC
and Rashba continuum as shown in Fig. 7. So, from the
small q optical conductivity measurement in addition to the
measurement of plasma frequency, one can also extract the
strength of RSOI (α) by measuring the width of the Rashba
continuum (same as optical width), which depends differently
on carrier density and α for Fermi energies above and below
the BTP.

In order to get more insight in the above observations,
we derive approximate analytical expressions of the plasma
frequency ωp and plasmon dispersion. For q � kF

λ , the full
expression of χ0

ρρ (q, ω) is given in Appendix B. In order to
find the plasma frequency ωp, we approximate χ0

ρρ (q, ω) for
ξF > 0 only up to the O(q2) term, which is given by

χ0
ρρ (q,�) ≈ 8DαQ2ξ 2

α [(xF
+)2 + (xF

−)2]
√

1 + ξF /ξα

3(h̄�)2

+ Q2Dα

6
ln

[
(h̄�)2 − (4ξαxF

+)2

(h̄�)2 − (4ξαxF−)2

]
. (12)

Here all the notations are the same as in the previous section
with xF

λ = kF
λ /kα . For Eq. (10), the plasma frequency ωp will

be given by the zeros of the following equation,

1 −
{

(h̄ω′
p)2

(h̄�)2
+ Dα

6
ln

[
(h̄�)2 − (4ξαxF

+)2

(h̄�)2 − (4ξαxF−)2

]}
= 0, (13)

with

ω′
p = ωn

p√
ε∞/ε0

√
2ξα + ξF

4ξα + ξF
, (14)

and ωn
p =

√
nee2/m∗ε0 being the plasma frequency for an

ordinary 3D electron gas [17]. The above expression of ω′
p has

been derived using Eq. (5). We first consider the limiting case
when α = 0. In this case, the second term in the parentheses
of Eq. (13) vanishes, and by putting ξα = 0 in Eq. (14), the
plasma frequency ωp = ωn

p reproduces the known plasma fre-
quency for an ordinary 3D electron gas. In order to achieve
an approximate expression of ωp for nonzero α, we solve
Eq. (13) for h̄ω/4ξα < 1. The plasma frequency becomes
ωp ≈ ω′

p/
√

β>, with

β> = 1 − e2

12π2αε∞
ln

[√
ξα + ξF − √

ξα√
ξα + ξF + √

ξα

]
. (15)

We have also obtained a similar approximate expression of
plasma frequency for Fermi energies below the BTP. The
plasmon frequency above (>) and below (<) the BTP is
ω(>/<)

p ≈ ω′
p/

√
β (>/<), with

β (>/<) = 1 − e2

12π2αε∞
ln

[±(
√

ξα + ξF − √
ξα )√

ξα + ξF + √
ξα

]
. (16)

The variation of plasma frequency ωp with the Fermi energy
for fixed background dielectric constant (ε∞) is shown in
Fig. 6. The sharp bright line describes numerically obtained
ωp and on top of that dashed lines describe the analytical result
obtained from ω(>/<)

p ≈ ω′
p/

√
β (>/<).
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We also find an approximate analytical expression of plas-
mon dispersion with the help of the approximate plasma
frequency ω(>/<)

p and χ0
ρρ (q, ω) in the long wavelength limit.

The plasmon dispersion in the long wavelength limit above
and below BTP becomes

ω(>/<)(q) ≈ ω(>/<)
p + 3

5

(ξα + ξF )

m∗ω(>/<)
p

q2

≈ ω(>/<)
p + 3

10

(vF
>/<q)2

ω
(>/<)
p

, (17)

with vF
> (vF

<) being the absolute value of the Fermi velocity
for ξF > 0 (<0), which can be expressed as vF

> = h̄(kF
λ +

λ)/m∗ = (h̄kα/m∗)
√

1 + ξF /ξα and vF
< = h̄|(kF

η − 1)|/m∗ =
(h̄kα/m∗)

√
1 + ξF /ξα . The absolute value of Fermi velocity

increases with increase of carrier density or equivalently the
Fermi energy. This implies that the plasmon mode for Fermi
energy below the BTP has smaller velocity (∝√

ξF + ξα)
than the plasmon mode for Fermi energy above the BTP, as
mentioned earlier from numerical results (see right panels of
Figs. 4 and 5). Also, for all carrier densities, the stronger
spin-orbit coupling reduces the Fermi energy and Fermi ve-
locity (∝√

ξF + ξα) of the system, so the plasmon velocity
(∝√

ξF + ξα) also decreases. The above equation also indi-
cates that in the long wavelength limit the plasmon dispersion
is ∝q2, which is similar to that of an ordinary 3D electron gas
[17]. This approximate plasmon dispersion has been shown
in the right panels of Figs. 4 and 5 together with the exact
plasmon dispersion obtained numerically. It is evident from
the right panels of Figs. 4, 5, and 6 that the approximate
plasma frequency and plasmon dispersion match well with the
exact numerical dispersion in the long wavelength limit when
the excitation energy for the plasmon is smaller than 4ξα .
For higher or comparable excitation energy, which happens at
larger carrier densities, the approximate plasmon dispersion
starts to deviate from the exact numerical dispersion. Also, as
we have already discussed, in the limiting case, i.e., α = 0,
ωp = ωn

p. Applying this to above equation for plasmon dis-
persion reproduces the correct form of the plasmon dispersion
in the long-wavelength limit for an ordinary 3D electron gas
[17].

