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Non-Abelian fermionization and the landscape of quantum Hall phases
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The recent proposal of non-Abelian boson-fermion dualities in 2 + 1 dimensions, which morally relate U (k)N

to SU (N )−k Chern-Simons-matter theories, presents a new platform for exploring the landscape of non-Abelian
quantum Hall states accessible from theories of Abelian composite particles. Here we focus on dualities relating
theories of Abelian quantum Hall states of bosons or fermions to theories of non-Abelian “composite fermions”
partially filling Landau levels. We show that these dualities predict special filling fractions where both Abelian
and non-Abelian composite fermion theories appear capable of hosting distinct topologically ordered ground
states, one Abelian and the other a non-Abelian, U (k)2 Blok-Wen state. Rather than being in conflict with the
duality, we argue that these results indicate unexpected dynamics in which the infrared and lowest Landau level
limits fail to commute across the duality. In such a scenario, the non-Abelian topological order can be destabilized
in favor of the Abelian ground state, suggesting the presence of a phase transition between the Abelian and
non-Abelian states that is likely to be first order. We also generalize these constructions to other non-Abelian
fermion-fermion dualities, in the process obtaining new derivations of a variety of paired composite fermion
phases using duality, including the anti-Pfaffian state. Finally, we describe how, in multilayer constructions,
excitonic pairing of the composite fermions across N layers can also generate the family of Blok-Wen states
with U (k)2 topological order.
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I. INTRODUCTION

Two-dimensional electron fluids in strong magnetic fields
are capable of hosting a rich tapestry of gapped, incompress-
ible phases. The most famous among them occur at partial
Landau level (LL) fillings ν and have fractionally quantized
Hall conductivities σxy = ν e2

h , in what is known as the frac-
tional quantum Hall (FQH) effect. An explanation of the large
family of FQH phases observed in experiments thus far, as
well as an understanding of their underlying topological or-
ders, was a major achievement of the past several decades.
This progress is built on the unifying framework of flux at-
tachment [1], which relates the original problem of electrons
to a new problem of composite fermions or bosons coupled to
a fluctuating Chern-Simons gauge field [2]. For example, in
the language of flux attachment, the observed Abelian FQH
states may be understood as arising from the formation of in-
teger quantum Hall (IQH) states of composite fermions [3,4],
or, equivalently, the condensation of composite bosons [5,6].

Beyond the experimentally visible FQH states, an even
more diverse array of quantum Hall phases have been pro-
posed theoretically, many of which host quasiparticles with
non-Abelian braiding statistics [7–11]. These proposals gen-
erally lack reference to microscopic physics, instead being
based on “ideal” wave functions. Indeed, a general charac-
terization of the dynamics that may lead to such non-Abelian
phases has proven elusive, and it is unclear which of these

*These authors contributed equally to the development of this work.

phases are accessible from physically motivated theories of
(Abelian) composite particles. With some notable exceptions,
in which non-Abelian FQH states are obtained as paired
states of composite fermions (the Moore-Read state) [12] or
composite bosons (the Read-Rezayi sequences) [13–15], the
composite particle picture has been largely unsuccessful in
accessing the wider landscape of conjectured non-Abelian
FQH states.

In recent work [15], we made progress on mapping
the region of the non-Abelian FQH landscape accessible
to theories of Abelian composite particles. We developed
Landau-Ginzburg theories for a large class of non-Abelian
states which are related to Abelian composite particle theories
via recently proposed Chern-Simons-matter theory dualities
[16]. Motivated by the equivalence of U (N )k Chern-Simons
theories coupled to gapless complex bosons and SU (k)−N

theories coupled to gapless Dirac fermions in the ’t Hooft
(large-N, k) limit [17,18], these dualities relate theories of
gapless bosons or fermions coupled to Chern-Simons gauge
theories in a manner which parallels the established level-
rank dualities of pure Chern-Simons theories [19–22]. Of
these dualities, several relate theories with Abelian and non-
Abelian gauge groups, meaning that they represent dualities
between the conventional composite boson Landau-Ginzburg
theories for certain Abelian FQH states and theories of dual
bosons coupled to non-Abelian Chern-Simons gauge fields.1

1We emphasize here that it is possible for a Chern-Simons gauge
theory to have a non-Abelian gauge group but an Abelian braid
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By stacking multiple copies of these Abelian states and in-
troducing pairing in the dual non-Abelian composite boson
language, we showed that one can access the Read-Rezayi
[10] and generalized non-Abelian spin singlet states [23–25].
The success of this construction stems from the observation
that phases naturally accessible by condensing local operators
in the non-Abelian dual theory may not be visible in the

original Abelian theory, in which these operators correspond
to nonlocal monopole operators.

Lying at the heart of our construction is a string of dualities
involving the usual Landau-Ginzburg theory for the ν = 1/2
bosonic Laughlin state, a single flavor of Wilson-Fisher boson
(describing the Laughlin quasiparticles) coupled to a U (1)2

Chern-Simons gauge field. This theory has three duals,

a Wilson-Fisher scalar + U (1)2 ←→ a Dirac fermion + SU (2)−1/2

� (1.1)

a Dirac fermion + U (1)−3/2 ←→ a Wilson-Fisher scalar + SU (2)1,

where we use ←→ to denote duality and subscripts denote
the Chern-Simons level (including the parity anomaly). The
Abelian boson-fermion duality featured here and others like it
were explored in Refs. [26–29]. While most non-Abelian du-
alities are boson-fermion dualities, this quadrality—in which
each of the four theories is dual to the others—is distinguished
by its inclusion of non-Abelian boson-boson and fermion-
fermion dualities. In Ref. [15], we focused on the non-Abelian
boson-boson duality, in which the dual theory consists of non-
Abelian bosonic “composite vortices” coupled to a SU (2)1

Chern-Simons gauge field, obtaining the non-Abelian phases
via interlayer pairing of the composite vortices.

In this work, we study the non-Abelian phases accessible
to the dual theories of composite fermions. Of these, the theory
of Dirac fermions coupled to a U (1)−3/2 gauge field is a rela-
tivistic version of the standard composite fermion description
of the ν = 1/2 bosonic Laughlin state, while the theory of
Dirac fermions coupled to a SU (2)−1/2 gauge field constitutes
a different kind of “flux attachment” in which the compos-
ite fermions possess charge under a fluctuating non-Abelian
gauge field. Using this duality, we analyze two of the simplest
paths to non-Abelian phases:

(1) Forming integer quantum Hall (IQH) phases of the
SU (2) composite fermions, in analogy with Jain’s construc-
tion of Abelian FQH phases as IQH states of composite
fermions [3] and earlier projective parton constructions of
non-Abelian FQH states [7,30,31].

(2) Excitonic pairing between layers of SU (2) composite
fermions. This construction is a composite fermion version of
the one presented in Ref. [15] for composite bosons.

In both constructions, we will find that the composite
fermions yield the ν = k/2 Blok-Wen states with U (k)2

topological order [9], in contrast to the Read-Rezayi states ob-
tained via interlayer pairing of the SU (2) bosons in Ref. [15].
For many of these states, these are the first constructions start-
ing from parent theories of Abelian composite particles, rather
than projective parton constructions [30–32] or more general
non-Abelian/non-Abelian dualities [33]. In addition, by con-
sidering more general non-Abelian dualities, we find not only

group, meaning that it represents an Abelian topological phase. For
example, SU (2)1 is Abelian in this sense, having the same anyon
content as U (1)2 by level-rank duality.

the exotic Fibonacci state [34], but also composite fermion
descriptions of a variety of non-Abelian states that have previ-
ously been understood via pairing instabilities of a composite
Fermi liquid, including a new description of the anti-Pfaffian
state [35,36]. Remarkably, we find in these special cases that
an IQH phase of the non-Abelian composite fermion theory
is dual to pairing in the usual Abelian description. Our con-
struction of all of these states using non-Abelian dualities
represents the first category of main results of this work.

In addition to revealing paths to different non-Abelian
phases, these non-Abelian fermion-fermion dualities pos-
sess surprising information about the dynamics of composite
fermions, leading to our second main family of results. These
results relate to our first construction of the U (k)2 states, in
which a magnetic field and chemical potential are adjusted
so that the SU (2) composite fermions fill k Landau levels.
This leads to a SU (2)−k spin topological quantum field theory
(spin TQFT) at low energies, corresponding to U (k)2 topo-
logical order by level-rank duality. However, this conclusion
is immediately complicated by the duality with the Abelian
composite fermion theory, IQH phases of which correspond
to the bosonic Jain sequence states. Indeed, there are certain
filling fractions ν∗ of the underlying electric charges at which
both types of composite fermions fill up an integer number of
Landau levels. On integrating out the fermions in these two
theories, one would then be led to conclude that the theory
with an Abelian gauge group predicts an Abelian FQH state,
while the non-Abelian theory predicts a non-Abelian FQH
state. For instance, for a system of bosons at filling ν∗ = 3/2,
the two theories appear to respectively predict U (1)−2 and
U (3)2 topological order.

