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Superconducting wires with broken time-reversal and spin-rotational symmetries can exhibit two distinct
topological gapped phases and host bound Majorana states at the phase boundaries. When the wire is tuned
to the transition between these two phases and the gap is closed, Majorana states become delocalized leading to
a peculiar critical state of the system. We study transport properties of this critical state as a function of the length
L of a disordered multichannel wire. Applying a nonlinear supersymmetric sigma model of symmetry class D
with two replicas, we identify the average conductance, its variance, and the third cumulant in the whole range
of L from the Ohmic limit of short wires to the regime of a broad conductance distribution when L exceeds the
correlation length of the system. In addition, we calculate the average thermal shot noise power and variance of
the topological index for arbitrary L. The general approach developed in the paper can also be applied to study
combined effects of disorder and topology in wires of other symmetries.
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I. INTRODUCTION

Topological insulators hosting gapless excitations at their
boundary have been the subject of intense studies during the
last two decades [1]. One of the most fascinating features of
topological materials is the possibility of observing Majorana
fermions in a solid state setup. Manipulation of topologi-
cally protected Majorana bound states is believed to be a
promising platform for quantum computation and informa-
tion processing, since it may overcome the decoherence issue
in conventional qubits [2]. Several realizations of Majorana
fermions have been proposed, including vortex bound states
in p-wave superconductors [3], Kitaev chain [4], and a semi-
conducting wire proximized with an s-wave superconductor
[5,6]. The latter approach turned out to be the most suitable
for experimental implementation, and a number of publica-
tions reporting observation of Majorana states in proximized
quantum wires have appeared in recent years [7–13].

Majorana fermion formation requires a superconductor
with broken time-reversal and spin-rotation symmetries, a
system of symmetry class D in the classification of Ref. [14].
In one spatial dimension (quantum wires), this class is charac-
terized by Z2 topological quantum number [15,16], indicating
that there exist two topologically distinct phases. Both trivial
(q = 1) and topological (q = −1) phases have a spectral gap,
which by tuning a control parameter μ is closed and then
reopens with a different sign, giving rise to a Majorana mode
localized at the phase boundary. In a clean, translationally
invariant system, the topological invariant q can be expressed
in terms of the Pfaffians of the Hamiltonian in the center and
at the corner of the Brillouin zone [4].

Disorder, inevitably present in experimental realizations,
affects the above picture in several ways. First, it may shift
the position of the border between the topological phases
[17]. Second, it breaks translational invariance, compromis-
ing classification of topological phases in the momentum
representation. Nevertheless, for a given disorder realiza-
tion it is still possible to distinguish topological phases by
analyzing the real-space transport properties. The topologi-
cal invariant for class-D quantum wires can be expressed in
terms of the matrix r of quasiparticle reflection amplitudes as
q = sgn det r [18]. Hence, right at the transition between the
topological phases, the wire has a fully open channel with unit
transmission.

The third complication introduced by disorder is that the
topological invariant q depends not only on the mean value of
disorder strength but on its particular realization. As a result,
for a given wire length L and for a fixed mean value of dis-
order strength, the topological number becomes a statistically
distributed variable [17]. Its mean 〈q〉 gradually varies from
−1 to 1 by changing the control parameter μ, which drives
the transition from the topological to trivial phase. It is only
in the thermodynamic limit L → ∞ when the transition be-
tween these phases becomes a sharp quantum phase transition.
This happens due to complete Anderson localization of both
topologically trivial and nontrivial insulating states on the two
sides of the transition.

Direct experimental observation of quasiparticle transport
in quantum wires of class D can be problematic due to shunt-
ing effects of the superconducting condensate. A possible way
to address quasiparticle dynamics is by measuring thermal
rather than electrical transport properties [19]. The thermal
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FIG. 1. Dependence of the dimensionless conductance g of a
wire of length L � ξ on a control parameter μ for a number of dis-
order realizations (sketch). Conductance reaches its maximal value
g = 1 at μ∗ = −vλ′/L (see discussion in the text). The peak has a
width that scales as 1/L, while peak centers are distributed with a
typical width scaling as 1/

√
L.

conductance G of a mesoscopic system can be conveniently
expressed in units of thermal conductance quantum G0 =
πk2

BT/6h̄. The corresponding dimensionless conductance g =
G/G0 is then given by the standard Landauer formula as a
sum of transmission probabilities: g = ∑

n Tn. Influence of
potential disorder on the thermal conductance in Majorana
wires was studied in a number of theoretical works [17,18,20–
22], both analytically and numerically.

The simplest description of quasiparticle transport in disor-
dered quantum wires of class D in the vicinity of the topolog-
ical transition is achieved for a single propagating transverse
mode (one-channel case) [18,23,24]. Its low-energy physics
is governed by a one-dimensional (1D) random-mass Dirac
Hamiltonian H = −ivσz∂/∂x + [μ + m(x)]σy, where σi are
Pauli matrices, μ is a control parameter, and a position-
dependent m(x) fluctuates around zero mean (we assume it to
be short correlated). For this model, the Lyapunov exponent
λ, which determines the reflection coefficient r = tanh λ and
dimensionless conductance g = T = 1/ cosh2 λ, undergoes a
drifted random walk with the increase of the wire length L:
λ = μL/v + λ′, where λ′ = ∫ L

0 dx m(x)/v. Due to the central
limit theorem, λ′ is a normally distributed random variable
that fluctuates around zero with the variance var λ′ = L/ξ ,
where ξ = 2l is the disorder-dependent correlation length,
l is elastic mean free path, and the factor of 2 accounts for
the presence of two counterpropagating modes. In an infinite
system, the fluctuating component λ′ becomes irrelevant, and
the transition between the topological phases takes place right
at μ = 0. For a finite system, the topological transition be-
comes smeared, see Fig. 1. For a given disorder realization
m(x), ideal transmission takes place at μ∗ = −vλ′/L, with the
conductance decaying from unity at μ − μ∗ ∼ v/L. Sample-
to-sample fluctuations of μ∗ are characterized by var μ∗ =
v2/Lξ .

Below we will be mainly interested in the critical regime
realized for μ = 0, when the drift term for the Lyapunov
exponent vanishes and the localization length ξloc = v/|μ|
diverges. In this case, random walk for λ results in the zero-
centered normal distribution P(λ), which in the limit L � ξ

translates to the following distribution of the transmission

coefficient T (and so of g) [25]:

P(T ) = 〈g〉
2

1

T
√

1 − T
, (1)

where 〈g〉 is defined by the value of P(λ = 0):

〈g〉 = 2√
2π var λ

=
√

2ξ

πL
. (2)

Equation (1) should be corrected at smallest T ∼ e−2/〈g〉 due
to roll-off of P(λ). Remarkably, the distribution (1) formally
coincides with the Dorokhov bimodal distribution [26], which
is known to describe transmission eigenvalues density for
multichannel disordered wires in the Drude regime, where
conductance is a self-averaging quantity. Contrary to that,
Eq. (1) refers to the single-channel case, when conductance
strongly fluctuates on the interval 0 < g < 1, with all its mo-
ments 〈gn〉 sharing the scaling of 〈g〉 ∼ 1/

√
L. In particular,

for the variance var g = 〈g2〉 − 〈g〉2 one finds

var g = 2
3 〈g〉. (3)

The absence of self-averaging can be also seen by comparing
the scaling of 〈g〉 with the stretch-exponential decay of the
typical conductance gtyp = exp〈log g〉 ∼ exp(−4

√
L/2πξ ).

Note that at the critical point considered, half of disorder
realizations belongs to the trivial phase and another half be-
longs to the topological phase. At large L, the majority of
realizations have a small conductance g � 1. However, for
relatively rare configurations (probability decreases as 1/

√
L)

the sample is close to the phase transition with g ∼ 1, and
these very configurations determine the average conductance
〈g〉 ∼ 1/

√
L, as well as all its higher moments. To understand

the scaling 〈g〉 ∝ 1/
√

L, note that in the critical regime (μ =
0) the probability to get such near-critical configuration in the
process of disorder sampling can be assessed as the ratio of
the single peak width ∼1/L to the width of the peak centers
distribution ∼1/

√
L (see Fig. 1). Tuning the control parameter

μ away from the transition puts all realizations to the same
topological phase, with an exponentially small conductance
in the long-wire limit. Similar outcomes were obtained in
Ref. [27] with the help of real-space strong-disorder renor-
malization group and transfer matrix approaches.

In the multichannel case, localization in quantum wires of
class D was considered in Refs. [20,21] within the Dorokhov-
Mello-Pereyra-Kumar (DMPK) approach [26,28]. Solving the
Fokker-Planck equation for the distribution function of trans-
mission eigenvalues Tn = 1/ cosh2 λn in the long-wire limit
leads to the usual “crystallization” of the Lyapunov exponents
λn [29]. However, the peculiarity of class D fine tuned to the
critical point (the opposite case requires a special treatment
[21]) is that the lowest exponent λ1 is distributed normally
near zero (ideal transmission) with the variance var λ1 = L/ξ ,
where ξ = 2Nl is the correlation length of the N-channel
wire (compare with the N = 1 case considered above). With
the contribution of other channels being exponentially sup-
pressed, the conductance g = T1 is determined by the most
transparent channel, making this regime completely analo-
gous to the one-channel model discussed above. Hence, in the
limit L � ξ , Eqs. (1) and (2) are applicable for multichannel
wires as well, with T = T1. Such a behavior is also observed

195152-2



MESOSCOPIC CONDUCTANCE FLUCTUATIONS AND NOISE … PHYSICAL REVIEW B 102, 195152 (2020)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

2.0

2.5

FIG. 2. Disorder-averaged conductance of quantum wires of
class D at criticality as a function of the wire length L. Dashed lines
show the leading short- and long-wire asymptotics.

in other topological classes tuned to a critical regime in 1D, a
phenomenon called “superuniversality” in Ref. [21].

A weak point of the DMPK approach is that it allows to
calculate transport properties in the crossover between the
Drude and localization regimes only in special cases. This
happens when the underlying Fokker-Planck equation can be
solved with the help of the Sutherland transformation: in class
A [30–32], CI and DIII [20,33], and AIII [34].

In order to trace the dependence of conductance mo-
ments on the wire length L for class D, one should resort
to a complimentary sigma-model technique [35]. The average
conductance 〈g(L)〉 was calculated in this way in Refs. [17,22]
(the difference from our result (59) by an overall numerical
factor is due to an apparently different normalization of the
dimensionless conductance [36]). A striking feature of the
symmetry class D is that the target space of the supersym-
metric sigma model consists of two connected components
[37,38]. Remarkably, localization happens only if one al-
lows for jumps (domain walls) between the two components
[38,39]. Such processes are described by an additional term in
the sigma-model action proportional to log χ̃ , where χ̃ is the
so-called kink fugacity [17], characterizing the deviation from
the critical regime and thus resulting in a finite localization
length ξloc = 2ξ/χ̃2 [17].