For all the results in Figs. 4 to 7 shown above, we have
taken the background dielectric constant [45,58] ε∞ = 20ε0.
We also show in Figs. 8 and 9 that for fixed carrier densities
above and below the BTP, changing the strength of electron-
electron interaction which is inversely proportional to the
background dielectric constant ε∞ for the Fermi energy above
and below the BTP does not change the number of undamped
plasmon modes, although the damped plasmon modes in the
interband PHC are more in number. It is also clear from Figs. 8
and 9 that for small ε∞ the plasma frequency decreases rapidly
and after that decreases slowly with further increase in ε∞.
As the Fermi energy is fixed, the interband PHC is also fixed
and only the zeros of ε(q, ω) = 0 are changing with ε∞. In
the left panels of Figs. 8 and 9, the dashed line shows the
variation of approximate plasma frequency ωp with respect
to ε∞. The approximate plasma frequency matches well with
its numerical counterpart for a larger background dielectric
constant.

FIG. 8. Left panel: Density plot of the natural logarithm of loss
function in the (ε∞, ω) plane for ξF > 0 in the long wavelength
limit. Dashed curve shows the variation of approximate plasma fre-
quency ωp as a function of ε∞ which determines the interaction
strength ∝ 1/ε∞. Right panel: Density plot of the natural logarithm
of the imaginary part of the Lindhard function in (ε∞, ω) plane for
ξF > 0 in the long wavelength limit. Dotted curve shows the plasma
frequency as a function of ε∞ obtained numerically from zeros of
Eq. (10) with the help of the exact Lindhard function. Parameters:
m∗ = 0.5m0, α = 1 eV Å, ne = 16nα , q = 0.01kα .

V. SUMMARY AND DISCUSSION

In summary, we have studied the dynamical polarization
function and plasmon modes of NCMs in detail. In NCMs, the
Rashba continuum is similar to that of 2DEG with spin-orbit
coupling, and it starts at finite energy, in contrast to the BiTeX
semiconductor compounds [45]. In the long wavelength limit,
the width of Rashba continuum behaves differently for Fermi
energies below and above the BTP as a consequence of the
change in the Fermi surface topology. Within a range of
electron-electron interaction strengths and suitable material
parameters, there is a single undamped optical plasmon mode
for Fermi energies above and below the BTP. Interestingly,
we find that the plasmon mode is damped for Fermi energies
near the BTP within a range of electron-electron interac-
tion strength. For fixed carrier densities above and below

FIG. 9. Left panel: Density plot of the natural logarithm of loss
function in the (ε∞, ω) plane for ξF < 0 in the long wavelength
limit. Dashed curve shows the variation of approximate plasma fre-
quency ωp as a function of ε∞. Right panel: Density plot of the
natural logarithm of the imaginary part of the Lindhard function in
the (ε∞, ω) plane for ξF < 0 in the long wavelength limit. Dotted
curve shows the plasma frequency as a function of ε∞ obtained
numerically from zeros of Eq. (10) with the help of the exact
Lindhard function. Parameters: m∗ = 0.5m0, α = 1 eV Å, ne = 2nα ,
q = 0.01kα .
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the BTP, with the increase of background dielectric constant,
the number of undamped plasmon modes does not change,
although the damped plasmon modes can be more in number.
It is important to note here that for a fixed electron-electron
interaction strength and a range of Fermi energies or vice
versa with other material parameters, NCMs always has one
undamped plasmon mode. So, for the same range of realistic
material parameters, NCMs host a single undamped plasmon
mode whereas the plasmon modes are always damped in
BiTeX semiconductor compounds [45].

In NCMs, the approximate plasma frequency and the plas-
mon dispersion (∝q2) matches well with the exact numerical
results in the long wavelength limit. The velocity of plasmon
mode is ∝√

ξF + ξα . So, for Fermi energies below the BTP,
the plasmon mode has a smaller velocity compared to that
of Fermi energies above the BTP. At fixed electron-electron
interaction strength, the plasma frequency has a similar carrier
density dependence for Fermi energies above and below the
BTP. For Fermi energies above and below the BTP, the plasma
frequency decreases rapidly for smaller ε∞ and after that
decreases slowly with further increase in ε∞. The approximate
plasma frequency as a function of ε∞ also matches well with

the exact numerical result for larger ε∞. It is important to
note that the approximate analytical expression of plasma
frequency and plasmon dispersion are valid for h̄ω/4ξα < 1
in the long wavelength limit.