Because U (3)2 and U (1)−2 are distinct topological orders
and are certainly not dual to one another, one might naïvely
worry that these results signal a breakdown of the dualities,
which postulate an equivalence of the infrared (IR) limits, or
ground states, of the dual theories. On the other hand, it is very
common for states with distinct topological orders to exist at
the same filling fraction, with the ultimate choice of ground
state depending on details of local energetics. Indeed, in this
work we take the view that both topological orders are valid
ground states at filling ν∗, and that the particular choice of
ground state depends on the order in which the lowest Landau
level (B → ∞) and IR limits are taken. This order of limits
is subtle, as the duality is only valid in the IR limit, while the
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FIG. 1. Proposed phase diagram for the SU (2) composite
fermion theory at filling ν = 3/2. Here λ̄ = g2

Y M/ωc, where g2
Y M is

the Yang-Mills coupling (the fine structure constant) and ωc ∼ √
B

is the cyclotron frequency. When λ̄ → ∞, the Yang-Mills term van-
ishes, and the picture of deconfined composite fermions filling (color
degenerate) Landau levels is valid, leading to the SU (2)spin

−3 ↔ U (3)2

state. When λ̄ runs small, the Yang-Mills term becomes very large,
Landau levels can mix, and the deconfinement of the composite
fermions is no longer assured, leading ultimately to the U (1)2 phase
predicted in the dual Abelian theory. These states are separated by a
critical point at λ̄ = λ̄∗ ∼ O(1), which is likely first order.

statement that the composite fermions form a stable IQH state
relies on the B → ∞ limit. More precisely, on tuning the ratio
of the Yang-Mills coupling to the cyclotron frequency in the
non-Abelian theory, we argue that there is a phase transition
between the Abelian and non-Abelian FQH states (see Fig. 1).
Such a transition, if continuous, would be quite exotic, as
it would separate two very different topological orders and
therefore lie beyond the Landau-Ginzburg paradigm. Thus,
when the U (1) composite fermions form an IQH state, the
SU (2) composite fermions experience an instability and find
themselves on the Abelian side of this transition and vice
versa.

Even if this transition is first order, our results demon-
strate that QFT dualities can be used to infer nontrivial
statements about the phase diagrams and dynamics of Chern-
Simons-matter theories in the presence of background fields.
Indeed, the phenomenon described above is a general feature
of fermion-fermion dualities involving non-Abelian gauge
groups, and we collect several additional examples. These
appear both in the SU (2) quadrality discussed above as well
as in other dualities. In particular, we consider the case of the
duality between a free Dirac fermion and a Dirac fermion

coupled to a U (N )−1/2 gauge field. We also comment that
the scenario we present is reminiscent of recent proposals
for the phase diagram of SU (N )k Chern-Simons theory with
Nf > 2k fermion flavors (at zero density and magnetic field)
[37] and recent follow-up work [38–41], in which it has been
suggested that the Yang-Mills term can play a nontrivial role
despite superficially appearing irrelevant (in the sense of the
renormalization group).

This work is organized as follows. In Sec. II we review
the non-Abelian Chern-Simons-matter dualities, focusing on
the quadrality in Eq. (1.1), and we review the construction
of Ref. [15]. In Sec. III we present a detailed description of
the dual fermionic theories and the properties of their IQH
states, and we present the cases in which they appear to predict
different topological orders. We then present our proposed
scenario for how this state of affairs can be made consistent
and provide additional examples of dual fermionic theories
displaying similar phenomena. In the process, we uncover
an entire series of non-Abelian FQH states, including the
anti-Pfaffian [35,36], which we find can be simultaneously
described as arising from IQH states of composite fermions
in a non-Abelian theory and from pairing instabilities of a
composite Fermi liquid in a dual Abelian theory. In Sec. IV
we demonstrate how the U (k)2 states can be obtained through
stacking and excitonic pairing in Abelian FQH states. Fi-
nally, we conclude with a discussion of our results and their
implications.

II. REVIEW OF NON-ABELIAN DUALITIES AND THE
LANDAU-GINZBURG APPROACH

A. Non-Abelian dualities and the ν = 1/2 bosonic Laughlin state

In this section, we first briefly review the dualities relevant
to describing the ν = 1/2 bosonic Laughlin state. The re-
cently proposed non-Abelian Chern-Simons-matter dualities
relate theories of Wilson-Fisher bosons coupled to a Chern-
Simons gauge field to theories of Dirac fermions also coupled
to a Chern-Simons gauge field, with the matter content in the
fundamental representation of the gauge group. We can write
these dualities schematically as

Nf scalars + U (N )k,k ←→ Nf fermions + SU (k)−N+Nf /2, (2.1)

Nf scalars + SU (N )k ←→ Nf fermions + U (k)−N+Nf /2,−N+Nf /2, (2.2)

Nf scalars + U (N )k,k+N ←→ Nf fermions + U (k)−N+Nf /2,−N−k+Nf /2. (2.3)

Our conventions and notation concerning non-Abelian Chern-
Simons theories are presented in Appendix A.

The dualities, Eqs. (2.1)–(2.3), can be shown to imply the
quadrality described in the Introduction [22],

a scalar + U (1)2 ←→ a fermion + SU (2)−1/2

�
a fermion + U (1)−3/2 ←→ a scalar + SU (2)1. (2.4)

The first theory (top left) is the relativistic version of the usual
Landau-Ginzburg theory for the ν = 1/2 bosonic Laughlin

state. Explicitly, it is described by the Lagrangian,

L� = |Da�|2 − |�|4 + 2

4π
ada + 1

2π
Ada. (2.5)

Here a is an emergent U (1) gauge field; A the back-
ground electromagnetic (EM) field; we use the nota-
tion Dμ

a = ∂μ − iaμ and adb = εμνλaμ∂νbλ; and the term
−|�|4 denotes tuning to the Wilson-Fisher fixed point.
The dual non-Abelian bosonic theory (bottom right) is
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given by

Lφ = |Du−A1/2φ|2 − |φ|4 + 1

4π
Tr

[
udu − 2i

3
u3

]

− 1

2

1

4π
AdA, (2.6)

where u is an SU (2) gauge field, 1 is the 2 × 2 identity
matrix in color space, and −|φ|4 again denotes tuning to
the Wilson-Fisher fixed point. By turning on mass operators,
both theories can be shown to describe the transition between
the ν = 1/2 bosonic Laughlin state and the trivial insulator,
which correspond to their gapped (〈�〉 = 0, 〈φ〉 = 0) and
condensed (〈�〉 �= 0, 〈φ〉 �= 0) phases, respectively. Essential
to this conclusion is the fact that SU (2)1, the TQFT obtained
when � is gapped, is Abelian at the level of the braid group:
it is equivalent to U (1)2 by level-rank duality.

The SU (2) theory, Lφ , served as the main building block
in our construction of the Read-Rezayi states in Ref. [15], in
which we considered multiple layers of the ν = 1/2 bosonic
Laughlin state and introduced an interlayer pairing interaction
for the � particles. The paired phase of this theory yielded
the Read-Rezayi states. However, in that work we did not
consider the landscape of non-Abelian phases accessible by
dual theories of Dirac fermions, which we now turn to.

B. A comment on level-rank duality and topological orders
of fermions

Before describing the composite fermion theories of inter-
est, we mention here a subtlety that arises when considering
topological orders of composite fermions. When assessing
the anyon content of the corresponding gauge theory, it is
necessary to account for the the fact that the degrees of
freedom charged under the gauge field are fermions, which
affects the statistics of certain anyons by a minus sign. More
technically, this is a result of the fact that gauge fields which
couple to fermions are spin (actually spinc; see Appendix A)
connections, as opposed to the U (1) connections that couple
to bosons. We will refer to such gauge fields throughout this
paper as spin gauge fields, and we will denote their associated
TQFTs with the superscript “spin.” In general, level-rank du-
ality can be thought of as relating a TQFT with a spin gauge
field (spin TQFT) to one with a U (1) gauge field.2 Therefore,
since composite fermion theories give rise to spin TQFTs,
we will frequently invoke level-rank duality below and refer
to a state’s topological order via its corresponding (nonspin)
TQFT. For example, if a composite fermion theory yields a
SU (2)spin

−k TQFT, we will refer to the associated topological
phase by its level-rank dual, U (k)2.

This formal discussion has physical implications. For ex-
ample, consider the topological order of the ν = 1/2 Laughlin
state. The anyons of this state are semions, with π/2 statistics.

2Level-rank duality can be equivalently formulated to relate two
spin-TQFTs by adding an invisible spin-1/2 line (also known in the
condensed matter literature as a local spin-1/2 particle) to each side
of the duality [22]. This formulation is less physical if we wish to
view the fundamental charges at short distances as bosons, so we
will refrain from using it.

This state can be equally well described by a U (1)2 TQFT
or a U (1)−2 TQFT with a spin gauge field, which we will
denote U (1)spin

−2 . As we will see below, this theory arises on
integrating out a Landau level of composite fermions. While
it appears that the anyons in this theory are antisemions (statis-
tics −π/2), the π statistics of the composite fermions converts
them into semions. This is a type of level-rank duality, relat-
ing U (1)2 to U (1)spin

−2 . In this sense, level-rank dualities can
generally be viewed as boson-fermion dualities, with some
interesting exceptions, e.g., in the SU (2)1 ↔ U (1)2 duality
mentioned above, neither theory is spin.