In the following we will focus exclusively on the critical
regime with completely suppressed kinks (χ̃ = μ = 0). This
regime corresponds to the DMPK approach of Ref. [20] dis-
cussed above, which is characterized by an algebraic decay
of the average conductance at L � ξ given by Eq. (2) and a
rather involved analysis is required to see localization in the
DMPK framework [21]. The critical regime can be defined
in terms of physical quantities at arbitrary L as the regime
when the average determinant of the reflection matrix is zero:
〈det r〉 = 0. The dependence of 〈g(L)〉 for class D at criti-
cality obtained in Ref. [17] is shown in Fig. 2. It smoothly
interpolates between the Drude regime with 〈g〉 = ξ/L to the
long-wire regime with 〈g〉 given by Eq. (2).

In the present paper we make a next step in the analysis
of quasiparticle transport in multichannel quantum wires of
class D at criticality and derive exact expressions for the
conductance variance var g, its third cumulant, average noise
power, and var det r at arbitrary L/ξ in the diffusive regime.
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FIG. 3. Dependence of the conductance variance for class D at
criticality on the wire length L. Dashed lines show the short- and
long-wire asymptotics.

Calculation of all those quantities requires averaging of four
Green’s functions that cannot be done within the one-replica
supersymmetric sigma model considered in Refs. [17,22],
forcing us to consider a two-replica (n = 2) version of the
supersymmetric sigma model. The heat kernel for the latter
is obtained with the use of the Iwasawa decomposition trick
[40–42].

The main technical achievement of this paper is classifica-
tion of radial eigenfunction of a higher-rank (several replicas)
supersymmetric sigma model. We find that the straightfor-
ward approach for their construction outlined in Refs. [40–42]
produces an incomplete basis due to vanishing of Grass-
mann integration of “too symmetric” Iwasawa wave functions.
This problem is solved by including additional subfamilies of
eigenfunctions with a smaller amount of quantum numbers,
which are intimately related to the radial eigenfunctions of the
sigma model with a smaller number of replicas. This finding
is expected to be relevant for the heat kernel construction for
all higher-rank (n > 1) sigma models of arbitrary symmetry
classes.

The paper is organized as follows. In Sec. II we summa-
rize new physical results obtained in this work. In Sec. III
we introduce the main mathematical ingredients required for
construction of the heat kernel of the supersymmetric sigma
model. The outlined procedure for class D with two replicas
is implemented in Sec. IV, where we introduce an additional
subfamily of radial eigenfunctions and discuss the behavior
of eigenfunctions at particular lines needed to extract their
normalization and behavior at the origin. The final expressions
for the conductance variance, its third cumulant, shot-noise
power, and average square of the determinant of the reflection
amplitude matrix are obtained in Sec. V. The technique devel-
oped and results obtained are discussed in Sec. VI. Important
technical details are relegated to numerous Appendixes.

II. SUMMARY OF RESULTS

The results of our study are presented graphically in
Figs. 3–6 depicts the dependence of the conductance variance
on the wire length, illustrating the crossover behavior from the
value of var g = 2/15 at L � ξ in the Drude regime (universal
conductance fluctuations (UCF) [43]) to the superuniversal
limit var g = (2/3)〈g〉 at L � ξ , as given by Eq. (3). Contrary
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FIG. 4. Dependence of the third cumulant 〈〈g3〉〉 of the conduc-
tance for class D at criticality on the wire length L. Inset: Short-wire
part of the dependence. Dashed lines show the short- and long-wire
asymptotics.

to a featureless dependence of 〈g〉 with the crossover around
L/ξ ∼ 1 (see Fig. 2), the dependence of var g on L exhibits
a reentrant behavior, with the crossover being strongly dis-
placed towards larger wire lengths L/ξ ∼ 15.

Figure 4 depicts the dependence of the third cumulant
of conductance 〈〈g3〉〉 = 〈g3〉 − 3〈g2〉〈g〉 + 2〈g〉3 on the wire
length. This quantity determines the asymmetry of the con-
ductance distribution (skewness) about its average. In the
quasiclassical limit L � ξ , the third cumulant is 〈〈g3〉〉 ∼
(L/ξ )2 with a very small numerical coefficient. At longer
distances it changes sign twice before approaching the asymp-
totic dependence ∼√

ξ/L at L � 40.
The two-replica sigma model also allows one to calculate

the thermal shot noise power, which corresponds to counting
quasiparticles irrespective of their charge and differs from a
usual electrical shot noise power. We will characterize the
former by the pseudo-Fano factor

F̃ = 〈∑n Tn(1 − Tn)〉
〈∑n Tn〉 , (4)

which is determined by the ratio of the average transport
moments instead of the average ratio. The length dependence
of F̃ is shown in Fig. 5. Remarkably, it equals 1/3 both in
short- and long-wire limits, as both of them are characterized
by the Dorokhov distribution (1). For short wires, the situation
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FIG. 5. Length dependence of the pseudo-Fano factor (4), which
determines the average thermal shot-noise power of the quasiparticle
current. Dashed lines show the short- and long-wire asymptotics.
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FIG. 6. Length dependence of the average square of the determi-
nant of the reflexion matrix 〈(det r)2〉 = var det r. The fact that the
curve approaches the asymptotic value of 1 indicates that for every
sample det r = ±1 in the limit L → ∞.

is typical for diffusive metals, where Dorokhov distribution
describes transmission eigenvalues density and Fano factor is
a self-averaging quantity due to the aggregated contribution
of many channels. Contrary to that, for long wires, transport
is provided by only one mode with the lowest Lyapunov
exponent. Since it is described by the same Eq. (1), we arrive
at the same value of F̃ = 1/3, with the actual Fano factor F
exhibiting strong sample-to-sample fluctuations.

Yet another way to characterize topological properties of
the wire is to study moments of the determinant of the
reflection amplitudes det r. Though different from the true
topological number q = sgn det r, this quantity shows similar
behavior of interpolating between ±1 as the control parameter
is driven across the phase transition. Its average value 〈det r〉
as a function of L and kink fugacity χ̃ was calculated in
Ref. [17]. Vanishing right at the critical line χ̃ = 0, 〈det r〉
flows to ±1 with increasing L for any finite bare kink fugacity
χ̃ , in a sense similar to the renormalization-group flow of σxy

in the integer quantum Hall effect [44,45].
Here we calculate the second moment of the determinant

〈det2 r〉, and demonstrate that it does not vanish at the critical
line (where 〈det r〉 = 0). With the increase of the wire length
L, it interpolates between 0 (short wires) and 1 (long wires),
as shown Fig. 6. Taking into account that | det r| � 1 due to
unitarity of quantum mechanics, one concludes that in the
limit L → ∞, det r takes values +1 and −1 for any specific
sample with equal probabilities. That illustrates our statement
about the large-L behavior from a sigma-model perspective:
even in the critical regime, almost all of the samples are
insulating and topological/trivial in equal proportion.

III. MATHEMATICAL PRELIMINARIES

In this preparatory section we outline the main steps to-
wards calculation of 〈g〉, 〈g2〉, and 〈g3〉 in the sigma-model for-
malism and introduce necessary mathematical concepts. Our
analysis closely follows a pathway developed in Refs. [40–42]
for conventional symmetry classes and implemented for cal-
culation of 〈g〉 in quantum wires of class D in Refs. [17,22].
The peculiarity of class D is that calculation of 〈g2〉 already
requires the use of the sigma model with two replicas (n = 2),
which significantly complicates the whole analysis.
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In this section we will try to balance between generality
and concreteness. On the one hand, we will keep our discus-
sion as general as possible, without resorting to a particular
basis (that will be done later in Sec. IV). Thus, almost all
formulas of this section could be easily applied to other sym-
metry classes with an arbitrary number of replicas. On the
other hand, some formulas below do rely on the particular
symmetry class D with n = 2, both to illustrate the general
formalism and to prepare ingredients for actual calculations
in the next sections.

A. Sigma model and conductance moments

The sigma-model action for the N-channel quantum wire
of class D in the critical regime has the usual form (ξ = 2Nl
is the correlation length) [17,22,36]:

S[Q] = − ξ

16

∫ L

0
dx str(∇Q)2, (5)

where Q ∈ BF ⊗ N ⊗ R is a supermatrix, which lies in the
tensor product of the Bose-Fermi (BF), Nambu-Gor’kov (N),
and replica (R) spaces, and is subject to the charge conjuga-
tion constraint Q = CT QT C = −Q due to the particle-hole
structure of the BdG Hamiltonian. The matrix C is orthogo-
nal, CCT = 1, and satisfies C2 = −k, where k distinguishes
bosons and fermions and has the following structure in the BF
space: k = {1,−1}BF. A special role in the theory is played by
a selected matrix � (origin), satisfying � = −�, str � = 0,
and �2 = 1. The whole sigma-model manifold can be ob-
tained by rotating � with elements T of a certain supergroup
G:

Q = T −1�T, (6)

where T = T −1. Then the sigma-model manifold is a coset
(symmetric space) G/K , where K is the subgroup in G that
commutes with �: [K,�] = 0.

For class D with n replicas, G is the supergroup
SpO(n, n|2n), K is the supergroup U(n|n), so that the sigma-
model manifold is the coset SpO(n, n|2n)/U(n|n). It generally
consists of two disconnected submanifolds. For example, the
supermanifold SpO(1, 1|2)/U(1|1) in the n = 1 case is a
hyperboloid H2 as its Bose-Bose (BB) sector and a set of
two points (Z2) in its Fermi-Fermi (FF) sector [17,22]. The
critical point between the topological and trivial phases that
we address in this paper corresponds to the absence of jumps
between the disconnected components of the sigma-model
manifolds (kinks) [38,39], which allows us to consider only
one connected component, namely SpSO(1, 1|2)/U(1|1).
Away from the critical point, proliferation of kinks described
by an additional term in the sigma-model action (5) leads
to exponential localization both in the topological and trivial
phases [17].

While the averaged conductance 〈g〉 can be calculated from
an n = 1 sigma model, evaluation of its higher moments
generally requires higher n. Nevertheless, for most classes,
〈g2〉 (and hence var g) can be calculated already from an
n = 1 sigma model, as in the supersymmetric approach two
copies of the system (bosons and fermions) are averaged over
disorder, each suitable for calculation of conductance in the
noninteracting case [42]. However, the peculiarity of class D is

that its FF sector in n = 1 case is empty (just two disconnected
points) and therefore cannot be used to access the second copy
of the system.

Thus for calculation of 〈g2〉 and var g in class D one in-
evitably has to use the sigma model with two replicas (n = 2).
Its supermanifold is SpO(2, 2|4)/U(2|2), with the BB sector
being a rank-2 symmetric space Sp(2, 2)/U(2) and the FF
sector being a rank-1 symmetric space O(4)/U(2) � S2 × Z2

[46], where the latter is isomorphic to the union of two disjoint
spheres.