It should be mentioned here that for small β the presence
of cubic spin-orbit coupling term in the effective Hamilto-
nian may not change the dielectric properties significantly.
However, for large β, it may give rise to anisotropic plasmon
modes similar to the 2D electron [22] and hole gas [23]. More-
over, if the bands around other symmetry points in Brillouin
zone cross the Fermi energy, they may also contribute to the
dielectric properties in some form [33].
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APPENDIX A: THE SECOND QUANTIZED REPRESENTATION

In order to study many-body systems, it is convenient to work in the occupation number or second quantized representation
[17,18]. For translationally invariant systems, we choose a single-particle basis {|kσ 〉} with σ =↑,↓ and 〈r|kσ 〉 = ψ̃k,σ (r) =
ησ eik·r/

√
V with η↑ = {10}T and η↓ = {01}T , where T stands for transpose. As particles are indistinguishable, the basis states

in the occupation number representation is {|nkσ 〉} such that
∑

kσ nkσ = N , where N is the total number of particles. We define
electron creation C̃†

k,σ and annihilation operator C̃k,σ with spin σ , which increases and decreases the occupation number of state
|nkσ 〉 by unity, respectively. All first quantized operators can be expressed in the second quantized form using the quantum field
operators defined as

�̃†(r) =
∑
k,σ

e−ik·r
√
V

η†
σC̃†

k,σ and �̃(r) =
∑
k,σ

eik·r
√
V

ησC̃k,σ . (A1)

Density operator in the second quantized form is given by

ρ̂(r) =
∫

dr′�̃†(r′)δ(r − r′)�̃(r′), = �̃†(r)�̃(r), = 1

V
∑

q

eiq·rρ̂(q), with ρ̂(q) =
∑
kσ

C̃†
k,σ

C̃k+q,σ . (A2)

The Hamiltonian is diagonal in the helicity basis |kλ〉 with λ = ±. We define quantum field operators in this basis as

�†(r) =
∑
k,λ

e−ik·r
√
V

φ
†
k,λC†

k,λ and �(r) =
∑
k,λ

eik·r
√
V

φk,λCk,λ. (A3)

Now the Hamiltonian H0 and the density operator in the second quantized form in the helicity basis are

Ĥ0 =
∑
k,λ

ξk,λC†
k,λCk,λ, with ξk,λ = h̄2k2/(2m∗) + λαk. ρ̂(q) =

∑
kλ1λ2

φ
†
k,λ1

φk+q,λ2C
†
k,λ1

Ck+q,λ2 . (A4)

Consider the perturbed Hamiltonian Ĥ (t ) = Ĥ0 + ∫
drVext (r, t )ρ̂(r). The induced density due to this perturbation is given by

[17,18]

ρind(r, t ) =
∫ t

−∞
dt ′

∫
dr′χ0

ρρ (r, r′, t, t ′)Vext (r′, t ′). (A5)

Here χ0
ρρ (r, r′, t, t ′), which is known as the retarded density-density response function, is the response of the density operator

averaged over the ground state of perturbed Hamiltonian due to the perturbation. The ρρ in the subscript indicates that it is a
density-density correlation function. The induced density is ρind(r, t ) ≡ 〈ρ̂(r, t )〉ext − 〈ρ̂(r, t )〉0. The symbols 〈...〉ext and 〈...〉0

denote the average is taken over the ground state of the perturbed Ĥ (t ) and unperturbed Hamiltonian Ĥ0. Within the linear
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response formalism [17,18], the retarded density-density response function has the following form:

χ0
ρρ (r, r′, t, t ′) = − i

h̄
θ (t − t ′)〈[ρ̂(r, t ), ρ̂(r′, t ′)]〉0. (A6)

For translationally invariant systems, the density-density response function in Fourier space is given by

χ0
ρρ (q, t, t ′) = − i

h̄V θ (t − t ′)〈[ρ̂(q, t ), ρ̂(−q, t ′)]〉0. (A7)

In the above expressions, the time dependence of the operators comes in the form Â(t ) = eiĤ0t/h̄Â(0)e−iĤ0t/h̄. After
some straightforward algebra, the final expression of the density-density response function in Fourier space χ0

ρρ (q, ω) =∫ +∞
−∞ dteiω(t−t ′ )χ0

ρρ (q, t − t ′) becomes

χ0
ρρ (q, ω) =

∑
λλ′

χ0
λλ′ (q, ω), with χ0

λλ′ (q, ω) = 1

V
∑

k

Fλλ′ (k, k + q)
nF

k,λ − nF
k+q,λ′

h̄(ω + i0+) + ξk,λ − ξk+q,λ′
. (A8)

Here Fλλ′ (k, k + q) = |φ†
k,λφk+q,λ′ |2 describes the overlap between the two states labeled by |k, λ〉 and |k + q, λ′〉. Also, nF

k,λ =
1/[e−β(ξk,λ−μ) + 1] is the Fermi-Dirac distribution function with β = (kBT )−1 and T being the temperature.