III. NON-ABELIAN DUALITIES AND THE DYNAMICS OF
COMPOSITE FERMIONS

A. The ν = 1/2 Laughlin state and a non-Abelian
fermion-fermion duality

The bosonic theories described above are dual to a theory
of Dirac fermions coupled to a U (1)−3/2 Chern-Simons gauge
field. For clarity, we will refer to this theory as Theory A,

LA = iψ̄ /Daψ − 3

2

1

4π
ada − 1

2π
adA − 1

4π
AdA + · · · ,

(3.1)

where a is a U (1) gauge field and we use the notation /D =
Dμγ μ, where γ μ are the Dirac gamma matrices. This theory
is also dual to a theory of Dirac fermions coupled to a non-
Abelian, SU (2)−1/2 gauge field, which we will refer to as
Theory B,

LB = iχ̄ /Db−A1/2χ − 1

2

1

4π
Tr

[
bdb − 2i

3
b3

]

− 1

4

1

4π
AdA + · · · , (3.2)

where b is an SU (2) gauge field and 1 is the 2 × 2 identity
matrix.3 Here the χ fields transform as a doublet under SU (2),
and they have charge −1/2 under the global EM symme-
try, U (1)EM. The fundamental (unit) charges are therefore
the baryons, εαβχαχβ , where α, β = 1, 2 are SU (2) color
indices. Finally, the ellipses refer to irrelevant operators, such
as Maxwell or Yang-Mills terms for the gauge fields. These
operators are normally dropped since the duality is only valid
in the IR limit, in which these operators are taken to zero, and
their usual purpose is to provide UV regularization. However,
we will see in the sections below that these operators can
play important roles in determining low energy physics when
background fields are turned on.

Being dual to the bosonic theories discussed in Sec. II, The-
ory A and Theory B each describes a transition from the ν =
1/2 bosonic Laughlin state, which has U (1)2 topological or-
der, to a trivial insulator. This can be seen by introducing mass
terms, −mψψ̄ψ and −mχ χ̄χ , to their respective theories. For
mψ > 0, mχ > 0, integrating out ψ and χ can be seen to

3Throughout this work, we approximate the Atiyah-Patodi-Singer
η-invariant as a level- 1

2 Chern-Simons term and explicitly include it
in the Lagrangian.
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immediately yield an insulating state with vanishing Hall con-
ductivity, σxy = 0. On the other hand, when mψ < 0, mχ < 0,
integrating out the composite fermions yields a state with
σxy = − 1

2
1

2π
(mψ < 0, mχ < 0), with Theory A yielding a

U (1)spin
−2 gauge theory and Theory B yielding SU (2)spin

−1 . These
constitute the same topological order as the U (1)2 state by
level-rank duality.

By differentiating this pair of Lagriangians with respect to
the background EM gauge field, Aμ, to obtain the global EM
charge current, Jμ, one observes that, under the duality, the
monopole current of Theory A is related to the baryon number
current of Theory B,

Jμ
e = 1

2π
εμνλ∂ν (aλ − Aλ) ↔ −1

2
jμχ − 1

2

1

2π
εμνλ∂νAλ,

(3.3)

where jμχ = χ̄γ μχ is the χ charge current of the Theory B.
The interpretation of this dictionary is analogous to charge-
vortex duality [42,43]: flux of the gauge field a in Theory
A maps to charge of the χ fermions in Theory B. The same
interpretation applies to the pair of bosonic theories discussed
in the previous section.

B. Abelian and non-Abelian Jain sequences

In contrast to their bosonic counterparts, these compos-
ite fermions each satisfy the Pauli exclusion principle. As a
result, it is natural to consider the gapped phases accessi-
ble by filling up Landau levels and forming IQH states, in
analogy to the construction of the Jain sequences, in which
FQH phases are obtained as IQH states of composite fermions
[3]. In particular, integer quantum Hall states of the SU (2)
doublet composite fermions, χ , can be expected to yield
non-Abelian topological orders. This method of forming non-
Abelian quantum Hall phases appears to be quite natural, but
we will quickly learn that the non-Abelian dualities imply that
things are not so simple, and the ultimate choice of ground
state will be sensitive to the order in which the lowest Landau
level and IR limits are taken.

To this end, we begin by relating the electronic filling frac-
tion, ν, to the filling fractions of the ψ and χ fermions using
the dictionary, Eq. (3.3). Focusing first on the Abelian Theory
A, the physical electric charge density is given in terms of the
magnetic flux felt by the composite fermions,

ρe = 〈
J0

e

〉 = − 1

2π
〈εi j∂ia j〉 − 1

2π
B, (3.4)

where B = εi j∂iA j is the background magnetic field. We use
brackets here to emphasize that that we define ρe to be the
expectation value of the charge density operator. We can re-
late ρe to the composite fermion charge density through the
equation of motion for a0,

0 = 〈ψ†ψ〉 − 3

4π
〈εi j∂ia j〉 − 1

2π
B. (3.5)

If we define the composite fermion filling fraction of Theory
A to be

νψ = 2π
〈ψ†ψ〉

〈εi j∂ia j〉 , (3.6)

we obtain a relation between the composite fermion and elec-
tronic filling fractions,

ν = −2π
ρe

B
= νψ − 1/2

νψ − 3/2
. (3.7)

Note that we have absorbed a minus sign into the definition of
ν for notational convenience. From this formula, we see that
IQH states of the ψ fermions, which occur at fillings νψ =
p − 1/2, correspond to the known (descendent) bosonic Jain
sequence states,

νp = p − 1

p − 2
, p ∈ Z. (3.8)

Indeed, integrating out the composite fermions yields the La-
grangian

LA,eff = p − 2

4π
ada − 1

2π
adA − 1

4π
AdA. (3.9)

Each of these states (with the exception of the states at p =
1, 2, which are respectively a trivial insulator and a superfluid)
is an Abelian FQH phase of the physical charges, which here
are bosons.

The same type of analysis can be carried out for Theory B,
leading to a non-Abelian version of the bosonic Jain sequence.
Recalling Eq. (3.3), the electric charge density is directly
related to the density of χ fermions, χ†χ , via

ρe = −1

2
〈χ†χ〉 − 1

4

1

2π
B. (3.10)

Because the χ fermions are coupled to a Chern-Simons gauge
field, they do not confine, meaning that a nonzero mag-
netic field, B, will cause them to form Landau levels with
degeneracy

dLL = BA

2π
× |qχ | × (color degeneracy) = BA

2π
, (3.11)

where A in this expression is the area of the system and
qχ = −1/2 is the EM charge of the χ fermions. Therefore,
the filling fraction of the χ fermions is

νχ = 2π
〈χ†χ〉

B
. (3.12)

Plugging this into Eq. (3.10) yields a relation between ν

and νχ ,

ν = 1
2νχ + 1

4 . (3.13)

When the χ fermions fill an integer number of Landau levels,
νχ = s − 1/2, and the filling of the physical charges is

νs = s

2
, s ∈ Z. (3.14)

On integrating out the composite fermions, one obtains a
SU (2)spin

−s theory with Lagrangian

LB, eff = − s

4π
Tr

[
bdb − 2i

3
b3

]
− s

2

1

4π
AdA, (3.15)

which describes a non-Abelian, U (s)2, topological order when
|s| > 1. This approach recalls earlier approaches to non-
Abelian FQH states using parton constructions [7,30,31].
However, unlike in those cases, in which the elctron operator
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TABLE I. Solutions to Eq. (3.16), in which both the ψ and
χ composite fermions form IQH states at special electronic filling
fractions, ν∗. Also indicated are the topological orders predicted by
the dual theories for each filling.

ν∗ 0 1
2

3
2 2

νψ + 1/2 1 0 4 3
νχ + 1/2 0 1 3 4
Theory A Trivial U (1)2 U (1)−2 IQH
Theory B Trivial U (1)2 U (3)2 U (4)2

is fractionalized by hand, and it is necessary to require that
the partons do not confine by fiat, here the duality provides
a clear basis for the presence of a (deconfining) non-Abelian
gauge field.

Having obtained the sequences of incompressible filling
fractions associated with Theory A and Theory B, one can
immediately observe several special (nontrivial) filling frac-
tions, ν∗, at which they coincide, indicating the presence of
competing ground states. Comparing Eqs. (3.8) and (3.14),
these fillings occur when νp = νs = ν∗:

s = 2

(
1 + 1

p − 2

)
, p, s ∈ Z. (3.16)

Here we recall that p and s are the number of Landau levels
filled by the ψ and χ fermions, respectively. This equa-
tion has several solutions, which are organized in Table I.
Two of these solutions, (p = 1, s = 0) and (p = 0, s = 1), re-
spectively correspond to the ν = 1/2 bosonic Laughlin state,
which has U (1)2 ↔ SU (2)spin

−1 topological order. This is con-
sistent with the fact that at criticality these theories describe a
plateau transition between these states.