In the sigma-model language, the moments of conductance
can be calculated by taking the derivative of the partition
function with respect to an infinitesimal twist of the boundary
conditions [22,42,47–49]. The partition function is defined as
a functional integral

Z[θi] =
∫ Q(L)=QL

Q(0)=�

D[Q(x)]e−S[Q], (7)

where QL = � exp(θ̌ ) and the matrix of Cartan angles θ̌ is
defined in Eq. (13) below.

The number of Cartan parameters θi depends on the num-
ber of replicas. Let NB (NF ) be the number of generators of
Cartan algebra from the BB (FF) sector. For class D with n
replicas,

NB = n, NF = �n/2�, (8)

where the floor brackets �·� denote the integer part of a num-
ber (for even n, Eq. (8) was derived in Ref. [50]).

Knowledge of Z[θi] allows us to compute a number of
average physical quantities, see Appendix B. The first three
conductance moments can be expressed as follows:

〈g〉 = −4
∂2Z (θi )

∂θ2
B1

∣∣∣∣
0

, (9a)

〈g2〉 = 16
∂4Z (θi )

∂θ2
B1∂θ2

B2

∣∣∣∣
0

, (9b)

〈g3〉 = −32
∂6Z (θi )

∂θ2
B1∂θ2

B2∂θ2
F

∣∣∣∣
0

, (9c)

where the derivatives must be computed at the origin θi = 0
(higher moments would require a sigma model with a larger
n � 3 number of replicas and thus more Cartan angles θi). The
pseudo-Fano factor (4) is given by the following expression:

F̃ = 1

3
+ 1

9

(
∂2Z

∂θ2
B1

)−1[
4

∂4Z

∂θ4
B1

− ∂4Z

∂θ4
F

]∣∣∣∣∣
0

. (10)

Finally, the average squared determinant of the matrix of
reflection coefficients equals the partition function in the so-
called “south pole” point. As mentioned in the Introduction,
in the critical regime 〈det r〉 = 0, so that

var det r = 〈det2r〉 = Z (θB1 = 0, θB2 = 0, θF = π ). (11)

In order to calculate the averages listed above at arbitrary
wire length, we will need two different parametrizations of the
Q-matrix manifold: Cartan parametrization, which explicitly
enters Eq. (9), and Iwasawa parametrization, which possesses
the simplest form of the radial Laplace-Beltrami operator.
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TABLE I. Root system: positive roots (α), their multiplicities
(mα), and corresponding root vectors (Zα(,i)). The matrix �i j has 1
at the position (i, j) and 0 elsewhere.

Bosonic (mα = 1) Fermionic (mα = −2)

α Zα α Zα,1 Zα,1

2θB1 �18 θB1 + iθF �15 − �38 �16 + �48

2θB2 �27 θB1 − iθF �13 − �48 �14 + �68

2θF �36 + �45 θB2 + iθF �25 − �37 �26 + �47

θB1 + θB2 �17 − �28 θB2 − iθF �23 − �57 �24 + �67

θB1 − θB2 �12 − �78

B. Cartan-Efetov parametrization

Cartan parametrization (also referred to as Efetov
parametrization in the sigma-model context) is obtained by
applying Cartan decomposition to the T matrix with respect
to the involution T → �T �. That allows us to decompose
T = U1eθ̌/2U , where U1 and U commute with � (U ∈ K ,
U1 ∈ K) and θ̌ lies in the maximal Abelian (Cartan) subal-
gebra of matrices from G that anticommute with �: {�, θ̌} =
0. Such a parametrization is redundant, so we choose U1 to
run over the whole group K and leave in U only the necessary
number of parameters. The Q matrix does not depend on U1

and acquires the form

Q = U −1�eθ̌U . (12)

According to Eq. (8), Cartan algebra of n = 1 sigma model
is parametrized by one parameter (θB), originating from the
BB sector, while for the two-replica case (n = 2), θ̌ can be
represented as a linear combination of three commuting gen-
erators hi, two from the BB sector and one from the FF sector:

θ̌ = θB1ȟB1 + θB2ȟB2 + iθFȟF, (13)

where θi are real on the sigma-model manifold.
An important mathematical structure is the root system

with respect to hi. It consists of matrices Zα , called root
vectors, which are eigenvectors for all hi acting in the adjoint
representation: [θ̌ , Zα] = α(θ )Zα , where α is a linear function
on the Cartan algebra, called a root. Positive roots are chosen
as a subset R+ that lies in a selected half-plane in the dual
vector space. Peculiarity of supermanifolds with respect to the
well-known noncompact symmetric spaces [46] is the fact that
root vectors belonging to off-diagonal blocks in the BF space
are Grassmann numbers. The corresponding roots should be
counted with negative multiplicities [40,42]. The root system
of class D with n = 2 is presented in Table I and Fig. 7, see
Appendix A 1.

The root system is symmetric with respect to the so-called
Weyl group, which is generated by reflections with respect
to the planes perpendicular to each commuting root and thus
acting in the dual Cartan space. Studying the action of the
same group on the original Cartan space allows one to choose
its minimal domain, which is called a Weyl chamber. The val-
ues of the Cartan angles θ̌ in the parametrization (12) should
be restricted to this domain. Otherwise, this parametrization

FIG. 7. Boson-boson part of the root system for the superman-
ifold of n = 2 sigma model. Chosen half-plane R+, containing
positive roots is show in gray. Simple roots are highlighted with bold
blue color.

would be redundant, as the whole Cartan space is already
covered by the U matrix [see (12)].

In the following we will consider radial wave functions that
depend only on θi and obey the symmetries given by the Weyl
group. In the supersymmetric case, the Weyl group consists
of the BB and FF sectors. In class D with two replicas, FF
part of the Weyl group ensures radial wave functions are even
functions of θF, while BB part is generated by sign flips of
θB1, θB2, and their interchange (θB1 ↔ θB2). That is why we
will study radial functions only in one Weyl chamber, which
we choose to be θB1 � θB2 � 0.

The measure for Cartan parametrization (12) can be written
as DQ = J DU Dθ . A beneficial property of this parametriza-
tion is the factorization of the Jacobian J = JU J (θi ) into the
Haar measure JU on the group K and θ -dependent part J (θi )
[22,46]. The latter can be explicitly expressed as a product of
factors corresponding to each positive root α ∈ R+:

J (θi ) =
∏

α∈R+
[sinh α(θ )/2]mα , (14)

where mα are roots multiplicities. Applied to class D with two
replicas this formula yields

J (θi ) = (cosh θB1 − cosh θB2) sinh θB1 sinh θB2 sin θF

(cosh θB1 − cos θF)2(cosh θB2 − cos θF)2
. (15)

Cartan parametrization is especially important since ac-
cording to Eq. (9) it is directly related to the averaged
conductance and its higher moments. Therefore our main goal
will be to calculate the partition function Z[θi].

C. Transfer-matrix Hamiltonian and the heat kernel

A standard method for evaluating the partition function
(7) for 1D systems is switching from the functional inte-
gral representation to the Schrödinger-like equation for the
wave function ψ (Q, t ) [51]. Its evolution is governed by the
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so-called transfer-matrix Hamiltonian, with the spatial coor-
dinate x playing role of imaginary time:

ξ

2
∂xψ (Q, x) = −Ĥψ (Q, x). (16)

The Hamiltonian is given by the Laplace-Beltrami operator on
the sigma-model target space:

Ĥ = −
 = −1

J
∂αJgαβ∂β, (17)

where gαβ is the metrics induced by the expression dl2 =
(−1/2) str dQ2 = gαβdX αdX β , where X α are the coordinates
on the sigma-model supermanifold [22,35]. Its diagonaliza-
tion is provided by the set of eigenfunctions φν (Q) satisfying


φν (Q) = −ενφν (Q). (18)

The partition function (7) coincides with the heat kernel for
the Schrödinger Eq. (16):

Z[θi] = ψ (QL, x = L), (19)

which is obtained by solving it with the initial condition
ψ (Q, x = 0) = δ(Q,�), where δ(Q,�) is a supersymmetric
delta function, which equals to 1 at the origin [35]:

δ(Q,�) =
{

1, Q = �,

0, Q �= �.
(20)

Knowledge of the eigenfunctions allows one to write down
the spectral representation of the heat kernel:

ψ (Q, x) =
∑

ν

μνφν (Q)e−2ενx/ξ , (21)

where summation also includes integration over continuous
quantum numbers and μν are the coefficients of δ(Q,�) in the
basis φν (Q) (see Sec. IV C). As both the Hamiltonian and the
initial condition are invariant with respect to rotations by U ∈
K , so is the heat kernel: ψ (U −1QU, x) = ψ (Q, x). Therefore
only radial eigenfunctions of the Laplace operator (the ones
that depend on Cartan angles θi only) enter expression (21),
which greatly simplifies the analysis. For this reason instead
of the full Laplacian (17) we will need only its part that acts
on θi variables. This part, called the radial Laplacian, can be
obtained by taking θi block of gαβ , which we denote as gi j

(see Appendix A 1):

dl2
rad =

∑
i j

gi jθiθ j = θ2
B1 + θ2

B2 + 2θ2
F . (22)

Then from Eq. (17) with gαβ replaced by gi j we get the
following expression for the radial Laplacian:


rad = 1

J

(
∂

∂θB1
J

∂

∂θB1
+ ∂

∂θB2
J

∂

∂θB2
+ 1

2

∂

∂θF
J

∂

∂θF

)
. (23)

The expansion of the heat kernel in terms of the eigensys-
tem of the Laplace-Beltrami operator given by Eq. (21) is very
generic. However, in the supersymmetric case, one typically
adds unity to the right-hand side of Eq. (21) [17,22,41,42].
Note that φ0 = 1 is just the zero mode of the Hamiltonian
and therefore this spurious unity is already contained in the

expansion (21). The reason why it is added by hands is that
the procedure of the eigenfunction construction implemented
by many authors fails to reproduce the zero mode, which
then should be restored manually. However, as the number
of replicas grows and the supersymmetric space becomes
more complicated, the number of eigenfunctions that cannot
be obtained by averaging the plane wave in the Iwasawa
parametrization over the group K also grows and one has to
reconsider this issue. That will be done in Secs. III D and IV B.