In order to get the full q and ω dependence of χ0
ρρ (q, ω), first we simplify its expression for appropriate numerical simulation.

We have also derived an asymptotic expression of χ0
ρρ (q, ω) for q � kF

λ/η, which we will describe in a later section. Using the
ground-state properties of NCS metals, we simplify χ0

ρρ (q, ω) for ξF > 0 as follows:

χ0
ρρ (q, ω) = 1

2V
∑
kλλ′

[
1 + λλ′ k · (k + q)

|k||k + q|
]

nF
k,λ − nF

k+q,λ′

h̄� + ξk,λ − ξk+q,λ′
, = χ0(+)

ρρ (q, ω) + χ0(−)
ρρ (q, ω), (A9)

where χ0(+)
ρρ (q, ω) has the following expression (for T → 0):

χ0(+)
ρρ (q, ω) = 1

2V
∑
kλλ′

[
1 + λλ′ k · (k + q)

|k||k + q|
]

nF
k,λ

h̄� + ξk,λ − ξk+q,λ′
,

= Dα

∑
λ

∫ xF
λ

0
x2dx

∫ π

0
sin θkdθk

[
2(ζ+

λ − 2Qx cos θk ) + 4λ(x + Q cos θk )

(ζ+
λ − 2Qx cos θk )2 − 4|x + Q|2

]
, (A10)

with x = k/kα , xF
λ = kF

λ /kα , Q = q/kα , Dα = m∗kα/(4π2h̄2), and ζ+
λ = h̄�/ξα + 2λx − Q2. After doing the straightforward θk

integration, χ0(+)
ρρ (q, ω) has the following form:

χ0(+)
ρρ (q, ω) = Dα

∑
λ

∫ xF
λ

0

dx

Q

[
C+

λ ln

(
t+
λ+ − 2Qx

t+
λ+ + 2Qx

)
+ G+

λ ln

(
t+
λ− − 2Qx

t+
λ− + 2Qx

)]
, (A11)

with t+
λ± = (ζ+

λ + 2) ± 2
√

(x + λ)2 + h̄�/ξα , C+
λ = (a+

λ + b+
λ t+

λ+)/(t+
λ+ − t+

λ−), G+
λ = −(a+

λ + b+
λ t+

λ−)/(t+
λ+ − t+

λ−), a+
λ =

x(ζ+
λ + 2λx), and b+

λ = λ − x. The above 1D integration can be done numerically. Now let us consider χ0(−)
ρρ (q, ω):

χ0(−)
ρρ (q, ω) = 1

2V
∑
kλλ′

[
1 + λλ′ k · (k + q)

|k||k + q|
] −nF

k+q,λ′

h̄� + ξk,λ − ξk+q,λ′
,

= 1

2V
∑
kλλ′

[
1 + λλ′ (k − q) · k

|k − q||k|
]

nF
k,λ′

−h̄� + ξk,λ′ − ξk−qλ

. (A12)

Doing similar manipulations as for χ0(+)
ρρ (q, ω), the final expression of χ0(−)

ρρ (q, ω) becomes

χ0(−)
ρρ (q, ω) = Dα

∑
λ′

∫ xF
λ′

0

dx

Q

[
C−

λ′ ln

(
t−
λ+ − 2Qx

t−
λ+ + 2Qx

)
+ G−

λ′ ln

(
t−
λ− − 2Qx

t−
λ− + 2Qx

)]
, (A13)

with ζ−
λ′ = −h̄�/ξα + 2λ′x − Q2, t−

λ′± = −(ζ−
λ′ + 2) ± 2

√
(x + λ′)2 − h̄�/ξα , C−

λ′ = (a−
λ′ + b−

λ′t−
λ′+)/(t−

λ′+ − t−
λ′−), G−

λ′ =
−(a−

λ + b−
λ′t−

λ′−)/(t−
λ′+ − t−

λ′−), a−
λ′ = x(ζ−

λ′ + 2λ′x), and b−
λ′ = −(λ′ − x). We combine χ0(+)

ρρ (q, ω) and χ0(−)
ρρ (q, ω) and get

the following expression of the Lindhard function for ξF > 0,

χ0
ρρ (q, ω) = Dα

∑
λs

∫ xF
λ

0

dx

Q

[
Cs

λ ln

(
t s
λ+ − 2Qx

ts
λ+ + 2Qx

)
+ Gs

λ ln

(
t s
λ− − 2Qx

ts
λ− + 2Qx

)]
, (A14)
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with s = ±1, ζ s
λ = sh̄�/ξα + 2λx − Q2, t s