It is the presence of other solutions, at (p = 3, s = 4) and
(p = 4, s = 3), corresponding to ν∗ = 2 and ν∗ = 3/2 respec-
tively, that reveals new physics. On the one hand, Theory
A predicts the ν∗ = 3/2 and ν∗ = 2 states to have U (1)−2

and U (1)1 (i.e., trivial) topological orders. On the other
hand, Theory B predicts the same states to have non-Abelian
SU (2)spin

−3 ↔ U (3)2 and SU (2)spin
−4 ↔ U (4)2 topological or-

ders. While it is common in quantum Hall physics for different
competing states to be proposed for the same filling fraction,
the duality of Theory A and Theory B identifies the two the-
ories’ ground states. Therefore, the consistency of the duality
implies that the conditions under which the ψ fermions form
an IQH state are not the same as those of the χ fermions, and
the two possible states must be separated by a phase transi-
tion. A theory of this phase transition requires short-distance
dynamical information not specified by, but consistent with,
the duality. We now present a possible scenario for a transition
of this kind.

C. Dynamical scenario

We now provide a possible explanation of the physics oc-
curring at the special filling fractions ν∗ = 3/2, 2. For now,
we will work from the point of view of the non-Abelian
Theory B, and we will begin by considering what happens
as we fill Landau levels. From Table I, we see that filling the

zeroth and first Landau levels of the χ fermions corresponds
to the expected trivial insulator (ν = 0) and bosonic Laughlin
(ν = 1/2) states. What occurs when the non-Abelian compos-
ite fermions fill two Landau levels is also quite nontrivial,
but we will table that discussion until the next subsection.
For now, our concern will be what happens when we fill the
third Landau level, corresponding to ν∗ = 3/2. Our proposal
for ν∗ = 2 will prove to be essentially identical. At ν∗ = 3/2,
Theory B predicts an incompressible state with SU (2)spin

−3 ↔
U (3)2 topological order, while Theory A predicts U (1)2. This
suggests that it should be possible to trigger an instability in
the non-Abelian theory as we fill this Landau level, which
preempts the U (3)2 topological order and yields the same
Abelian phase predicted by Theory A (and vice versa). Con-
sequently, both the U (1)2 and U (3)2 phases must exist in
the ν = 3/2 phase diagram. This is the only state of affairs
consistent with the duality.

How might such an instability occur? It is here that the
ellipses in Eqs. (3.1) and (3.2) become crucial.4 These ellipses
include operators that are irrelevant at tree level but may
nevertheless play an important role in determining the low
energy physics when a magnetic field and chemical potential
are introduced. Indeed, there is no sense in which such fields
are ever perturbative, as they reorganize the spectrum of a the-
ory in dramatic ways. To make this discussion more precise,
consider the Yang-Mills term in Theory B,

LY M = − 1

2g2
Y M

Tr[ fμν f μν], (3.17)

where fμν = ∂μbν − ∂νbμ − i[bμ, bν] is the field strength of
the SU (2) gauge field, b. At tree level, the mass dimension
of the operator Tr[ f 2] is 4, meaning that [g2

Y M] = 1: it is an
energy scale. Commonly, the IR limit in which the duality of
Eqs. (3.1) and (3.2) holds is phrased as the limit g2

Y M ∼ � →
∞, where � is a UV cutoff, but strictly speaking this is true
only in the absence of a background magnetic field, which
provides its own energy scale in the form of the cyclotron
frequency, ωc ∼ √

B (for massless Dirac fermions).
Consequently, one can form a dimensionless coupling,

λ̄ = g2
Y M

ωc
, (3.18)

that can have nontrivial running as a result of strong interac-
tion effects. This would mean that the ground state ultimately
chosen by Theory A can depend on the order of the limits,
g2

Y M → ∞ and ωc → ∞. Importantly, one order of limits in
Theory B may not correspond to an analogous order of limits
in Theory A. In other words, Theory B may be in a strongly
coupled regime (0 � λ̄ < ∞) while Theory A may behave as
if all of the irrelevant operators have been taken to zero prior
to taking ωc → ∞.

This is the essence of our proposal5 for the phase dia-
gram of Theory B, shown schematically in Fig. 1. Whether

4We thank Chong Wang for enlightening discussions on this point.
5We emphasize that while we focus on the example of the Yang-

Mills term, there are many other operators that might be responsible
for the behavior we propose, and it may be more correct to consider a
linear combination of these operators as being responsible. Another
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the theory is in the U (3)2 or U (1)2 phase is determined by
the value of λ̄, with the two phases being separated by a
phase transition at a value λ̄ = λ̄∗ ∼ O(1). For λ̄ > λ̄∗, λ̄

runs large, corresponding to the limit g2
Y M → ∞ followed

by ωc → ∞. In this phase, the Yang-Mills term disappears,
leaving the Chern-Simons term, which ensures that the com-
posite fermions, χ , are deconfined. It is in this regime that
we expect the picture described in the previous subsection of
deconfined χ fermions filling Landau levels to hold, making
this the phase with U (3)2 topological order. On the other hand,
for λ̄ < λ̄∗, we propose that λ̄ runs small. Here the Yang-Mills
term becomes important, and the assumption of deconfined
composite fermions breaks down: the Landau levels mix. As a
result, the composite fermions will tend to form bound states
that are neutral under SU (2): the baryons, εαβχαχβ . These
are bosons of charge −1 since the fermions are doublets under
SU (2). Being the physical electric charges in this theory, these
bosonic baryons will find themselves at filling ν = 3/2, and
the resulting topological order will ultimately be U (1)2, as
predicted by Theory A. Note that this final conclusion is con-
jecture based on the consistency of the duality—the physics
in such a phase is very strongly coupled, and we cannot show
explicitly that this is the true ground state. We also point out
that λ̄ may not run to zero in this phase, instead running to
a small but finite value. This represents a very interesting but
theoretically daunting possibility.

We now comment on what occurs in the dual description of
Theory A, in which we can define a similar running coupling6,
λ̄A = g2

Maxwell/ωc, where gMaxwell is the coupling associated
with the Maxwell term for the U (1) gauge field, a. In this
theory, the limit λ̄A → ∞ corresponds to the U (1)2 (IQH)
state at filling ν∗ = 3/2 (ν∗ = 2), as the Maxwell term van-
ishes. However, since the Maxwell term is not dual to the
Yang-Mills term, it is not clear whether the phase transitions
described for Theory B correspond to transitions tuned by
λ̄A or another coupling, such as one associated with a linear
combination of four-fermion operators. Nevertheless, unless
λ̄∗ = ∞ in Theory B (in which case the non-Abelian phase
is nowhere stable, having no basin of attraction), the duality
indicates that the non-Abelian states should be accessible to
Theory A as well, and that these transitions should also be
present in that theory.

D. Comments on the nature of the transition

The nature of the transition between these phases depends
on microscopic details, and it is not immediately clear how
to study the strongly coupled physics when λ̄ ∼ O(1). One
exciting possibility is that the phase transition is continuous,
which would exist beyond the Landau paradigm since it sepa-
rates two distinct topological orders. Furthermore, this would
imply the existence of an unstable conformal field theory

likely family of examples is four-fermion operators, which have the
same tree level dimension as the Yang-Mills operator.

6Note that unlike the fermions of Theory B, the magnetic field
felt by the ψ fermions depends both on the background chemical
potential and magnetic field, so ωc is not precisely the Landau level
gap, which is determined by 〈εi j∂ia j〉.

(CFT) fixed point, which we expect would be quite exotic
and perhaps involve emergent symmetries. In the spirit of
universality, we attempt here to write down the simplest pos-
sible theory of such a transition. The theory we find consists
of Nf = 4 flavors of electrically neutral Dirac fermions, ξi,
coupled to a SU (2)spin

−1 Chern-Simons gauge field, c,

L =
Nf =4∑
i=1

ξ̄i(i /Dc − mξ )ξi − 1

4π
Tr

[
cdc − 2i

3
c3

]

− 3

2

1

4π
AdA. (3.19)

We emphasize that the fields ξ and c need not have any
local relationship with the fields in Theory A nor Theory
B. This theory has a U (4) global symmetry rotating the
fermion flavors. For mξ � 0, the theory is in the Abelian,
SU (2)spin

+1 ↔ U (1)−2 phase, and for mξ � 0 the theory is in

the non-Abelian, SU (2)spin
−3 ↔ U (3)2 phase. While the flavor

index can be interpreted as a kind of Landau level index, there
is no a priori reason for this symmetry to be enforced, render-
ing this theory at best a multicritical point. What’s more, this
theory has Nf > 2|k| = 2, meaning that it falls outside of the
Chern-Simons-matter dualities of Eqs. (2.1)–(2.3) and may
spontaneously break the flavor symmetry at small values of mξ

[37]. We therefore find the presence of a direct second-order
transition unlikely, and we conjecture that any other possible
CFT with these two phases also has an enlarged set of global
symmetries compared to the underlying UV problem.7 We
also conjecture that this is the case for the other transitions
discussed in this work.

Therefore, it is perhaps more natural to expect the mundane
scenario in which the two phases are separated by a first
order transition. Starting in, say, the U (1)2 phase, as λ̄ is
increased, phase separation will set in, yielding bubbles and
stripes of the U (3)2 phase, which eventually fill the system. It
is also possible that the transition is not direct, and that several
different phases arise when λ̄ ∼ O(1). We cannot exclude this
possibility. That we cannot present a thorough description of
the transition is not surprising, given the complexity of the
phase diagrams for electrons in magnetic fields at fractional
filling.