D. Iwasawa parametrization

Fourier analysis for symmetric spaces has been developed
by Harish-Chandra [46] and generalized to the supersymmet-
ric case by Zirnbauer [41,42]. To construct the eigenbasis of
the Laplace operator it is convenient to resort to the so-called
Iwasawa parametrization:

Q = N−1�eǎN. (24)

It is obtained by applying Iwasawa decomposition on T ma-
trix: T = UI eǎ/2N , where UI ∈ K , ǎ lies in Cartan subalgebra

ǎ = aB1ȟB1 + aB2ȟB2 + aFȟF (25)

[the generators ȟ are the same as in Eq. (13)] and N ∈ N+
lies in the exponential of the subalgebra of positive roots
represented by nilpotent matrices. Iwasawa parametrization is
characterized by the Jacobian, which is an exponential of a
linear function: JI (ai ) = eρ(a), where ρ is the so-called Weyl
vector, expressed as the half-sum of the positive roots α(a)
weighted with their multiplicities:

ρ(a) = 1

2

∑
α∈R+

mαα(a). (26)

Note that choosing a particular set of positive roots breaks
the symmetry between the variables aB1 and aB2. For the
choice specified in Appendix A 1 and shown in Fig. 7,
ρ(a) = aF − aB2.

The Laplace operator in Iwasawa coordinates (a, N ) takes
a very simple form:


 =
∑

i

[
∂

∂ai
· ∂

∂ai
+ 2ρi(a) · ∂

∂ai

]
+ 
N , (27)

where ρi are the components of the Weyl vector, dot product
is defined by radial metrics gi j = (gi j )−1 [see (22)], and 
N

is the N part of the Laplacian that nullifies all functions that
depend only on a: 
N f (a) = 0.

Therefore plane waves

eipa = ei
∑

i piai (28)

are the eigenfunctions of the radial Laplace operator:


eipa = −εpeipa, εp = p · p − 2iρ · p, (29)

The radial eigenfunctions (28) in the Iwasawa representation
are parametrized by three momenta pi, corresponding to the
three-dimensional Cartan algebra.
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E. From Iwasawa to Cartan: General route

In order to convert plane waves (28) in the Iwasawa coor-
dinates to radial wave functions in the Cartan coordinates, one
has to make two steps. First it is necessary to obtain an explicit
expression for a(θ,U ), which can be done by equating �Q in
Iwasawa and Cartan parametrizations:

�N−1�eǎN = U −1eθ̌U, (30)

and solving the resulting set of equations. However, when
expressed in terms of Cartan coordinates (θ,U ), the wave
functions (28) will gain an unwanted U dependence. There-
fore the second step in obtaining the radial eigenfunctions
would be to perform isotropization of eipa over the group K :

φp(θ ) = 〈eipa(θ,U )〉K �
∫

U∈K
eipa(θ,U ). (31)

Due to the presence of Grassmann variables, the last part of
Eq. (31) should be understood symbolically: If the integrand
does not depend on (some) Grassmann variables for a given
momentum p, then integration over them should not be done
to ensure a nonzero value of φp(θ ). The simplest example is
the case p = 0 corresponding to the wave function φ0 = 1,
which already does not depend on U and therefore can be
used as is. However, if we formally integrate it over the group
K the result will be zero. This is the reason why this “too
symmetric” wave function is usually added to Eq. (21) by
hands.

However, as we discuss below, for class D with two repli-
cas there exist yet another family of such exceptional too
symmetric wave functions with one rather than three momenta
that should be treated separately. This is the reason we refer to
the process of radial eigenfunction construction from Iwasawa
plane waves as isotropization rather than just averaging over
the group K .

Finally, we note that the overall normalization factor in
Eq. (31) is left unspecified. It will be determined later for each
eigenfunction family separately, see Sec. IV B.

IV. RADIAL EIGENFUNCTIONS

The procedure of eigenfunction construction outlined in
Sec. III D is generic for any symmetric space. But its im-
plementation for a particular symmetry class requires some
art of choosing the most appropriate parametrization. More-
over, the supersymmetry is known [42] to introduce additional
complexity, which as we demonstrate below grows with the
number of replicas.

A. Basis and parametrizations

Now we specify a particular basis, which significantly
simplifies further calculations. We arrange commuting and
Grassmann variables according to the BF grading matrix k =
diag{1, 1,−1,−1,−1,−1, 1, 1}, acting as ±1 on bosonic
and fermionic variables, respectively. Following Ref. [22],
we choose the matrix � to be completely antidiagonal, see
Eq. (A2). The charge conjugation matrix C is given by
Eq. (A3). The root system is presented in Appendix A 1. In
this basis, the generators ȟi of Cartan subalgebra are diagonal

and the matrices (13) and (25) take the form

θ̌ = diag{θB1, θB2, iθF, iθF,−iθF,−iθF,−θB2,−θB1},
(32)

ǎ = diag{aB1, aB2, aF, aF,−aF,−aF,−aB2,−aB1}.
The crucial advantage of the chosen basis is that it allows

for a simple and constructive solution of Eq. (30) for a(θ,U ),
relying on the fact that positive root vectors can be chosen to
be strictly upper triangular matrices. Then N and �N−1� in
Eq. (30) become upper and lower triangular matrices, respec-
tively, with unities on the main diagonal. Hence the principal
(super)minors of the left-hand side of Eq. (30) contain only a
variables that can be used to extract the required dependence
a(θ,U ). Since the first three elements of ǎ already contain all
three ai, it is sufficient to consider only first three principal
submatrices of Eq. (30), leading to the set of relations:

eaB1 = [U −1eθ̌U ]11,

eaB1+aB2 = det[U −1eθ̌U ]1–2,1–2, (33)

eaB1+aB2−aF = sdet[U −1eθ̌U ]1–3,1–3.

Successively applying Eqs. (33), we obtain eaB1 , eaB2 , and
eaF . Then raising them to the powers ipB1, ipB2, and ipF,
respectively, and multiplying the resulting monomials we ob-
tain the expression for Iwasawa plane wave eipa in the Cartan
coordinates.

Radial wave functions in Cartan coordinates θ should be
obtained by isotropization of plane waves 〈eipa(θ,U )〉K over
matrices U ∈ K according to Eq. (31). However, due to a large
number of independent degrees of freedom that parametrize
U , the resulting expression for φν (θ ) cannot be obtained in
a closed form. Fortunately, for calculating the conductance
moments (9), the full knowledge of radial functions is not
needed. Instead it is sufficient to determine (i) their asymptotic
behavior at large θ , which controls the normalization and
hence the coefficients μν in the spectral decomposition of the
heat kernel (21), and (ii) behavior at small θ , which is needed
to compute derivatives in Eqs. (9)–(11).

To make analytical extraction of the large-θ asymptotics
feasible, one has to choose a very special parametriza-
tion of matrix U ∈ K . Inspired by Helgason’s derivation in
the nonsupersymmetric case [46] and previous experience
for supersymmetric models [22], we find it appropriate to
factor U as

U = UBBUFFUg, (34)

where

UBB = eiαb1wb1 eiβb1wb2 eiαb2wb1 eiβb2wb2 ,

UFF = eiαF wF , (35)

Ug = ewg1 ewg2 = (1 + wg1)(1 + wg2),

the generators wb1,wb2,wF ,wg1,wg2 are a sum of a pair
of opposite root vectors defined in Appendix A 1, and
αb1, βb1, αb2, βb2, αF are real numbers, which belong to the
domains αb2, βb2 ∈ [0, π ] and αb1, βb1, φF ∈ [0, 2π ] [the do-
mains follow from the position of the singular points of the
Jacobian (36)]. The most delicate part is to parametrize the
BB sector UBB. It appears that the proper way (allowing us
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to obtain tractable integrals for the large-θi asymptotics) is to
act with the two generators, formed from the so-called simple
roots in an alternating way (see Ref. [46] and Appendix A 1).

In this parametrization the Haar measure for the group K
corresponds to the following Jacobian:

JU = sin αb2 sin2 βb2. (36)

It is this factorization of the Jacobian JU into the product
of simple trigonometric functions that along with the similar
integrand structure following from Eq. (33) allows one to
calculate the asymptotic expression of the wave functions
φν (θ ) in the limit θB1 � θB2 � 1 in an explicit form, see
Sec. IV C. The parametrization (34) and (35) will be used
below to obtain the principal, three-parametric family of radial
eigenfunctions.

The general theory of noncompact symmetric spaces [46]
suggests that momenta pi in Eq. (28) should be shifted by
the Weyl vector (26), pi = qi + (i/2)ρ, in order to obtain
normalizable wave functions at real qi. In our case we perform
such a shift for the BB sector, while for the FF sector we
use the parametrization that is convenient to obtain the wave
functions that behave correctly at θF = π (see discussion in
Sec. IV B 3). Namely, we reparametrize the Iwasawa momenta
pB1, pB2, pF in the following way:

pB1 = q1, pB2 = q2 − i/2, pF = −il. (37)

Then proper eigenfunctions are then parametrized by q1 �
q2 � 0 and l = 0, 1, . . . (see Secs. IV B 3 and IV C 2).

For noncompact symmetric spaces, the described proce-
dure yields the complete basis of radial eigenfunctions [46].
In contrast, in the case of supersymmetric spaces, additional
subfamilies of eigenfunctions do emerge. We will discuss
them below.

B. Families of radial eigenfunctions

An explicit expression for three-parametric functions
φq1q2l (θ ) is unknown as the integral (31) over the group K can-
not be calculated for arbitrary θi. Nevertheless, it is possible
to demonstrate that it vanishes at a special line θB2 = θF = 0
due to the fact that not more than six out of eight Grassmann
variables are present in every monomial of the integrand. The
same is true for the line θB1 = θF = 0 due to the Weyl group
symmetry. However, it does not belong to the chosen Weyl
chamber θB1 � θB2 � 0 and thus should not be considered.
Mentioned nullification means that three-parametric radial
functions along with the unit function 1 do not constitute a
complete basis. So, for example, δ(Q,�) cannot be expanded
in φq1q2l (θ ) and 1 at least at the mentioned line, which is the
first arising issue.

The second issue is that putting q2 = l = 0 and leaving
only q1 also nullifies the integral (31) for the same reason,
which may indicate that wave functions corresponding to
these momenta are lost. In order to recover the lost eigenfunc-
tions we will consider the q2 = l = 0 family in a modified
parametrization and will omit integration over some Grass-
mann variables. As a result, we will also resolve the first
mentioned issue on incompleteness of the basis of three-
parametric eigenfunctions.

The modification of the parametrization should make every
term in the integrand of (31) lack the same subset of Grass-
mann variables, so that we can omit integration over them in
the process of izotropization. We achieve that by using the
parametrization (34) and (35), but with Ug replaced by

Ũg = (
1 + wg2

∣∣
γ ,χ→0

)
(1 + wg1)

(
1 + wg2

∣∣
ρ,σ→0

)
. (38)

That modifies the Jacobian (36): JU → JU (1 + 4ηχ − 4ζγ )
and essentially makes the whole integrand in Eq. (31) in-
dependent of four Grassmann variables α, β, ρ, σ . Omitting
integration over these four variables in accordance with the
general logic of izotropization, we arrive at an additional
family of one-parametric eigenfunctions φq1 (θ ).