λ± = s(ζ s
λ + 2) ± 2

√
(x + λ)2 + sh̄�/ξα , Cs

λ = (as
λ + bs

λt sω

λ+)/(t s
λ+ − t s

λ−), Gs
λ =

−(as
λ + bs

λt s
λ−)/(t s

λ+ − t s
λ−), as

λ = x(ζ s
λ + 2λx), and bs

λ = s(λ − x).
After a similar calculation, the Lindhard function for ξF < 0 (for T → 0) is given by

χ0
ρρ (q, ω) = Dα

∑
s

∫ xF
2

xF
1

dx

Q

[
Cs

λ′ ln

(
t s
λ′+ − 2Qx

ts
λ′+ + 2Qx

)
+ Gs

λ′ ln

(
t s
λ′− − 2Qx

ts
λ′− + 2Qx

)]
, (A15)

with λ′ = −1, s = ±1, xF
1 = kF

1 /kα , and xF
2 = kF

2 /kα . While deriving the above equation, we have used the fact that nF
k,λ = 0 for

all k above the band crossing point.

APPENDIX B: ASYMPTOTIC EXPRESSION OF χ0
ρρ(q, ω)

In this section, we derive an asymptotic expression of the dynamical polarization function, which will be helpful in finding the
approximate analytical forms of plasma frequency and plasmon dispersion of NCMs. Let us first consider ξF > 0. We consider
q = qẑ for simplicity due to the isotropic nature of the band structure. For small wave vector q � kF

λ ,

ξk,λ − ξk+q,λ′ = ξk,λ − ξk,λ′ − q · ∇kξk,λ′ � αk(λ − λ′) − h̄vk
λ′kαQ cos θk, (B1)

and for T → 0,

nF
k,λ − nF

k+q,λ′ = nF
k,λ − nF

k,λ′ − ∂nF
k,λ′

∂ξk,λ′
q · ∇kξk,λ′ � nF

k,λ − nF
k,λ′ + δ(ξk,λ′ − ξF )h̄vk

λ′kαQ cos θk, (B2)

with vk
λ′ = h̄(k + λ′kα )/m∗. So, the Lindhard function will be

χ0
ρρ (q, ω) = 1

2V
∑
kλλ′

[
1 + λλ′ k · (k + q)

|k||(k + q)|
]

nF
k,λ − nF

k+q,λ′

h̄� + ξk,λ − ξk+q,λ′
,

� 1

8π2

∑
λλ′

∫ ∞

0
k2dk

∫ π

0
sin θkdθk

[
1 + λλ′

(
1 + q

k
cos θk

)(
1 + q2

k2
+ 2

q

k
cos θk

)−1/2
]

×
[
nF

k,λ − nF
k,λ′ + δ(ξk,λ′ − EF )h̄vk

λ′kαQ cos θk
]

h̄� + αk(λ − λ′) − h̄vk
λ′kαQ cos θk

= χ0(3)
ρρ (q, ω) + χ0(2)

ρρ (q, ω) + χ0(1)
ρρ (q, ω). (B3)

Here χ0(1)
ρρ (q, ω) + χ0(2)

ρρ (q, ω) is

χ0(2)
ρρ (q, ω) + χ0(1)

ρρ (q, ω) = 1

8π2

∑
λλ′

∫ ∞

0
k2dk

∫ π

0
sin θkdθk

[
1 + λλ′

(
1 + q

k
cos θk

)(
1 + q2

k2
+ 2

q

k
cos θk

)−1/2
]

× δ(ξk,λ′ − ξF )h̄vk
λ′kαQ cos θk

h̄� + αk(λ − λ′) − h̄vk
λ′kαQ cos θk

= mkα

8π2h̄2

∑
λλ′

(
xF
λ′
)2∣∣xF

λ′ + λ′∣∣
∫ 1

−1
dτ

[
1 + λλ′

(
1 + Qτ

xF
λ′

)(
1 + Q2(

xF
λ′
)2 + 2

Qτ

xF
λ′

)−1/2]

× γ λ′
λ

(
xF
λ′ ,�

)
Qτ

(
1 − γ λ′

λ

(
xF
λ′ ,�

)
Qτ

)−1
, (B4)

where τ = cos θk, xF
λ′ = kF

λ′/kα , Q = q/kα , vx
λ′ = h̄kα (x + λ′)/m∗, and γ λ′

λ (x,�) = h̄vx
λ′kα/�λ′

λ (x,�) with �λ′
λ (x,�) = h̄� +

αkαx(λ − λ′). It is easy to see that γ +
+ (xF

+,�) ≡ γ +
+ = h̄v

xF
+

+ kα/h̄�, γ −
− (xF

−,�) ≡ γ −
− = h̄v

xF
−

− kα/h̄�, γ −
+ (xF

−,�) ≡ γ −
+ =

h̄v
xF
−

− kα/(h̄� + 2αkαxF
−), and γ +

− (xF
+,�) ≡ γ +

− = h̄v
xF
+

+ kα/(h̄� − 2αkαxF
+) with γ +

+ = γ −
− , as the velocities at the two bands

are the same for a given Fermi energy. So, the final expression of intraband contribution χ0(1)
ρρ (q, ω) becomes