E. Non-Abelian duality and paired FQH phases

In the above subsection, we conspicuously left out a dis-
cussion of the case when the χ composite fermions fill two
Landau levels, corresponding to filling ν∗ = 1. At this filling,
Eqs. (3.4) and (3.5) indicate that the ψ composite fermions of
Theory A feel a vanishing magnetic field and therefore form
a metallic state with density set by the background magnetic
field, 〈ψ†ψ〉 = B/2π . This is the well-known metallic, com-
posite Fermi liquid state of bosons with unit filling [44]. On

7While one may also wish to consider theories with bosonic matter,
we note that it is not possible to condense bosonic operators to
transition between U (3)2 and U (1)−2 due to the difference in the
signs of the level. This cannot be repaired with level-rank duality
because the U (1)−2 gauge field is not spin.
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the other hand, the analysis of Sec. III B finds Theory B in an
IQH state, yielding U (2)2 topological order. Although one of
the predicted phases is gapless, we nevertheless propose that
the same scenario presented above holds in this theory: the
ultimate choice of ground state is determined by the order in
which the IR and ωc → ∞ limits are taken. These states are
again separated by a phase transition, which is tuned by the
dimensionless coupling of the kind defined in Eq. (3.18).

In contrast to the cases in which both phases were gapped,
here we can clearly understand this transition in terms of the ψ

composite fermions of Theory A. Indeed, the U (2)2 state can
be shown to be one of a range of non-Abelian phases of bosons
at ν = 1 that can be obtained as paired states of the composite
Fermi liquid [45], the most famous of which being the SU (2)2

bosonic Pfaffian state [13]. The major difference between the
U (2)2 state and the SU (2)2 state lies in the topological spin
of the non-Abelian half-vortex, which is set by the pairing
momentum channel. As we will explain in more detail in
the following subsection, the appropriate channel to obtain
the U (2)2 order is l = 2. Consequently, this transition can
be understood in terms of the flow of the pairing interaction,
which is a four-fermion operator in the Abelian Theory A.
Interestingly, it is expected from numerical simulations and
recent analytic calculations that the composite Fermi liquid
state of bosons at ν = 1 is unstable to pairing in the lowest
Landau level limit [46,47], perhaps suggesting that the metal-
lic state seen in Theory A has no basin of attraction unless the
theory is modified in some way.

From the point of view of Theory B, it is natural to expect
that λ̄ is again the correct running coupling, with the choice
of ground state again being viewed as a question of the order
in which the lowest Landau level and IR limits are taken. As
above, for λ̄ > λ̄∗, the χ fermions find themselves in an IQH
state, yielding the U (2)2 topological order. For λ̄ < λ̄∗, this
picture breaks down, leading to a theory involving bosonic
baryons, which we conjecture form the ν = 1 metallic state.

Remarkably, at filling ν∗ = 1, we have observed a duality
between composite fermion pairing in Theory A and the IQH
effect in Theory B. This is surprising, as there is no known dic-
tionary of local operators that makes this connection explicit.
Indeed, while the U (2)2 state has previously been obtined both
in the Read-Green pairing picture [12,13] and as an IQH state
of non-Abelian partons [7,30,31,48], it has never before been
suggested that these two constructions may be dual to one
another. We will see below that this duality is not limited to

TABLE II. Solutions to Eq. (3.16) in which one of the two dual
theories is metallic, i.e., is at infinite filling.

ν∗ −1 ∞
νψ + 1/2 ∞ 2
νχ + 1/2 2 ∞
Theory A Metal Superfluid
Theory B U (2)2 Metal

the particular case of bosons at ν = 1: in Sec. III F, we will
encounter a parallel story involving the anti-Pfaffian state of
fermions at ν = 1/2.

Similar competing ground states are found as the external
magnetic field is turned off, i.e., ν∗ → ∞ (see Table II). In this
case, the analysis of Sec. III B indicates that Theory A predicts
a superfluid state, the usual fate of bosons at finite density and
B = 0. On the other hand, the composite fermions of Theory
B form a metal with density equal to the background charge
density, a far more exotic non-Fermi liquid state which surely
requires that the fundamental bosonic charges be very strongly
interacting. Nevertheless, the interpretation of the transition
between these states is natural from the point of view of The-
ory B: again adopting the notation of Sec. III C, for λ̄ > λ̄∗,
the theory remains metallic, while for λ̄ < λ̄∗, the χ fermions
confine to form bosonic baryons. Since these bosons feel no
magnetic field, they would then condense and spontaneously
break U (1)EM, forming the superfluid state seen in Theory A.
Given how natural the state predicted in Theory A is, one
might wonder if the metallic state predicted by Theory B is
ever stable to baryon condensation. We leave this question for
future work.

F. Examples in other fermion-fermion dualities

Thus far, we have focused our analysis on the dual
fermionic theories appearing in the SU (2) quadrality. How-
ever, the above considerations are broadly applicable to any
pair of fermionic theories related by a Chern-Simons matter
duality. To illustrate this point, we consider a more general
composite fermion duality describing a transition between the
ν = 1/k Laughlin state and an insulator. This duality relates
a theory of Dirac composite fermions with k − 1 (Abelian)
fluxes attached (Theory A′) to a theory of composite fermions
coupled to a U (N ) gauge field (Theory B′) [49],

LA′ (k) = iψ̄ /Daψ − 1

2

1

4π
ada + 1

2π
adv + k − 1

4π
vdv + 1

2π
vdA + · · · , (3.20)

�

LB′ (k, N ) = iη̄ /Duη − 1

2

1

4π
Tr

[
udu − 2i

3
u3

]
− N − k

4π
bdb − 1

2π
Tr[u]db + 1

2π
bdA + · · · . (3.21)

In Theory A′, ψ is a Dirac fermion charged under an emergent
U (1) gauge field a, and v is another U (1) gauge field. In The-
ory B′, η is a Dirac fermion in the fundamental representation
of U (N ), u is a U (N ) gauge field, and b is a U (1) gauge field.

These dualities are derived in Appendix B 1, where it is also
shown that these theories are dual composite fermion descrip-
tions of the bosonic Landau-Ginzburg theory for the ν = 1/k
Laughlin state: when k is even, the fundamental charges are
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TABLE III. Fillings at which one of Theory A′, Eq. (3.20), and Theory B′, Eq. (3.21), predicts a metallic ground state and the other a
nonmetallic state (first two columns), or where both predict distinct topological orders (last two columns). Here N is the rank of the U (N )
gauge group in Theory B′, which is always equal to two in these examples. By Jain we mean a U (1)spin × U (1) theory describing the usual
Abelian Jain state at filling ν∗.

ν∗ 1/(k − 1) 1/(k − 2) 3/(3k − 4) 2/(2k − 3)

νψ + 1/2 ∞ 2 4 3
νη + 1/2 2 ∞ 3 4

U (1)k−2 (k �= 2)
Theory A′ Metal Jain Jain

Superfluid (k = 2)
Theory B′ (N = 2) U (2)2,2(k−1) Metal U (3)2,3k−4 U (4)2,2(2k−3)

bosons, while when k is odd they are fermions (note that
when N = k = 2, we recover Theory A and Theory B, which
are associated with the ν = 1/2 bosonic Laughlin state). We
emphasize that the above duality holds regardless of the rank
N of the gauge group U (N ) in Theory B′, and hence amounts
to the statement that LA′ (k) is dual to an infinite number of
theories LB′ (k, N ) parameterized by the integer N .

As in the examples encountered thus far, we find special
filling fractions, ν∗, at which the dual theories predict differ-
ing ground states. The details of this analysis are essentially
identical to that of the preceding SU (2) examples and are
presented in detail in Appendix B 2. Our results are summa-
rized in Table III. For example, at the filling ν∗ = 2/(2k − 3),
Theory A′ predicts the usual Abelian Jain state, while Theory
B′ predicts the more exotic, non-Abelian U (4)2,2(2k−3) state.
Our dynamical proposal for understanding the transitions be-
tween these states, as well as the others featured in Table III,
is essentially identical to that of Sec. III C, and so we will not
comment on it further.

One state of particular note is the U (3)2,−1 topological
order, which is level-rank dual to U (2)spin

−3,−1, predicted by
Theory B′ with k = 1 at ν∗ = −3. Now, the nonspin U (2)3,1

Chern-Simons theory is dual to the (also nonspin) (G2)1

Chern-Simons theory [50]. Remarkably, (G2)1 describes pre-
cisely the Fibonacci topological order, which supports a single
nontrivial anyon, τ , obeying the fusion rule τ × τ = 1 + τ ,
and is of particular import from the perspective of topological
quantum computation [34]. It is rather interesting that Theory
B′ predicts the (spin) Fibonacci topological order to appear in
competition with the ν∗ = −3 IQH state. In future work, we
will explore how other mechanisms can lead to the emergence
of this exotic order, using bosonic theories, in the spirit of our
earlier construction [15].