To sum up, for class D with two replicas, there exist three
families of radial eigenfunctions:

(i) Three-parametric functions φq1q2l (θ ), which are ob-
tained by averaging over the full group K (vanish at the
“bosonic line” θB2 = θF = 0).

(ii) One-parametric functions φq1 (θ ), arising when a plane
wave in Iwasawa coordinates does not depend on some Grass-
mann variables and integration over them is not performed
(izotropization); remarkably, this family is closely related to
the eigenfunctions of the transfer-matrix Hamiltonian for the
sigma model of class D with one replica, as we show below
(vanish at the origin θB1 = θB2 = θF = 0).

(iii) Unit function 1, corresponding to the trivial plane
wave 1 in Iwasawa coordinates, which should not be inte-
grated over Grassmann variables at all.

This situation is to be contrasted with the case of class
D with one replica, when the only nontrivial one-parametric
family φq(θB) can be obtained in a standard way by averaging
over the full group K [17].

We suppose that there are no other eigenfunctions of the
Laplacian. We check this statement in Appendix D.

The eigenvalues of the obtained wave functions are given
by (29) and equal

εq1 = q2
1, εq1q2l = 1

4 + q2
1 + q2

2 + 1
2 l (l + 1). (39)

As mentioned above, the functions φq1q2l (θ ) and φq1 (θ )
cannot be obtained in a closed form. Resorting to computer
algebra system, we are able to calculate their values explicitly
only in some particular cases, where two of three Cartan
angles θi are set to zero (“bosonic” and “fermionic” lines) and
in the large-θ asymptotic regime. Below we present behavior
of radial functions on these lines and discuss their asymptotic
behavior at large and small θ .

Expressions for these particular cases will be sufficient
to calculate physical observables (conductance and its vari-
ance): large-θi asymptotics allows us to determine integration
measure μν in Eq. (21) (see Sec. IV C), while values at the
“fermionic line” will be used to determine the overall nu-
merical coefficient, check the heat kernel construction and
conveniently obtain small-θi expansion. The values at the
“bosonic line” simplify determination of the measure for one-
parametric wave functions and illuminate connection between
n = 2 and n = 1 sigma models.
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1. Bosonic line (θB2 = θF = 0)

Three-parametric radial wave functions vanish at the
bosonic line: φq1q2l (θB1, 0, 0) = 0.

As the bosonic line contains only one BB angle θB1 (like in
the n = 1 case), and one-parametric functions depend only on
one momentum q1 (like in the n = 1 case), one may expect
that at the bosonic line the sigma model with two replicas
reduces to the sigma model with one replica. Such a reduction
indeed takes place, and it can be proved by studying the
action of the Laplacian on the wave function. To this end, we
substitute the expansion of the wave function in the vicinity
of the bosonic line (θB2 � 1, θF � 1),

φ = f (θB1) + u(θB1)θ2
B2 + v(θB1)θ2

F + · · · , (40)

into Eq. (18) with the radial Laplacian given by Eq. (23) and
obtain


φ = 
(1) f (θB1) + θ2
B2 − θ2

F

θ2
B2 + θ2

F

[2v(θB1) − 4u(θB1)]. (41)

Here 
(1) is the one-replica radial Laplacian [17,22],


(1) = 1

J (1)

∂

∂θB1
J (1) ∂

∂θB1
, (42)

with the one-replica Jacobian J (1)(θB1) = coth(θB1/2), which
can be obtained from Eq. (15) by sending θB2 and θF to zero
and omitting singular θB1-independent factors. Equation (41)
being substituted into Eq. (18) indicates that the θB2 = θF = 0
limit of the eigenfunction φ is well defined only if v = 2u.
Then the last term drops and the equation for f (θB1) acquires a
form of the Laplace operator in class D with only one replica.
Hence we can readily identify the eigenfunctions in this limit
[17,22]:

φq1 (θB1, 0, 0) = iq1
[
Piq1 (λ1) − P−iq1 (λ1)

]
, (43)

where λ1 = cosh θB1 and Pν (z) is the Legendre function.
The corresponding eigenvalues are given by Eq. (39). The
wave functions (43) are orthogonal when integrated over the
bosonic line with the Jacobian J (1)(θB1).

In the asymptotical region θB1 � 1 one-parametric eigen-
functions φq1 behave as

φq1 ∼ cq1 eiq1θB1 , (44)

with the coefficient cq1 (Harish-Chandra c function),

cq1 = iq1Cq1 , Cq1 = 1√
π

�(1/2 + iq1)

�(iq1)
. (45)

This function is used to obtain the integration measure μq1 in
the heat kernel (52) [see Eq. (53)].

2. Fermionic line (θB1 = θB2 = 0)

Three-parametric radial eigenfunctions on the fermionic
line θB1 = θB2 = 0 can be obtained by taking the integral (31)
with the help of a computer algebra system. That requires pro-
cessing ∼3500 terms, each of them integrated via the formula

∫ 2π

0
dφ(cos θ + i sin θ cos φ)ν = 2πPν (cos θ ). (46)

Using identities for the Legendre function allows us to bring
the obtained expression to a compact form:

φq1q2l (0, 0, θF) = 16
(
l2 + 4q2

1

)(
l2 + 4q2

2

)
Pl (λF ) sin4 θF

2
+ 32(1 + l )εq1q2l [Pl (λF )

− P1+l (λF )] sin2 θF

2
, (47)

where λF = cos θF.
For one-parametric functions at the fermionic line we get

φq1 (0, 0, θF) = −4q2
1 sin2 θF

2
. (48)

3. Asymptotic behavior at θB1 � θB2 � 1

In the limit θB1 � θB2 � 1, three-parametric wave func-
tions behave as

φq1q2l ∼ W c̃q1q2l · Pl (λF )eiq1θB1+(iq2+1/2)θB2 , (49)

with

c̃q1q2l = (1 + l − 2iq1)(l + 2iq1)(1 + l − 2iq2)(l + 2iq2)

π4Cq1Cq2Cq1+q2Cq1−q2

,

(50)
where the coefficients Cq are defined in (45). In Eq. (49),
the operation W denotes symmetrization with respect to the
BB Weyl symmetry group [46], namely for arbitrary function
Fq1,q2 of variables q1, q2:

W Fq1,q2 =
∑

σ1,σ2=±1

(
Fσ1q1,σ2q2 + Fσ1q2,σ2q1

)
, (51)

where the sum is taken over all possible sign choices [four for
each term in (51)].

Expression (47) implies that for the wave function to be
well defined at θF = π , Legendre function should reduce to
Legendre polynomial at integer l . Taking into account that
Pl (z) = P−1−l (z), we conclude that the allowed discrete mo-
menta are l = 0, 1, 2, . . . .

4. Behavior at small θi

Small-θi expansion of the wave functions can be regularly
obtained from the integral (31), but we find it more convenient
to expand expressions (47) for the wave functions on the
fermionic line and then use relations (C3) for the Taylor series
coefficients, which follow from the symmetry properties of
the action (5) and Schrödinger Eq. (16), see Appendix C for
the derivation.

C. Eigenfunctions normalization and Plancherel measure

Having identified the families of radial eigenfunctions, we
can rewrite the general expression (21) for the heat kernel in
an explicit form:

ψ (Q, x) = 1 +
∫ ∞

−∞
dq1 μq1φq1 (θ )e−2εq1 x/ξ

+
∫ ∞

−∞
dq1dq2

∞∑
l=0

μq1q2lφq1q2l (θ )e−2εq1q2 l x/ξ ,

(52)
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where μq1 and μq1q2l are integration measures that will be
determined below. A few comments are in order here. First,
the unit eigenfunction enters with the coefficient 1 in order to
respect the boundary condition (20) at x → 0 since all other
eigenfunctions vanish at the origin (θi = 0). Second, as the
three-parametric eigenfunctions are symmetric with respect to
the Weyl symmetry group (interchange and sign flip of q1, q2,
see Sec. IV B), each eigenfunction in Eq. (52) is actually taken
several times. However, as the integration measure μq1q2l also
obeys the same property, we prefer to keep integration over
all q1 and q2, adjusting the overall numerical factor in μq1q2l .
Third, the formulas for μq1 and μq1q2l that we present below
are written for the particular choice of the overall normal-
ization coefficient of the one- and three-parametric families
specified in Eqs. (43) and (44) and (47) and (48). Fourth,
strictly speaking we do not have a proof that the eigenfunc-
tions 1, φq1 (θ ) and φq1,q2l (θ ) do form a basis and no other
radial eigenfunctions exist. However, a strong evidence of
that is provided by the numerical check that Eq. (52) indeed
reproduces the supersymmetric delta function (20) at x → 0,
see Appendix D. Another strong argument in favor of the
correctness of the heat kernel (52) is that the average con-
ductance, its variance, and the third cumulant calculated from
it in the small-L limit coincide with the perturbative results
obtained in Appendix E. This fact is rather nontrivial since
it requires cancellation of 1/L2 and 1/L terms in the series
expansion for var g and five leading terms (1/L3 through L)
for 〈〈g3〉〉.

For noncompact symmetric spaces without Grassmann
variables, the integration (Plancherel) measure μ is deter-
mined by asymptotic behavior of wave functions [46]. It is
given by μ

noncomp
q = const./|cq|2 = const./(cqc−q ), where the

Harish-Chandra c-function cq is a coefficient in the large-θ
asymptotics of the wave functions obtained with the help of
Iwasawa parametrization [see Eq. (31)]. For supersymmetric
spaces, the strict mathematical proof is lacking, however it
is generally believed that the analogous formula, originally
proposed by Zirnbauer [40,41], still works.

As in our convention the wave functions (31) are defined
up to an arbitrary overall numerical factor, their normalization
should be consistent with the integration measure. The latter
will be determined in the process of numerical check of the
basis completeness on the fermionic line in Appendix D with
the help of Eqs. (47) and (48).

1. One-parametric eigenfunctions φq1 (θ)

For one-parametric eigenfunctions the generalization of the
noncompact-case expression for the measure is rather straight-
forward:

μq1 = 1

2π

1

cq1 c−q1

= coth πq1

2q1
, (53)

which is valid provided that φq1 (θ ) is normalized such that
its behavior at the bosonic line is given by Eq. (43) with the
Harish-Chandra c-function (45).

Equation (53) can be completely inherited from the n =
1 sigma model [17,22], since on bosonic line the eigenbasis
completely turns to the eigenbasis of the n = 1 sigma model
as discussed in Sec. IV B 1.

2. Three-parametric eigenfunctions φq1q2 l (θ)

For three-parametric wave functions the generalization of
the nonsupersymmetric formula for the measure is a bit more
intricate. The suggested procedure [40] is the following.