χ0(1)
ρρ (q, ω) = Dα

∑
λ=λ′

(
xF
λ′
)2∣∣xF

λ′ + λ′∣∣
{

(1 + λλ′)
1

3

[
Qγ λ′

λ

(
xF
λ′ ,�

)]2 + λλ′
(

2γ λ′
λ

(
xF
λ′ ,�

)
15

(
xF
λ′
)3 −

[
γ λ′

λ

(
xF
λ′ ,�

)]2

15
(
xF
λ′
)2

)
Q4

+ (1 + λλ′)
1

5

[
Qγ λ′

λ

(
xF
λ′ ,�

)]4 + λλ′
(

−2
[
γ λ′

λ

(
xF
λ′ ,�

)]2

35
(
xF
λ′
)4 + 2

[
γ λ′

λ

(
xF
λ′ ,�

)]3

35
(
xF
λ′
)3 −

[
γ λ′

λ

(
xF
λ′ ,�

)]4

35
(
xF
λ′
)2

)
Q6

+ (1 + λλ′)
1

7

[
Qγ λ′

λ

(
xF
λ′ ,�

)]6 + O(Q8) + · · ·
}

, (B5)

195208-10



DYNAMICAL POLARIZATION AND PLASMONS IN … PHYSICAL REVIEW B 102, 195208 (2020)

and the final expression of one part of interband contribution χ0(2)
ρρ (q, ω) becomes

χ0(2)
ρρ (q, ω) = Dα

(xF
−)2

|xF− − 1|
[(

−2γ −
+ (xF

−,�)

15(xF−)3
+ [γ −

+ (xF
−,�)]2

15(xF−)2

)
Q4

+
(

2[γ −
+ (xF

−,�)]2

35(xF−)4
− 2[γ −

+ (xF
−,�)]3

35(xF−)3
+ [γ −

+ (xF
−,�)]4

35(xF−)2

)
Q6 + O(Q8) + · · ·

]

+ Dα

(xF
+)2

|xF+ + 1|
[(

−2γ +
− (xF

+,�)

15(xF+)3
+ [γ +

− (xF
+,�)]2

15(xF+)2

)
Q4

+
(

2[γ +
− (xF

+,�)]2

35(xF+)4
− 2[γ +

− (xF
+,�)]3

35(xF+)3
+ [γ +

− (xF
+,�)]4

35(xF+)2

)
Q6 + O(Q8) + · · ·

]
. (B6)

The remaining part of the interband contribution χ0(3)
ρρ (q, ω) is finally given by

χ0(3)
ρρ (q, ω) = Dα

{
ξαQ2

3αkα

[
ln

(
(h̄�)2 − (2αkF

+)2

(h̄�)2 − (2αkF−)2

)]
+ 8ξ 2

αQ4

15

[
1

(h̄�)2
ln

(
4 − [h̄�/(αkF

+)]2

4 − [h̄�/(αkF−)]2

)

− 4αkα (xF
− − xF

+)(xF
− + xF

+)(h̄� + 2αkα )

[(2αkF−)2 − (h̄�)2][(2αkF+)2 − (h̄�)2]

]
+ 8ξ 3

αQ4

15

[
1

(2αkα )3
ln

(
(h̄�)2 − (2αkF

+)2

(h̄�)2 − (2αkF−)2

)

− 1

{(2αkα )3[(h̄�)2 − (2αkF−)2]2[(h̄�)2 − (2αkF+)2]2}
[
4α2k2

α (xF
− − xF

+)(xF
− + xF

+)(h̄� + 2αkα )

× [
32α5k5

α (xF
−xF

+)2 + 80α4k4
α h̄�(xF

−xF
+)2 + 4α2k2

α (h̄ω)2[(xF
+)2 + (xF

−)2](2αkα − 3h̄�)

− 6αkα (h̄�)4 + (h̄�)5
]]] + O(Q6) + · · ·

}
. (B7)

Equations (B5), (B6), and (B7) combined to describe the asymptotic expression of the Lindhard function for ξF > 0.
Now we consider the Lindhard function for ξF < 0,