Additionally, we wish to highlight the cases at fillings
ν∗ = 1/(k − 1), in which the non-Abelian U (2)2,2(k−1) state
predicted by Theory B′ can again be understood as a pair-
ing instability of the Abelian composite Fermi liquid state
in Theory A′. The argument that U (2)2,2(k−1) can be ob-
tained from pairing in Theory A′ parallels that for the U (2)2

state discussed in the previous subsection, which corresponds
to the special case k = 2. Indeed, the non-Abelian part of
U (2)2,2(k−1) is again SU (2)2, and the major difference from
this state lies in the topological spins of the non-Abelian
half vortices, which are modified by the level of the Abelian
sector. Moreover, one can check explicitly that pairing of
the Theory A′ composite fermions in the l = 2 angular

momentum channel yields the expected U (2)2,2(k−1) topolog-
ical order for all k by considering the edge spectrum: this
topological order supports three chiral, charge-neutral Ma-
jorana fermions and one antichiral U (1)k−1 bosonic charge
mode. From the point of view of Theory A′, l = 2 pairing
leads to the three chiral Majorana fermions, in addition to
a U (1)k−1 charge mode coming from the left over Abelian
sector. That such a large class of non-Abelian topological
orders which can be understood via pairing in a composite
fermion theory, in this case Theory A′, has a dual description
as IQH states of composite fermions in a dual non-Abelian
theory, Theory B′ is quite remarkable.

We close this section by commenting on some particular
examples of physical interest. First, for k = 1 and ν∗ = ∞,
Theory A′ is a free Dirac fermion at finite chemical po-
tential but vanishing magnetic field. In this case, in Theory
B′, it is possible to integrate out the auxiliary gauge field b
without violating flux quantization: its Chern-Simons level is
−(N − k) = −1. This cancels the Chern-Simons term for the
Abelian part of the U (2) gauge field, Tr[u], Higgsing the back-
ground EM field, Aμ, and leading to a chiral superconductor
with topological order is U (2)2,0 = [SU (2)2 × U (1)0]/Z2

∼=
SO(3)1, which is Abelian. This state contains only a single
anyon, a Majorana fermion8 [26,51]. Such a state can be
accessed via a pairing instability in Theory A′. It is natural
to expect this instability to arise due to the effects of local
four-fermion operators that destabilize Theory A′ in the order
of limits in which the η fermions of Theory B′ form an IQH
state.

For k = −1 and ν∗ = −1/2, Theory A′ is Son’s Dirac
composite Fermi liquid theory of the half-filled Landau level
[52]. In this case, the topological order predicted by The-
ory B′ is U (2)2,−4 = [SU (2)2 × U (1)−8]/Z2, which is the
(time-reversed ) topological order of the famous anti-Pfaffian
state, another paired state of composite fermions [35,36]!
Additionally, for k = 3 and ν∗ = 1/2, Theory B′ predicts
the [SU (2)2 × U (1)8]/Z2 = U (2)2,4 order, which is that of
Wen’s (221) parton state [7,30], another proposed ground
state of fermions at half filling that can be understood in
terms of pairing in Theory A′, which now has additional
attached fluxes. Now, although these states are all accessible

8This can be viewed as a consequence of the condensation of the
Majorana fermion of the SU (2)2 topological order, which confines
the non-Abelian “half-vortex” of the SU (2)2 factor.
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within parton constructions (see, for example, Ref. [48]), we
must again emphasize that the projective framework hinges
on the dynamical assumption that the electron fractionalizes
into partons which do not confine. Finally, another nontrivial
bosonic example is k = 0 and ν∗ = 1, in which Theory B′
predicts a [SU (2)2 × U (1)−4]/Z2 = U (2)2,−2 ground state,
which describes the Ising topological order [53]. While these
results are reminiscent of the parton constructions giving these
states, the use of duality provides a connection between par-
tonic intuition and the dynamics of pairing. Additionally, it is
straightforward to check in these examples that l = 2 pairing
in Theory A′ yields the expected U (2)2,2(k−1) order by com-
paring the edge theories. It would be interesting to determine
if other dual descriptions exist which yield the other proposed
Pfaffian-like states, which arise from pairing the composite
fermions of Theory A′ in other angular momentum channels,
as IQH phases of dual composite fermions, and we leave this
to future work.

IV. BUILDING NON-ABELIAN STATES FROM
EXCITONIC PAIRING

In the preceding section, we illustrated how non-Abelian
Chern-Simons matter dualities may be used to map out parts
of the phase diagram for electrons (or bosons) in a magnetic
field at certain fractional fillings, ν∗, finding gapless states
as well as both Abelian and non-Abelian topological orders.
We now turn to present an alternative means of constructing
non-Abelian FQH states, still making use of the dual com-
posite fermion theories employed above. Our goal here is to
provide a complementary perspective to our previous work
[15], in which we constructed Landau-Ginzburg theories for
the Read-Rezayi states using bosonic Chern-Simons-matter
using a multilayer pairing procedure. Specifically, we will
consider condensing interlayer excitons (pairs of fermions in
different layers which are neutral under the external EM gauge
field) in Theory B, Eq. (3.2), to generate non-Abelian states.
We will find, however, that the excitonic paired phases are not
the Read-Rezayi states constructed in Ref. [15], but rather the
Blok-Wen states with U (k)2 topological order, as in Sec. III.

For simplicity, we again consider a bilayer system, with
each layer being a ν = 1/2 bosonic Laughlin state. We use
the dual fermionic description of Theory B for each layer so
that the (initially decoupled) multilayer system is described
by the Lagrangian

LB,2 =
2∑

n=1

(
iχ̄n /Dbn−A1/2χn − 1

2

1

4π
Tr

[
bndbn − 2i

3
b3

n

])

− 1

2

1

4π
AdA. (4.1)

Here χn and bn are the composite fermions and SU (2) gauge
fields on layer n, respectively. Note that each layer couples
in the same way to the external electromagnetic field, A.
Moreover, we see from Table I that when each layer is at filling
ν = 1/2, so that the full multilayer system is at filling ν = 1,
the χn of each layer form an IQH state.

Now, following the standard approach [54], we introduce
an interlayer excitonic pairing interaction mediated by an

electrically neutral scalar field, �,

Lexciton = χ̄1�χ2 + H.c. (4.2)

The field � can be thought of as a Hubbard-Stratonovich field
for the pairing interaction. It couples minimally to the gauge
fields on either layer, and so has dynamics described by

L� = |∂� − ib1� + i�b2|2 − V [�], (4.3)

where V [�] is the potential for �. Under gauge transforma-
tions,

� �→ U1�U †
2 , Um ∈ SU (2) on layer m. (4.4)

The full multilayer theory is therefore described by the
Lagrangian

Lbilayer = LB,2 + Lexciton + L�. (4.5)

The condensation of � yields the excitonic paired state, char-
acterized by a nonzero expectation value for the operator
χ̄1χ2. It should be emphasized that in the dual descriptions
of Theory A and the Landau-Ginzburg theory of Eq. (2.5), the
interaction Lexciton will correspond to a highly nonlocal object
involving monopole operators. In general, the fundamental
fields do not map to local operators under the dualities of
Eq. (2.1)–(2.3) [16]. Hence, the upshot of examining this dual
fermionic theory is that we can access regions of the phase
diagram at a given filling fraction, which are less readily
understood in the formulation of Theory A or the original
bosonic Landau-Ginzburg theory, as they would require the
inclusion of complicated, nonlocal interactions.

Now, suppose we have a nonzero magnetic field such that
each layer is at filling ν = 1/2, meaning the χn each fill a
single Landau level, as indicated in Table I. We assume that
we can safely integrate out the occupied χn Landau levels,
yielding additional level −1/2 Chern-Simons terms for the bm

gauge fields. The effective action describing this gapped state
is then

Lbilayer = −
2∑

n=1

1

4π
Tr

[
bndbn − 2i

3
b3

n

]

− 1

4π
AdA + L̃� + · · · , (4.6)

where we have integrated out the fermions χ , leading to
a renormalized Lagrangian for �, denoted L̃� . If the po-
tential V [�] is such that the field � is massive and does
not condense, then we are simply left with an SU (2)spin

−1 ×
SU (2)spin

−1 ↔ U (1)2 × U (1)2 Chern-Simons theory at low en-
ergy, describing two decoupled layers of ν = 1/2 Laughlin
states. Now, suppose instead that the potential V [�] is such
that � obtains a nonzero vacuum expectation value, 〈�〉 ∝ 1.
In this excitonic paired state, the gauge group SU (2) × SU (2)
will be Higgsed down to the diagonal SU (2) subgroup, as
follows from the gauge transformations of Eq. (4.4). Ex-
plicitly, from the Lagrangian for �, the linear combination
b1 − b2 of the gauge fields acquires a mass, effectively iden-
tifying the gauge fields of each layer: b1 ≡ b2 ≡ b. Hence,
the Chern-Simons terms will add, resulting in a non-Abelian
SU (2)spin

−2 ↔ U (2)2 Chern-Simons theory at low energies.
It is possible to explicitly write out the anyon spectrum of

this U (2)2 topological order in terms of composite operators
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of the fundamental fermions. This requires identifying the
operators which transform under the nontrivial spin-1/2 and
spin-1 representations of the SU (2)−2 gauge theory and taking
into account additional spin factors coming from the underly-
ing fermionic statistics of said operators. For reference, we
denote the anyons transforming in the spin-1/2 and spin-1
representations of the SU (2)−2 topological order as σ and ψ