First we need to consider completely noncompact theory
by taking analytically continued asymptotics at big negative
imaginary θF. Substituting θF = −iϑF and using asymptotical
behavior of the Legendre function at a large argument one gets
that at θB1 � θB2 � ϑF � 1 the wave function, accompanied
by the

√
J factor, behaves as

√
Jφq1q2l ∼ cq1q2lW eiq1θB1+iq2θB2+(1/2+l )ϑF , (54)

which corresponds to a normalizable wave function at real q1,
q2 and l = −1/2 + lF with imaginary lF . Harish-Chandra c
function is given by

cq1q2l = c̃q1q2l

πc−i(l+1/2)
, (55)

where c̃q1q2l was defined in (50).
Applying usual formula for the Plancherel measure to this

noncompact theory gives

μ
noncomp
q1q2l = const.

|cq1q2l |2 = const.

cq1q2l c−q1,−q2,−1−l
. (56)

In the original theory with real θF proper values of q1 and q2

(corresponding to normalizable wave functions) are also real,
which justifies (37). Proper l were derived from (49) (see the
discussion there) and are given below (37). It appears that (56)
has poles in these values and the proposed formula for the
measure is

μq1q2l = res
l

1

cq1q2l c−q1,−q2,−1−l
, l = 0, 1, . . . , (57)

if the overall numerical factor in the wave function is chosen
according to (47). We get the numerical coefficient 1/π4 in
(57) and justify this formula in Appendix D.

Substituting (55) to (57) we get the integration measure in
the form

μq1q2l = (1 + 2l )Tq1 Tq2 Tq1+q2 Tq1−q2

2
∏

q∈{q1,q2}[l
2 + 4q2][(1 + l )2 + 4q2]

, (58)

where Tq = q tanh πq.

V. ANALYTICAL EXPRESSIONS FOR TRANSPORT
CHARACTERISTICS

Now we are in position to compute quasiparticle transport
properties of the superconducting wire in class D. This is done
by substituting the partition function (19) expressed via the
heat kernel (52) into Eqs. (9)–(11). With the help of relation
(C3), the emerging θ derivatives can be expressed in terms
of derivatives only over θF. This allows us to consider the
wave functions φq1q2l (θ ) and φq1 (θ ) only at the fermionic line,
where they are given explicitly by Eqs. (47) and (48).
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A. Conductance moments

This procedure yields the following expressions for the
average conductance, its second and third moments:

〈gk〉 =
∫ ∞

−∞
dq μqP(k)

q e−2εqL/ξ

+
∫ ∞

−∞
dq1dq2

∞∑
l=0

μq1q2lR
(k)
q1q2l e

−2εq1q2 l L/ξ , (59)

where the eigenvalues εq and εq1q2l are listed in (39), while
the measures μq1 and μq1q2l are given by Eqs. (53) and (57),
with the Harish-Chandra c functions specified in Eqs. (45) and
(55), respectively. The polynomials Pk

q1
defining the contribu-

tion of one-parametric eigenfunctions have the form

P(1)
q = 4q2, (60a)

P(2)
q = 8

3 q2(1 + q2), (60b)

P(3)
q = 8

15 q2(1 + q2)(4 + q2). (60c)

The contribution of three-parametric eigenfunctions is de-
scribed by the polynomials R(k)

q1q2l :

R(1)
q1q2l = 0, (61a)

R(2)
q1q2l = 64

3

[
4εq1q2l (1 + l )2 + M

]
, (61b)

R(3)
q1q2l = 32

5

[
4εq1q2l (1 + l )2B3 + MB4

]
, (61c)

where M = (l2 + 4q2
1 )(l2 + 4q2

2 ) and Bm = 5 + l (4 + ml ) +
4q2

1 + 4q2
2.

The obtained expression for the average conductance 〈g〉
coincides with that calculated from the one-replica sigma
model [17,22] (with an account for different normalization of
g [36]). Note, however, that we obtain it from the analysis of
a more complicated two-replica sigma model. Therefore this
anticipated coincidence can be considered as a consistency
check of our treatment of the n = 2 case. Mathematically, the
fact that three-parametric functions φq1q2l (θ ) do not contribute
to 〈g〉, but contribute to 〈g2〉 and 〈g3〉 is a consequence of the
fact that their Taylor expansion at small θi does not contain
quadratic terms, starting with quartic terms [see Eq. (47)].

The asymptotic behavior of the conductance moments in
the long-wire limit L � ξ , is determined by the first term in
Eq. (59), as the three-parametric spectrum is gapped, while
the one-parametric spectrum is not [see Eq. (39)]. Evaluating
the integral over q1 with the steepest descent method, we find

〈g〉
gL

= 1 + π2ξ

12L
− π4ξ 2

240L2
+ · · · , (62a)

〈g2〉
gL

= 2

3
+ (3 + π2)ξ

18L
+ π2(15 − π2)ξ 2

360L2
+ · · · , (62b)

〈g3〉
gL

= 8

15
+ (15 + 4π2)ξ

90L
+ · · · , (62c)

where gL = √
2ξ/πL. The leading asymptotics in Eqs. (62)

conform with the result of the DMPK approach [21] and can
be obtained from the Dorokhov distribution (1).

In the short-wire limit, L � ξ , both subfamilies of the
radial eigenfunctions contribute to 〈g2〉 and 〈g3〉. However, it

is known to be easier to extract analytical expressions for the
short-wire asymptotics not from the general formula (59), but
from the direct perturbative solution of the Schrödinger equa-
tion for the heat kernel [42], which is done in Appendix E.
Alternatively, one can evaluate the fluctuational determinant
near the quasiclassical trajectory [22]. We find the numerical
result to be consistent with both analytical methods, which
provides a strong evidence of the correctness of the basis
construction. The resulting expansions for 〈g〉, var g = 〈g2〉 −
〈g〉2, and 〈〈g3〉〉 = 〈g3〉 − 3〈g2〉〈g〉 + 2〈g〉3 read

〈g〉 = ξ

L
+ 1

3
− 1

15

L

ξ
+ 2

63

L2

ξ 2
+ · · · , (63a)

var g = 2

15
− 8

315

L

ξ
+ 136

4725

L2

ξ 2
+ · · · , (63b)

〈〈g3〉〉 = 8

1485

L2

ξ 2
+ · · · . (63c)

In the process of var g calculation, two leading terms pro-
portional to 1/L2 and 1/L completely cancel, as expected
for universal conductance fluctuations [43]. Surprisingly, the
leading term for the third cumulant is proportional to L2

rather than L, as would follow from the scaling 〈〈gk〉〉 ∝ Lk−2

suggested in Ref. [52]. Such cancellation of the leading con-
tribution to 〈〈g3〉〉 in the weak-localization regime is known to
be a peculiar feature of the one-dimensional geometry [53].

At arbitrary wire length L, the average conductance and
its variance should be calculated numerically. The results are
presented in Figs. 2–4, which illustrate the crossover from the
Drude regime at small L to the critical regime at large L. Quite
unexpectedly, var g and 〈〈g3〉〉 approach their asymptotic lim-
its (62) much slower than 〈g〉 itself.

B. Fano factor

The pseudo-Fano factor (4) given by Eq. (10) can also be
cast in the form of Eq. (59), with the polynomials P and R
replaced by

P(F)
q = 4

3 q2 − 8
3 q4, R(F)

q1q2l = 1
2 R(2)

q1q2l . (64)

The resulting dependence of the pseudo-Fano factor F̃ on
the wire length is shown in Fig. 5. Its large- and small-L
asymptotics are given by

F̃ =
⎧⎨
⎩

1
3 − 1

6
ξ

L − π2

36
ξ 2

L2 + · · · , L � ξ,

1
3 − 4

45
L
ξ

+ 76
945

L2

ξ 2 + · · · , L � ξ .

(65)

As mentioned in the Introduction, coinciding asymptotic val-
ues of 1/3 are explained by the fact that both limits are
described by the bimodal Dorokhov function (1), giving the
total density of many transmission eigenvalues at small L
(Drude regime, self-averaging Fano factor) and the distri-
bution function of one most transparent channel at large L
(critical regime, strong fluctuations).

C. Variance of det r

The variance (11) of the determinant of the reflection am-
plitudes matrix var det r = 〈det2r〉 is expressed via the heat
kernel at the “south pole” and does not involve θi derivatives.
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Hence it contains the unit contribution from the unity eigen-
function [the first term in Eq. (52)], while the contribution of
one- and three-parametric eigenfunctions is given by (59) with
the polynomials

P(det)
q = −4q2, R(det)

q1q2l = 3(−1)l

4
R(2)

q1q2l . (66)

The dependence of var det r on the wire length is shown in
Fig. 6. Its large- and small-L asymptotics have the form

var det r =
{

1 −
√

2ξ

πL + · · · , L � ξ .

∼ exp
(−π2

4
ξ

L

)
, L � ξ .

(67)

The property limL→∞ var det r = 1 means that even in the
critical regime most of the samples demonstrate insulating
behavior, being deep either in the topological or trivial phases.
As var det r is determined by the heat kernel at the south pole
(11), the fact that it vanishes in the limit L → 0 is yet another
check of correctness of our heat kernel construction.

VI. CONCLUSION

In the present paper, we performed an extensive study
of quasiparticle transport in disordered multichannel (N �
1) quantum wires of symmetry class D, which can be
implemented in superconductors with broken time-reversal
and spin-rotation symmetries, where quasiparticles determine
thermal rather than electrical conductance. This symmetry
class allows for two distinct topological phases, depending
on the parameters of the Hamiltonian. At large lengths both
phases are subject to Anderson localization, while the criti-
cal regime realized at the boundary between the two phases
demonstrates a peculiar “delocalization” behavior, in which
average transport properties are determined by rare configu-
rations, described by the Dorokhov distribution for the most
transparent channel.

The average conductance 〈g〉 in quantum wires of class D
was calculated in Refs. [17,22,40] in the framework of the
nonlinear supersymmetric sigma model with one replica (n =
1). This approach allows us to describe the full dependence of
〈g〉 on the wire length L (see Fig. 2), tracing the crossover from
the common behavior 〈g〉 = ξ/L in the Drude regime (L �
ξ ), to the super-Ohmic behavior 〈g〉 ∝ √

ξ/L in the critical
regime (L � ξ ), where ξ = 2Nl is the correlation length of
the wire.

In our work, we made a next step towards full statistical
description of quantum transport in class D and generalized
previous studies by calculating higher-order moments of the
conductance: its variance and the third cumulant. Extracting
these quantities requires the use of a more complicated non-
linear supersymmetric sigma model with two replicas (n =
2), which has never been analyzed before for the symmetry
class D, to the best of our knowledge. The supersymmetric
sigma model with two replicas is defined on the symmetric
supermanifold of rank three (i.e., with three Cartan angles),
making it possible to access conductance moments up to the
third order. Interestingly, our results for both var g (Fig. 3)
and 〈〈g3〉〉 (Fig. 4) demonstrate a broad crossover region and
approach their long-wire limit only at L � 20ξ . At the same

time, the average conductance (Fig. 2) is well described by its
asymptotic expression already at L � ξ .