χ0
ρρ (q, ω) = 1

2V
∑

k

[
1 + k · (k + q)

|k||k + q|
]

nF
k,− − nF

k+q,−
h̄� + ξk,− − ξk+q,−

+ 1

2V
∑

k

[
1 − k · (k + q)

|k||k + q|
][

nF
k,−

h̄� + ξk,− − ξk+q,+
− nF

k+q,−
h̄� + ξk,+ − ξk+q,−

]
,

= 1

2V
∑

k

[
1 + k · (k + q)

|k||k + q|
]
δ(ξk,− − ξF )h̄vk

−kαQ cos θk

h̄� − h̄vk−kαQ cos θk

+ 1

2V
∑

k

[
1 − k · (k + q)

|k||k + q|
]

δ(ξk,− − ξF )h̄vk
−kαQ cos θk

h̄� + 2αk − h̄vk−kαQ cos θk

+ 1

2V
∑

k

[
1 − k · (k + q)

|k||k + q|
][

nF
k,−

h̄� − 2αk − h̄vk+kαQ cos θk
− nF

k,−
h̄� + 2αk − h̄vk−kαQ cos θk

]
,

= χ0(1)
ρρ (q, ω) + χ0(2)

ρρ (q, ω) + χ0(3)
ρρ (q, ω). (B8)

Following the similar steps as in ξF > 0, the final expression for intraband λ = ±1 or intrabranch η = 1, 2 contribution to the
Lindhard function is given by

χ0(1)
ρρ (q, ω) = Dα

∑
η

(
xF
η

)2

|xF
η − 1|

{
2

3

[
Qγ −

−
(
xF
η ,�

)]2 +
(

2γ −
−

(
xF
η ,�

)
15

(
xF
η

)3 −
[
γ −

−
(
xF
η ,�

)]2

15
(
xF
η

)2

)
Q4

+ 2

5

[
Qγ −

−
(
xF
η ,�

)]4 +
(

−2
[
γ −

−
(
xF
η ,�

)]2

35
(
xF
η

)4 + 2
[
γ −

−
(
xF
η ,�

)]3

35
(
xF
η

)3 −
[
γ −

−
(
xF
η ,�

)]4

35
(
xF
η

)2

)
Q6

+ 2

7

[
Qγ −

−
(
xF
η ,�

)]6 + O(Q8) + · · ·
}
. (B9)

195208-11



VERMA, KUNDU, AND GHOSH PHYSICAL REVIEW B 102, 195208 (2020)

with xF
η = kF

η /kα , and γ −
− (xF

η ,�) = ξα (xF
η − 1)/(h̄�). The final expression of one part of interband and intrabranch contribution

becomes

χ0(2)
ρρ (q, ω) = Dα

∑
η

(
xF
η

)2∣∣xF
η − 1

∣∣
[(

−2γ −
+

(
xF
η ,�

)
15

(
xF
η

)3 +
[
γ −

+
(
xF
η ,�

)]2

15
(
xF
η

)2

)
Q4

+
(

2
[
γ −

+
(
xF
η ,�

)]2

35
(
xF
η

)4 − 2
[
γ −

+
(
xF
η ,�

)]3

35
(
xF
η

)3 +
[
γ −

+
(
xF
η ,�

)]4

35
(
xF
η

)2

)
Q6 + O(Q8) + · · ·

]
. (B10)

with xF
η = kF

η /kα and γ −
+ (xF

η ,�) = ξα (xF
η − 1)/(h̄� + 2αkαxF

η ). The remaining part of the intraband and intrabranch contribu-
tion to the Lindhard function has an expression similar to that of χ0(3)

ρρ (q, ω) for ξF > 0 except kF
+ is replaced kF

1 and kF
− by kF

2 .
So, the final expression of χ0(3)

ρρ (q, ω) for ξF < 0 becomes

χ0(3)
ρρ (q, ω) = Dα

{
ξαQ2

3αkα

[
ln

(
(h̄�)2 − (

2αkF
1

)2

(h̄�)2 − (
2αkF

2

)2

)]
+ 8ξ 2

αQ4

15

[
1

(h̄�)2
ln

(
4 − [

h̄�
/(

αkF
1

)]2

4 − [
h̄�

/(
αkF

2

)]2

)

− 4αkα

(
xF

2 − xF
1

)(
xF

2 + xF
1

)
(h̄� + 2αkα )[(

2αkF
2

)2 − (h̄�)2
][(

2αkF
1

)2 − (h̄�)2
]
]

+ 8ξ 3
αQ4

15

[
1

(2αkα )3
ln

(
(h̄�)2 − (

2αkF
1

)2

(h̄�)2 − (
2αkF

2

)2

)

− 1{
(2αkα )3

[
(h̄�)2 − (

2αkF
2

)2]2[
(h̄�)2 − (

2αkF
1

)2]2}[
4α2k2

α

(
xF

2 − xF
1

)(
xF

2 + xF
1

)
(h̄� + 2αkα )

[
32α5k5

α

(
xF

2 xF
1

)2

+ 80α4k4
α h̄�

(
xF

2 xF
1

)2 + 4α2k2
α (h̄ω)2

[(
xF

2

)2 + (
xF

1

)2]
(2αkα − 3h̄�) − 6αkα (h̄�)4 + (h̄�)5

]]] + O(Q6) + · · ·
}

.