(not to be confused with the fermion field in Theory A), cor-
responding to the non-Abelian half-vortex (i.e., the Ising twist
field) and Abelian Majorana fermion, respectively, in the time-
reversed conjugate of the bosonic ν = 1 Moore-Read state.
They have spin9 hσ = −3/16 and hψ = 1/2, respectively,
and satisfy the fusion rules σ × σ = 1 + ψ and ψ × ψ = 1,
where 1 represents the vacuum. Now, in our theory, the mini-
mal charge anyons are represented by the fermions χ1, which
transform in the fundamental (or spin-1/2) representation of
SU (2)−2. The χ1 operators will thus satisfy the same fusion
rules as the σ anyon in the SU (2)−2 theory, but they have spin
−3/16 + 1/2 = 5/16, due to the bare fermionic statistics of
χ1. The other nontrivial anyon is represented by the compos-
ite operator χ̄1τ

aχ1, where τ a is the vector of generators of
SU (2). This operator is charge neutral and transforms in the
spin-1 representation of SU (2), meaning it obeys the same
fusion rules as ψ . It also has the same spin as ψ , hψ = 1/2,
since it has bare bosonic statistics, being a bilinear in fermion
operators. Once can check that these anyons with these spins
match the anyon spectrum expected for the U (2)2 topological
order. Finally, note that the fundamental fermions χ1 and χ2

are indistinguishable in the excitonic paired phase, as one can
be transmuted into the other via the the 〈χ̄1χ2〉 condensate.
Hence, there is no double counting of anyons.

Several remarks on this construction are in order. This
excitonic pairing mechanism is somewhat unconventional and
differs from the more common Read-Green construction [12]
used to describe the Moore-Read states. In the latter picture,
the electrons (or bosons) are mapped to composite fermions
using nonrelativistic flux attachment. At the appropriate filling
fractions, the composite fermions see an effectively vanish-
ing flux at mean-field level. The resulting composite Fermi
liquid can give way to a pairing instability in the p + ip
channel, Higgsing the dynamical U (1) Chern-Simons gauge
field down to its Z2 subgroup and resulting in a gapped state.
The non-Abelian Ising anyons in the Moore-Read state then
have a description in terms of vortices of the Chern-Simons
gauge field. In the present construction, we are instead pairing
fermions on top of a filled Landau level, a gapped state.
Hence, unlike the Read-Green picture, we cannot understand
our exciton paired state as arising from some perturbative
instability, since interactions must be sufficiently strong to
overcome the gap. In addition, one can check from stan-
dard homotopy arguments that the symmetry breaking pattern
SU (2) × SU (2) → SU (2)diagonal does not admit vortex con-
figurations [14,15]. Instead, the anyon spectrum in our model
is generated by composite objects formed from the fundamen-
tal fermions, as outlined above. It should be noted that even

9Here the spin of an anyon a is the phase factor exp(2π iha) picked
up when rotating it through an angle of 2π . This is not to be confused
with the spin- j/2 representations of SU (2).

our earlier bosonic construction [15] required a similarly un-
conventional pairing mechanism, in which it was necessary to
assume that composite bosons paired rather than condensed.
Finally, it is clear that we can generalize our construction to
a multilayer system with k copies of the ν = 1/2 Laughlin
state; interlayer excitonic pairing in such a system would lead
to a U (k)2 topological order.

V. DISCUSSION

Employing non-Abelian composite fermion dualities, we
have presented two complementary pictures for describing a
broad range of non-Abelian FQH states, which can be ob-
tained either as IQH states of non-Abelian composite fermions
or as excitonic states in multilayer systems. Along the way, we
developed new insights into the non-Abelian theories’ dynam-
ics, in which the order of the lowest Landau level (B → ∞)
and IR limits was seen to play a crucial role in determining
the ultimate choice between the non-Abelian ground state and
a competing Abelian state that is natural in a dual description.
This subtlety has thus far received little attention in studies
of non-Abelian dualities, yet we find it to be a ubiquitous
feature of non-Abelian fermion-fermion dualities. It may be a
worthwhile endeavour to see whether studying these theories
at finite magnetic field in the ‘t Hooft limit, in the vein of
Ref. [55], may provide an analytical handle on the physics of
these transitions; we leave this for future work. Interestingly,
related physics has been observed recently in numerics, where
it has been argued that the ground state at certain fillings can
exhibit effectively Abelian topological order for short-range
interactions and non-Abelian order as the interaction range is
increased [56,57]. We hope that our work will motivate more
numerical efforts in this direction.

Although we cannot make many concrete statements about
the transitions we propose to occur between the Abelian
and non-Abelian states, we remarkably find several examples
in which the non-Abelian states—among them the anti-
Pfaffian—can be understood in terms of pairing in a dual
composite Fermi liquid description. Such dualities between
composite fermion pairing and the IQH effect in a dual, non-
Abelian theory are new, and finding new examples of such
dualities will be a fruitful direction for future work. Looking
forward, a natural question to ask is whether non-Abelian
fermion-fermion dualities can be used to derive other non-
Abelian FQH states, beyond the variations of the Blok-Wen
states we find. Indeed, although the anti-Pfaffian is a member
of the U (2)2,2(k−1) series of states, we do not seem to arrive
at the Pfaffian or PH-Pfaffian states. To that end, it may be
fruitful to apply our analysis using dualities involving Chern-
Simons-matter theories with gauge groups other than SU (N )
or U (N ), as the family of Pfaffian states can naturally be
described using O(2)2,L Chern-Simons theories [58]. It is also
somewhat peculiar in that the Read-Rezayi and generalized
non-Abelian spin singlet states, which are readily obtained
through non-Abelian bosonic theories, do not appear to be
accessible within the present approach. We leave the con-
struction of fermionic theories for these states to future work.
Conversely, we found that the (spin) Fibonacci topological
order appears naturally in Sec. III F within this composite
fermion approach. It would be interesting to see whether a
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variation of our earlier bosonic construction [15] may allow
for accessing this exotic state as well.
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APPENDIX A: CHERN-SIMONS CONVENTIONS

In this Appendix, we lay out our conventions for non-
Abelian Chern-Simons gauge theories. We define U (N ) gauge
fields aμ = ab

μt b, where t b are the (Hermitian) generators
of the Lie algebra of U (N ), which satisfy [t a, t b] = i f abct c,
where f abc are the structure constants of U (N ). The generators
are normalized so that Tr[t bt c] = 1

2δbc. The trace of a is a U (1)
gauge field, which we require to satisfy the Dirac quantization
condition, ∫

�

d Tr[a]

2π
= n ∈ Z, (A1)

where � ⊂ X is an oriented 2-cycle in spacetime, which we
denote X . If aμ couples to fermions, then it is a spinc con-
nection, and it satisfies a modified flux quantization condition

∫
�

d Tr[a]

2π
=

∫
�

w2

2
+ n, n ∈ Z, (A2)

where w2 is the second Stiefel-Whitney class of X . In general,
the Chern-Simons levels for the SU (N ) and U (1) components
of a can be different. We therefore adopt the standard notation
[16],

U (N )k,k′ = SU (N )k × U (1)Nk′

ZN
. (A3)

By taking the quotient with ZN , we are restricting the dif-
ference of the SU (N ) and U (1) levels to be an integer

multiple of N ,

k′ = k + nN, n ∈ Z. (A4)

This enables us to glue the U (1) and SU (N ) gauge fields
together to form a gauge invariant theory of a single U (N )
gauge field a = aSU (N ) + ã 1, with Tr[a] = Nã having quan-
tized fluxes as in Eq. (A1). The Lagrangian for the U (N )k,k′

theory can be written as

LU (N )k,k′ = k

4π
Tr

[
aSU (N )daSU (N ) − 2i

3
a3

SU (N )

]
+ Nk′

4π
ãdã.

(A5)

For the case k = k′, we simply refer to the theory as U (N )k .
Throughout this paper, we implicitly regulate non-Abelian

(Abelian) gauge theories using Yang-Mills (Maxwell) terms,
as opposed to dimensional regularization [2,59]. In Yang-
Mills regularization, there is a one-loop exact shift of the
SU (N ) level, k → k + sgn(k)N , that does not appear in di-
mensional regularization. Consequently, to describe the same
theory in dimensional regularization, one must start with a
SU (N ) level kDR = k + sgn(k)N . The dualities discussed in
this paper, e.g., Eqs. (2.1)–(2.3), therefore would take a some-
what different form in dimensional regularization.

APPENDIX B: DETAILS OF U (N) FERMION-FERMION
DUALITY EXAMPLES

In this Appendix we provide the details of the analysis out-
lined in Sec. III F. We begin by deriving the duality between
Eq. (3.20) and Eq. (3.21) and then identify the states listed in
Table III.

1. Derivation of the duality

As noted in Sec. III F, the fermionic theories Theory A′
and Theory B′ are both dual to the bosonic Landau-Ginzburg
theory for the ν = 1/k Laughlin state, which is described by
the Lagrangian

L�(k) = |Db�|2 − |�|4 + k

4π
bdb + 1

2π
bdA. (B1)

Here � is a complex scalar field, b is a U (1) gauge field, and
A is the external electromagnetic field. It is straightforward to
see that one obtains the Laughlin state when � is gapped by a
mass and a trivial insulator when � condenses.