The n = 2 sigma model analyzed in the present work is
also suitable for describing the full distribution of transmis-
sion probabilities and hence allows us to extract the full
counting statistics (FCS) of the wire. The distribution of
transmission probabilities can be expressed in terms of the
heat kernel in the vicinity of the “supersymmetric line” θB1 =
θB2 = −iθF. The peculiarity of the symmetry class D is that
the FCS generating function (B1) cannot be deduced from
the n = 1 sigma model, whose compact sector is essentially
empty and the corresponding Cartan angle is lacking. There-
fore the theory with n = 2 is the minimal model for extracting
the FCS. A very complicated structure of the integral repre-
sentation of the eigenfunctions (31) based on the Iwasawa
decomposition prevents us from direct analytical calculation
of the distribution of transmission probabilities. However,
individual moments of this distribution can be written in a
concise form. This includes the average conductance and Fano
factor (64). The latter approaches its quasiclassical value 1/3
both in the short- and long-wire limits, see Eq. (65) and
Fig. 5.

Finally, we calculate the variance of the determinant of the
matrix of reflection amplitudes (see Fig. 6). This determinant
is related to the topological index χ = sgn det r of the wire
and defines the transition between the two topologically dis-
tinct localized phases. Throughout the paper we considered
the critical state of the wire for which the determinant is
zero on average. At the same time, the average square of the
determinant has a nontrivial dependence on the wire length. It
indicates that at L � ξ most of the samples undergo Anderson
localization, while the probability to find a conducting wire
decreases as

√
ξ/L.

Average quasiparticle conductance and its moments can
be accessed via heat flow measurements as in Ref. [54]. An
alternative experiment can address electrical (rather than ther-
mal) shot noise power in response to the applied temperature
gradient. This kind of a measurement in a nonsuperconducting
sample was discussed in Refs. [55,56]. Electrical shot noise in
a superconducting system is very different from the thermal
shot noise considered in the present paper (see Fig. 5). Particu-
lar relations between electrical noise and scattering properties
of a superconducting sample will be the subject of a separate
publication.

Mesoscopic fluctuations of the transport properties can be
studied on a single sample by varying some external param-
eters such as magnetic field or gate voltage. This variation
should be performed according to a special protocol to keep
the system at the critical state between the two topologi-
cally distinct phases. Such a sweep will perform an effective
averaging over disorder realizations and allow to gain the
necessary statistics.

From a technical perspective, our calculation is based on
the construction of the full set of eigenfunctions of the radial
Laplace-Beltrami operator on the sigma-model supermanifold
of class D with two replicas. This task is accomplished by
using the Iwasawa decomposition of the corresponding super-
group G and subsequent averaging of the radial plane waves
in Iwasawa coordinates with respect to the rotations by the
subgroup K . This approach was first proposed in Refs. [41,42]
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and applied there to the minimal (one replica) models of the
standard Wigner-Dyson classes.

We have observed that for the supersymmetric sigma
model of class D with two replicas there exist two distinct
subfamilies of eigenfunctions aside from the special zero
mode (identically unity on the whole manifold). One generic
eigenfunction family is parametrized by three components of
momentum, in accordance with the presence of three Cartan
angles. The peculiarity of class D with two replicas is that all
these eigenfunctions identically vanish on the special bosonic
line θB2 = θF = 0. A smaller one-parameter subfamily of
eigenfunctions remains finite on this line and is intimately
related to the eigenfunctions of the model with one replica.
The latter model has only one Cartan angle corresponding to
θB1 and “lives” exactly on the bosonic line. Interestingly, the
spectrum of the one-parameter subfamily is gapless contrary
to the three-parametric set of eigenfunctions. Hence most
properties of the wire in the limit L � ξ are dominated by
the one-parametric subfamily.

It is instructive to compare our analysis of radial eigenfunc-
tions of the sigma model for class D with two replicas with
that for the orthogonal (AI) and symplectic (AII) symmetry
classes in the one-replica case [41,42]. The target spaces of
all these sigma models have rank 3, with three Cartan an-
gles in each case. Moreover, the one-parametric subfamily
we identified for n = 2 class D is partially reminiscent of
the “subsidiary series” eigenfunctions for n = 1 classes AI
and AII. The principle difference however is that in our case
additional eigenfunctions cannot be obtained by taking certain
limits of the main three-parametric eigenfunction family and
strictly speaking cannot be derived by a naive application
of the Iwasawa trick. Instead, averaging over the K group
should be understood as isotropization, when integration over
some Grassmann variables should be discarded if they do not
explicitly appear in the integrand. Such a complication is a
consequence of the supersymmetry and does not arise in the
theory of conventional symmetric spaces.

From the structure of our results we conclude that such
a hierarchical organization of eigenfunctions is generic and
applies to supersymmetric sigma models of all classes with
an arbitrary number n > 1 of replicas. Namely, the full set
of eigenfunctions in each of these models includes as special
subsets eigenfunctions of the model with fewer replicas (prop-
erly extended to a manifold with a larger dimensionality). The
special unit eigenfunction that exists in sigma models of all
classes and is constant (independent of all Cartan angles) can
be also viewed as such a special subset corresponding to the
model with zero replicas.

One interesting possible extension of our results include
quantum wires with topologically protected channels. Phys-
ically, this corresponds to edge transport in 2D topological
insulators and superconductors. Wires of symmetry classes A,
C, and D can host any integer number of protected channels
that corresponds to the Z topology. In classes AII and DIII the
topological index is Z2 that corresponds to a single protected
channel in the case when the total number of channels is
odd. The presence of topologically protected channels leads
to the appearance of a Wess-Zumino-Witten (WZW) term in
the sigma-model action and modifies the spectrum of corre-
sponding eigenfunctions. Quasiclassical description of wires

with protected channels was developed in Ref. [49]. The full
set of eigenfunctions for the unitary class A with the WZW
term was constructed in Ref. [57] with the help of Sutherland
transformation. Iwasawa decomposition of the supermanifold
can be also used to construct eiegenfunctions of the models
with the WZW term. This will be the subject of a separate
publication [58] both for wires of class D and other symmetry
classes with protected channels.
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APPENDIX A: NOTATIONS, BASIS, ETC.

1. Basis and the root system

We use the basis in which bosonic and fermionic sectors
are selected according to the grading matrix

k = diag{1, 1,−1,−1,−1,−1, 1, 1}, (A1)

which acts as 1 on bosons and −1 on fermions.
The origin (“north pole”) � and charge conjugation matrix

C are chosen in the form

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

Then the Cartan algebra can be parametrized as follows:

θ̌ = diag{θB1, θB2, iθF, iθF,−iθF,−iθF,−θB2,−θB1}. (A4)

The metrics gαβ on the sigma-model supermanifold is de-
fined via the length element [22,35,42]

dl2 = −1

2
str dQ2 = gαβdX αdX β. (A5)

The radial Laplacian (23) is determined by the θ -dependent
part of g. Plugging Efetov’s parametrization (12) into
Eq. (A5), we obtain the radial part of the length element
(which appears to be U independent):

dl2
rad = − 1

2 str(�eθ̌d θ̌ )2 = 1
2 str d θ̌2. (A6)
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Taking θ̌ from Eq. (A4), we arrive at Eq. (22), which defines
the radial part of the metrics gi j . Note, however, that the
definition of the Laplace-Beltrami operator (17) contains the
upper-index metrics gi j = (gi j )−1. This is the reason why in
Eq. (23) the coefficient in the θF-derivative term is 1/2 rather
than 2 as in Eq. (22). The same matrix gi j defines the dot
product for roots (dual Cartan space), thus entering Eqs. (27)
and (29).

A crucial advantage of the chosen basis is that it allows us
to choose positive root vectors so that they are upper triangular
matrices. We summarize thus selected positive roots in Table I
and depict its BB part in Fig. 7.

In the BB sector, a special role is played [46] by the so-
called simple roots 2θB2 and θB1 − θB2 (depicted by blue bold
arrows in Fig. 7). These are the roots that lie most closely
to the boundary of the chosen half-plane R+ in Cartan space
containing positive roots. In other words, all positive roots
can be expressed as a linear combination of simple roots with
positive coefficients. Acting with exponentials of these roots
in an alternating way [see Eq. (35)] allows us to construct a
parametrization, in which the integral (31) can be analytically
taken in the limit of large θi, giving an explicit expression for
the Harish-Chandra c function (50).

2. Generators of the K group

We parametrize the K group (see Sec. III A) by the gen-
erators wα that are formed as a sum of a root vector Zα and
its counterpart Z−α , corresponding to the opposite root −α.
In other words, we make a �-commuting matrix from each
positive root:

wα = Zα + �Zα�. (A7)

In Sec. IV we use short-cut notations wb1 = w2θB2 , wb2 =
−iwθB1−θB2 , and wF = w2θF for the generators of the U group
in the BB and FF sectors, and the following Grassmann gen-
erators:

wg1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 η ζ ζ η 0 0
0 0 α β β α 0 0
ζ β 0 0 0 0 −β −ζ

−η −α 0 0 0 0 α η

η α 0 0 0 0 −α −η

−ζ −β 0 0 0 0 β ζ

0 0 α β β α 0 0
0 0 η ζ ζ η 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A8)

wg2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 γ χ −χ −γ 0 0
0 0 ρ σ −σ −ρ 0 0
χ σ 0 0 0 0 −σ −χ

−γ −ρ 0 0 0 0 −ρ −γ

−γ −ρ 0 0 0 0 −ρ −γ

χ σ 0 0 0 0 σ χ

0 0 −ρ −σ σ ρ 0 0
0 0 −γ −χ χ γ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A9)

APPENDIX B: TRANSPORT PROPERTIES AND HEAT
KERNEL

Transport properties of a quasi-one-dimensional wire can
be characterized by a set of transparency coefficients that
are eigenvalues of the matrix t†t , where t is the matrix of
transmission amplitudes. Full statistics of transmission coeffi-
cients [47,48] can be conveniently encoded in the generating
function

F (z) =
∞∑

k=1

zk−1 tr(t†t )k = tr
t†t

1 − zt†t
. (B1)

In particular, the dimensionless conductance and zero-
frequency shot noise power [59–61] described by the Fano
factor F can be extracted via

g = tr t†t = F (0), (B2a)

gF = tr t†t − tr(t†t )2 = F (0) − F ′
z(0). (B2b)

In order to compute F (z), Nazarov [62] introduced a
special matrix Green function, where the standard retarded
and advanced functions are mixed by an auxiliary counting
field. Translated to the sigma-model language [22,42,49],
Nazarov’s counting field appears in the twisted boundary con-
ditions for the sigma model. The disorder-averaged generating
function is then expressed as

〈F (zF)〉 = − ∂Z[θi]

∂zF

∣∣∣∣
SUSY line

, (B3)

where Z[θi] is the partition function (7),

zF = sin2(θF/2), (B4)

and the derivative in Eq. (B3) should be taken at the super-
symmetric line, where the fermionic and bosonic angles are
equal.