(B11)

The full asymptotic expression of the Lindhard function for ξF < 0 is the sum of Eqs. (B9), (B10), and (B11).

APPENDIX C: DENSITY-DENSITY RESPONSE IN PRESENCE OF ELECTRON-ELECTRON INTERACTION

The Coulomb interaction among the band electrons in second quantized form can be written as follows [17,18]:

V̂ = 1

2

∑
σ,σ ′

∫
dr

∫
dr′�̃†

σ (r)�̃†
σ ′ (r′)

e2
0

|r′ − r| �̃σ ′ (r′)�̃σ (r), (C1)

where e2
0 = e2/(4πε), with ε being the background dielectric constant. After following the well-known procedure within the

jellium model, the electron-electron interaction in second quantized form takes the following form in the helicity basis as

V̂ = 1

2V
∑

k1, k2, q′ �= 0
λ1, λ2, λ3, λ4

V (q′)C†
k1+q′,λ1

φ
†
k1+q′,λ1

C†
k2−q′,λ2

φ
†
k2−q′,λ2

φk2,λ3Ck2,λ3φk1,λ4Ck1,λ4 , (C2)

with V (q′) = 4πe2
0/(q′)2. In the presence of the elctron-electron interaction, the induced particle density due to the external

perturbation defined above becomes

ρ i
ind(r, t ) =

∫ t

−∞
dt ′

∫
dr′χ i

ρρ (r, r′, t, t ′)Vext (r′, t ′), (C3)

where χ i
ρρ (r, r′, t, t ′) is the retarded density-density response function for the system described by the total Hamiltonian Ĥ =

Ĥ0 + V̂ and has following form:

χ i
ρρ (r, r′, t, t ′) = − i

h̄
θ (t − t ′)〈[ρ̂(r, t ), ρ̂(r′, t ′)]〉eq. (C4)

Here the subscript ′eq′ denotes that the average is taken over the ground state of the full Hamiltonian Ĥ = Ĥ0 + V̂ in equilibrium.
Using the properties of the translationally invariant system even in the presence of the Coulomb interaction, the density response
function takes the following form:

χ i
ρρ (q, t, t ′) =

∑
λλ′

χ i
λλ′ (q, t, t ′) = − i

h̄V�(t − t ′)〈[ρ̂(q, t ), ρ̂(−q, t ′)]〉eq. (C5)
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We use the standard equation of motion technique within the random phase approximation to obtain the final expression of the
density-density response function of the interacting system, which is given by [17,18]

χ i
ρρ (q, ω) =

∑
λλ′

χ i
λλ′ (q, ω) = χ0

ρρ (q, ω)

1 − V (q)χ0
ρρ (q, ω)

, (C6)

where χ0
ρρ (q, ω) is described by Eq. (A8). The plasmons are described by the poles of the above response function, i.e., zeros of

the dielectric function ε(q, ω) = 1 − V (q)χ0
ρρ (q, ω).

APPENDIX D: OPTICAL CONDUCTIVITY

Let us first consider the NCMs without electron-electron interaction in the presence of an external perturbation, V̂ext (t ) =∫
drVext (r, t )ρ̂(r). The induced density due to this perturbation in Fourier space is given by [18]

ρind(q, ω) = χ0
ρρ (q, ω)Vext (q, ω), (D1)

with χ0
ρρ (q, ω) being the retarded density-density response for noninteracting NCMs. The continuity equation ∂tρind(r, t ) + ∇ ·

J(r, t ) = 0 in Fourier space becomes −iωρind(q, ω) + iq · J(q, ω) = 0, with the electrical current J(q, ω) = σ (q, ω)Eext (q, ω)
in the presence of an external electric field Eext (q, ω) = −iqVext (q, ω). With the help of the above relations, the relation between
the longitudinal conductivity σ (q, ω) and the dynamical polarization function χ0

ρρ (q, ω) is given by

σ (q, ω) = iωe2

q2
χ0

ρρ (q, ω). (D2)

In the presence of the electron-electron interaction, the above equations modify as follows:

ρ i
ind(q, ω) = χ i

ρρ (q, ω)Vext (q, ω), (D3)

where χ i
ρρ (q, ω) is the density response function for Ĥ = Ĥ0 + V̂ with induced particle density ρ i

ind(q, ω) within RPA. The
continuity equation is also modified in the same way as −iωρ i

ind(q, ω) + iq · Ji(q, ω) = 0, giving rise to the following relation
between σ i(q, ω) and χ i

ρρ (q, ω):

σ i(q, ω) = iωe2

q2
χ i

ρρ (q, ω). (D4)
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