In order to derive these dualities, we take as our starting point the SU/U duality of Eq. (2.2),

|DA�|2 − |�|4 ←→ iη̄ /Duη − 1/2

4π
Tr

[
udu − 2i

3
u3

]
− 1

2π
Tr[u]dA − N

4π
AdA, a ∈ U (N ), (B2)

where u is a U (N ) gauge field and η is a fermion in the fundamental representation of U (N ). Note that the rank N can be an
arbitrary integer, and so the above equation implies that the Wilson-Fisher theory is dual to an infinite number of fermionic
U (N ) gauge theories. Now, one can derive new dualities from old ones by applying the modular transformations [60]

S : L[A] �→ L[b] + 1

2π
Adb, T : L[A] �→ L[A] + 1

4π
AdA, (B3)

to both sides of a duality, where again A is the background EM field and b is a new dynamical U (1) gauge field. Here S is the
operation of promoting a background gauge field to a dynamical one, while T corresponds to the addition of a Landau level.
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Applying ST k to the SU/U duality yields

L�(k) ←→ iη̄ /Duη − 1/2

4π
Tr

[
udu − 2i

3
u3

]
− 1

2π
Tr[u]db − N − k

4π
bdb + 1

2π
bdA = LB′ (k, N ). (B4)

On the other hand, we can also consider the Abelian bosonization duality [26,27]

|DA�|2 − |�|4 ←→ iψ̄ /Daψ − 1

2

1

4π
ada + 1

2π
adA − 1

4π
AdA, (B5)

where a is an emergent U (1) gauge field and ψ a Dirac fermion. Applying ST k to this duality, we find

L�(k) ←→ iψ̄ /Daψ − 1

2

1

4π
ada + 1

2π
adv + k − 1

4π
vdv + 1

2π
vdA = LA′ (k). (B6)

We thus arrive at the desired dualities

LA′ (k) ←→ L�(k) ←→ LB′ (k, N ). (B7)

We emphasize that these dualities hold true for any value of the rank, N > 0, of the gauge group U (N ) of Theory B′.

2. Examples involving gapless states

Let us now investigate the states predicted by the dual
theories, Theory A′ and Theory B′, at fractional electronic
filling fractions, following the logic in our study of the dual
fermionic theories in the SU (2) quadrality in Sec. III. We
define the filling fraction of the ψ composite fermions as

νψ = 2π〈ψ†ψ〉
〈εi j∂ia j〉 . (B8)

Using the equations of motion of LA′ , we find the following
relationship between the electronic and ψ filling fractions

νψ = 1

2
+ 1

−1/ν + (k − 1)
⇐⇒ ν = 2νψ − 1

2(k − 1)νψ − k−1
.

(B9)

As for the composite fermions of the non-Abelian Theory B′,
to define the η filling fraction, we first decompose the U (N )
gauge field as u = uSU (N ) + ũ1, where 1 is the N × N identity
matrix, ũ is a U (1) gauge field, and uSU (N ) is an SU (N ) gauge
field. In the presence of a nonzero U (1) flux, 〈εi j∂iũ j〉, the η

fermion Landau level degeneracy is given by

dLL = 〈εi j∂iũ j〉A
2π

× (color degeneracy) × (charge)

= 〈εi j∂iũ j〉A
2π

× N × 1 = N〈εi j∂iũ j〉A
2π

. (B10)

Hence, the η fermion filling fraction is given by10

νη = − 2π〈η†η〉
N〈εi j∂iũ j〉 . (B11)

Using the equations of motion of LB′ , we find

νη = −1

2
+ N

1/ν + N − k

⇐⇒ ν = 2νη + 1

2(k − N )νη + (k + N )
. (B12)

10We add the minus sign for consistency with the definition of the
χ filling fraction νχ of Eq. (3.12) when N = k = 2.

Let us suppose the ψ fermions fill up an integer number of
LLs, so that νψ = p − 1/2. Then, from Eq. (B9), we have

ν = p − 1

(p − 1)(k − 1) − 1
, (B13)

which is simply the Jain sequence of states.
We are interested in seeing whether a gapped state of the

ψ fermions ever corresponds to a metallic state of the η

fermions (i.e., with νη → ∞). From Eq. (B12), we see that the
η fermions form a metallic state when 1/ν = −N + k ∈ Z.
We must therefore look for solutions of the equation

k − 1 − (p − 1)−1 = −N + k. (B14)

The only valid solution with N > 0 is (N, p) = (2, 2). So,
when N = 2 and the ψ fermions fill the p = 2 Landau level,
the η fermions form a metallic state. The electronic filling
fraction is ν∗ = 1/(k − 2). At this filling, we can integrate out
the ψ fermions in Theory A′ to obtain the effective action

LA′,eff = k − 2

4π
vdv + 1

2π
vdA. (B15)

We thus have two cases to consider: k = 2 and k �= 2. When
k = 2, Theory A′ yields the usual dual theory for a superfluid
(recall that there is an implicit Maxwell term in the action
for c). This is not surprising, as the filling fraction of the
electrons (which are bosons for k = 2) is ν = ∞, which is to
say they see no magnetic field. Hence, for k = 2, both Theory
A′ and Theory B′ predict compressible states. In contrast, for
k �= 2, Theory A′ describes the incompressible ν = 1/(k − 2)
Laughlin state, while Theory B′ again describes a metallic
state of the η fermions.

Let us now consider the inverse scenario in which the η

fermions fill an integer number of LLs, so that νη = s − 1/2.
Hence,

ν = s

s(k − N ) + N
. (B16)

From Eq. (B9), we see that the ψ fermions are in a metallic
state when 1/ν = k − 1. This implies

s − 1

s
= N > 0, (B17)
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for which the only solution is (N, s) = (2, 2). In this case,
the electronic filling fraction is ν∗ = 1/(k − 1). This simply
corresponds to the usual sequence of incompressible states for
the fermionic (k odd) and bosonic (k even) Jain sequences. At
these fillings, we can integrate out the η fermions in Theory
B′ to obtain the effective action

LB′,eff = −2

4π
Tr

[
udu − 2i

3
u3

]
+ k − 2

4π
bdb

− 1

2π
Tr[u]db + 1

2π
bdA, (B18)

describing a non-Abelian topological order. Specifically,
this is the Lagrangian for the [U (2)spin

−2 × U (1)4(k−1)]/Z2 ↔
[SU (2)2 × U (1)4(k−1)]/Z2 = U (2)2,2(k−1) Chern-Simons the-
ory.

In order to understand how one arrives at this identification
of the Lagrangian as that for a quotient theory, let us start with
a decoupled U (2)spin

−2 × U (1)4(k−1) Chern-Simons theory:

L = −2
4π

Tr
[
ûdû − 2i

3 û3
] + 4(k−1)

4π
b̂db̂ + 2

2π
b̂dA.

(B19)

Now, taking the Z2 quotient of this theory amounts to declar-
ing that û and b̂ are no longer “good” gauge fields but the
linear combinations

u = û − b̂1, (B20)

b = 2b̂ (B21)

are [53]. That is to say, we declare u and b to satisfy the ap-
propriate flux quantization conditions. In more formal terms,
taking the Z2 quotient means we gauge the common Z2 one-
form symmetry of the U (2)spin

−2 and U (1)4(k−1) factors [53,61]
(which is to say, we project out all Wilson lines which have
nontrivial braiding with respect to the Wilson line generating

the Z2 one-form symmetry). Rewriting L in terms of these
gauge fields, we arrive at Eq. (B18), as desired.

3. Examples involving gapped states

Lastly, we can look for filling fractions at which both the ψ

and η fermions form IQH states. Setting Eqs. (B13) and (B16)
equal to one another, we find that this happens when

N = s

s − 1

p

p − 1
. (B22)

The topological orders predicted by Theory A′ and Theory B′
at these filling fractions are described by, respectively, the low
energy actions

LA′,eff = p − 1

4π
ada + 1

2π
adv + k − 1

4π
vdv + 1

2π
vdA,

(B23)

LB′,eff = − s

4π
Tr

[
udu − 2i

3
u3

]
+ k − 2

4π
bdb

− 1

2π
Tr[u]db + 1

2π
bdA. (B24)

One integer solution to the above equation is given by
(s, p, N ) = (3, 4, 2), corresponding to an electronic filling
fraction of ν∗ = 3/(3k − 4). Here Theory A′ predicts a
U (1)spin × U (1) theory (note a is a spinc connection while
v is a regular gauge field) describing the Abelian Jain state
at ν∗ = 2k/(2k − 3). Using the same quotient construction
as in the previous subsection, we can see that Theory
B′ describes a [U (2)spin

−3 × U (1)3(3k−4)]/Z3 ↔ [SU (3)2 ×
U (1)3(3k−4)]/Z3 = U (3)2,3k−4 topological order. A second in-
teger solution is given by (s, p, N ) = (4, 3, 2), corresponding
to an electronic filling fraction of ν∗ = 2/(2k − 3). Theory
A′ again predicts an Abelian Jain state, whereas Theory
B′ predicts a non-Abelian [U (2)spin

−4 × U (1)8(2k−3)]/Z4 ↔
[SU (4)2 × U (1)8(2k−3)]/Z4 = U (4)2,2(2k−3) topological
order.
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