The symmetry class D considered in the present paper has
several features to be taken into account in the general scheme
outlined above. First, when studying quasiparticle properties
at zero energy, Nambu-Gor’kov space plays the role of the
retarded-advanced space of Nazarov’s matrix. Second, in the
one-replica (n = 1) case, the FF sector of the sigma-model
supermanifold is degenerate and lacks the corresponding Car-
tan angle θF. This makes it impossible to construct the full
generating function 〈F (z)〉. Instead, only the value at the
origin 〈F (0)〉 is accessible, giving the average conductance
[17,22] via Eq. (9a).

As was explained in the Introduction, the n = 2 sigma
model possesses two bosonic (θB1, θB2) and one fermionic (θF)
Cartan angles. This is sufficient to apply Eq. (B3) and obtain
the complete FCS generating function. The supersymmetric
line in this case corresponds to θB1 = θB2 = −iθF.

Computation of the full generating function from the heat
kernel requires the knowledge of the eigenfunctions of the
Laplace-Beltrami operator in the vicinity of the supersymmet-
ric line. The integral representation (31) based on the Iwasawa
decomposition turns out to be too complicated for this task.
Direct calculation of the eigenfunctions in this limit is not
feasible for an arbitrary value of θF. However, the moments
of the distribution can be directly accessed by expanding the
eigenfunctions in small values of all three Cartan angles as
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explained in Appendix C. For instance, substituting Eq. (B3)
into Eq. we derive the Fano factor in the form of Eq. (10).

It is worth noting that due to the presence of three Cartan
angles, the average conductance can be extracted from the
partition function (7) in three different ways: (i) from the
fermionic sector with the help of Eqs. (B3) and :

〈g〉 = −2
∂2Z (θi )

∂θ2
F

∣∣∣∣
0

, (B5)

(ii) from the bosonic sector through Eq. (9a), and (iii) from its
counterpart with θB1 → θB2. The existence of the three copies
of the systems that are jointly averaged over disorder opens
a way to go beyond the linear statistics and to calculate the
second and the third moments of the conductance given by
Eqs. (9b) and (9c), respectively.

APPENDIX C: SMALL θ EXPANSION OF RADIAL WAVE
FUNCTIONS

According to Eqs. (9) and (10), conductance moments
and Fano factor are expressed in terms of derivatives of the
heat kernel, and hence of the eigenfunctions, at the origin.
In this Appendix we demonstrate that these derivatives can
be expressed via derivatives taken along the special fermionic
line θB1 = θB2 = 0, where the eigenfunctions are known ex-
plicitly, see Eqs. (47) and (48). The relations that we derive
apply both to three-parametric eigenfunctions φq1q2l and to
one-parametric eigenfunctions φq1 [the corresponding eigen-
values εq1q2l and εq1 are presented in Eq. (39)] and allow us to
calculate physical quantities given by Eqs. (9) and (10).

The symmetry of the action (5) and, hence, the Lapla-
cian (23) with respect to the rotations by the K group (see
Sec. III A for definition) implies that the small-θ expansion of
a radial eigenfunction φ should be expressed via K-invariant
polynomials

Hn = 1
2 str θ̌n = θ2n

B1 + θ2n
B2 − 2

( − θ2
F

)n
(C1)

in the form of a series (constant term drops in all eigenfunc-
tions except the unity)

φ(θi ) = a1H1 + a2H2 + a1,1H2
1 + · · · . (C2)

Substituting Eq. (C2) into Eq. (18) with the Laplace oper-
ator (23) determined by the Jacobian (15) and expanding in θi

to the sixth order, one obtains a number of relations between
the coefficients:

(1 + 3ε)a1 + 24(a2 + a1,1) = 0,(
2

3
+ ε

)
a2 − a1

45
+ 16a1,2 + 18a3 = 0,

(
8

3
+ 4ε

)
a1,1 − a1

15
+ 96a1,1,1 + 32a1,2 + 24a3 = 0.

The general form of an eigenfunction (C2) together with
the above relations allows us to express different derivatives

of φ via θF derivatives and eigenvalue ε only:

∂2φ

∂θ2
B1

∣∣∣∣
0

= 1

2

∂2φ

∂θ2
F

∣∣∣∣
0

, (C3a)

∂4φ

∂θ4
B1

∣∣∣∣
0

= −1 + 3ε

4

∂2φ

∂θ2
F

∣∣∣∣
0

, (C3b)

∂4φ

∂θ2
B1∂θ2

B2

∣∣∣∣
0

= −3ε + 1

36

∂2φ

∂θ2
F

∣∣∣∣
0

+ 1

18

∂4φ

∂θ4
F

∣∣∣∣
0

, (C3c)

∂6φ

∂θ2
B1∂θ2

B2∂θ2
F

∣∣∣∣
0

= 15ε(1 + ε) + 16

1800

∂2φ

∂θ2
F

∣∣∣∣
0

− 2 + 3ε

90

∂4φ

∂θ4
F

∣∣∣∣
0

+ 1

450

∂6φ

∂θ6
F

∣∣∣∣
0

. (C3d)

APPENDIX D: COMPLETENESS OF THE
EIGENFUNCTION SET

Integral representation (52) of the heat kernel is based
on the expansion of unity in the eigenfunctions of Laplace-
Beltrami operator. While we do not have a direct proof of
the completeness of our basis, in this Appendix we will pro-
vide a numerical evidence that the expansion (52) with the
weights defined by Eqs. (53) and (57) indeed reproduces the
full heat kernel. First, the one-parameter family of eigenfunc-
tions and their weights are fixed by the expansion of unity
on the bosonic line θB2 = θF = 0. Hence the first two terms
of Eq. (52) are beyond any doubts. In order to demonstrate
correctness of the third term involving three-parametric family
of eigenfunctions, we will consider the heat kernel on the
fermionic line, where θB1 = θB2 = 0. Let us note that small
θ expansion of the eigenfunctions constructed in Appendix
C is fully determined by their behavior on the fermionic line.
Hence completeness of the heat kernel on this line is sufficient
to ensure that our results for conductance moments and Fano
factor are correct.

We consider the heat kernel (52) on the fermionic line,
where the eigenfunctions are known explicitly [Eqs. (47)
and (48)]. Using recurrence relations for Legendre polyno-
mials, we represent the three-parameter eigenfunction φq1,q2,l

as a linear combination of up to five terms Ps(cos θF) with
orders l − 2 � s � l + 2. Similarly, the one-parameter eigen-
function is a linear combination of P0 and P1. Using this
representation in Eq. (52), we collect the terms with the same
Legendre polynomial:

ψ (0, 0, θF; x) = 1 +
∞∑

s=0

[∫
dq1dq2A(s)

q1,q2
(x)

+
∫

dq B(s)
q (x)

]
Ps(cos θF). (D1)

Explicit forms of the coefficients A(s) and B(s) are rather
lengthy but unimportant. As we just explained above, B(s)

q is
nonzero only for s = 0 or 1, while A(s)

q1,q2
is present for all

values of s.
In the limit x = 0, the heat kernel represents a supersym-

metric delta function (20) and should vanish for all nonzero
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values of θF. This means that all terms of the above sum with
s � 1 must be zero, while the s = 0 term compensates the
unity. We checked and confirmed this statement numerically
for the terms up to s = 6. It is worth noting that the two
contributions with double and single momentum integrals in
Eq. (D1) diverge in the limit x → 0 as 1/x, while their sum
remains finite. This happens for s = 0 and 1 when both terms
exist. In this case, we have to compute integrals for several
small values of x in order to cancel the divergence and sin-
gle out the finite value. For s � 2 only the double integral
remains. This integral converges on its own and yields 0. It
can be calculated directly at x = 0.

APPENDIX E: DIRECT PERTURBATIVE COMPUTATION
OF THE HEAT KERNEL

As mentioned in Sec. V A, it is hard to extract analytical
formulas for transport characteristics in the short-wire limit
L � ξ from the Iwasawa trick (59). However, this regime can
be easily accessed via direct perturbative calculation of the
heat kernel ψ (θi, L) from the Schrödinger Eq. (16) [42]. For
this aim, we substitute expression (14) for the Jacobian via the
root system into the radial Laplacian (23) and rewrite it in the
form


rad = ∂ · ∂ +
∑
α∈R+

mα coth α ∂(α), (E1)

where ∂i = ∂/∂θi, ∂(α) = (∂iα)gi j∂ j denotes the derivative in
the direction α, and the dot product is defined with respect to
the metrics gi j [see Eq. (22)]. Positive roots α ∈ R+ are listed
in Table I: There are five bosonic roots with multiplicity mα =
1 (four BB roots are depicted in Fig. 7) and four Grassmann
roots (with two root vectors for each) that are to be counted
with multiplicity mα = −2 [42].

The idea behind a perturbative construction of the heat
kernel ψ (θi, L) is that for L � ξ relevant θ are small, and the
Laplacian can be well approximated by its Euclidean version

acting in the tangent plane:


E
rad = ∂ · ∂ +

∑
α∈R+

mαα−1 ∂(α), (E2)

where both terms scale as θ−2. If we now replace 
rad by 
E
rad,

the Schrödinger Eq. (16) can be easily solved, providing the
Euclidean approximation to the heat kernel:

ψE(θ, L) = exp(−ξH1/8L), (E3)

where H1 = θ2
B1 + θ2

B2 + 2θ2
F is the first in the family of in-

variant polynomials (C1). The absence of a usual prefactor
∝ L−d/2 in the heat kernel (E3) is a consequence of the su-
persymmetry of the theory, which makes it effectively zero
dimensional, d = 0.

To improve the approximation (E3), one has to take into
account the curvature of the sigma-model manifold, i.e., the
difference between 
rad and 
E

rad. For symmetry reasons, the
heat kernel is expressed only in terms of the invariant polyno-
mials (C1). Writing it as a series

ψ = e−ξH1/8L
[
1 + b1H1 + b2H2 + b1,1H2

1 + · · · ], (E4)

with L-dependent coefficients bi and expanding the
Schrödinger equation in 
rad − 
E

rad, one can extract
short-wire asymptotics order by order:

b1 = − 1

24
+ 1

120

L

ξ
− 1

252

L2

ξ 2
+ · · · , (E5a)

b2 = 1

720
− 1

1260

L

ξ
+ · · · , (E5b)

b1,1 = 11

5760
− 11

20160

L

ξ
+ · · · . (E5c)

Substitution the perturbative heat kernel (E4) to Eqs. (9)
and (10) provides analytical expressions for the short-wire
asymptotics of physical quantities given in Sec. V.
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