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NQR and NMR spectra in the odd-parity multipole material CeCoSi
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We study theoretically NQR and NMR spectra in the presence of odd-parity multipoles originating from
staggered antiferromagnetic and antiferroquadrupole orderings. For the f -electron metal CeCoSi, which is a
candidate hosting odd-parity multipoles, we derive an effective hyperfine field acting on a Co nucleus generated
from electronic origin multipole moments of the Ce ion in zero and nonzero magnetic fields. We elucidate that
emergent odd-parity multipoles give rise to sublattice-dependent spectral splittings in NQR and NMR through
the effective hyperfine coupling in the absence of global inversion symmetry. We mainly examine the behaviors
of the NQR and NMR spectra in three odd-parity multipole ordered states: a y-type magnetic toroidal dipole
order with a staggered x-type antiferromagnetic structure, an xy-type electric toroidal quadrupole order with a
staggered (x2 − y2)-type antiferroquadrupole structure, and a z-type electric dipole order with a staggered (3z2 −
r2)-type antiferroquadrupole structure. We show that different odd-parity multipole orders lead to different field-
dependent spectral splittings in NMR, while only the xy-type electric toroidal quadrupole order exhibits the NQR
spectral splitting. We also present possible sublattice-dependent spectral splittings for all the odd-parity multipole
orders potentially activated in low-energy crystal-field levels, which will be useful to identify odd-parity order
parameters in CeCoSi by NQR and NMR measurements.
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I. INTRODUCTION

Spatial inversion symmetry is one of the fundamental sym-
metries in solids. In recent studies, spontaneous inversion
symmetry breaking by electronic orderings has attracted much
attention, as it leads to fascinating phenomena, such as magne-
toelectric effect [1–3] and nonreciprocal transport properties
[4]. Once the systems undergo phase transitions causing in-
version symmetry breaking, order parameters are represented
by unconventional odd-parity multipoles, such as magnetic
toroidal dipoles [5–9], magnetic quadrupoles [10–12], electric
toroidal quadrupoles [13,14], and electric octupoles [15–17].
In previous studies, such odd-parity multipoles have often
been described by the staggered (antiferroic) alignment of
even-parity multipoles on a crystal structure without local
inversion symmetry at an atomic site; prototypes are the
zigzag chain [7,18], honeycomb structure [6,8], and diamond
structure [19,20]. Such odd-parity multipoles formed by an
antiferroic alignment of even-parity multipoles like magnetic
dipoles and electric quadrupoles are referred to as cluster
odd-parity multipoles.

Meanwhile, it is still an open issue how to detect cluster
odd-parity multipoles. As emergent odd-parity multipoles are
a source of physical phenomena related to inversion sym-
metry breaking as mentioned above, the presence/absence
of odd-parity multipoles can be distinguishable through
macroscopic measurements. However, it is difficult to obtain
microscopic information with respect to odd-parity multipoles
from those measurements because measured physical quanti-
ties are sensitively affected by various factors such as domain
distributions and electronic band structures. Thus, the use

of probes, such as second harmonic generation [21,22] and
magnetoelectric optics [23–31], to directly detect odd-parity
multipoles is promising. For example, the second harmonic
generation enables us to detect the domain structure of odd-
parity magnetic quadrupoles and magnetic toroidal dipoles
and the resonant magnetoelectric x-ray scattering provides the
temperature dependence of the odd-parity magnetic toroidal
dipole moment.

The NQR and NMR measurements are also sensitive
microscopic probes used to detect electronic multipoles
through nuclear spins, which have been developed for
exploring atomic-scale electric quadrupoles and magnetic
dipoles/octupoles in localized f -electron materials such as
Ce1−xLaxB6 [32–44], NpO2 [44–46], and skutterudite RT4X12

(R denotes a rare earth, T a transition metal, and X a pnic-
togen) [47–50]. However, the studies using NQR and NMR
measurements have been limited to even-parity multipoles
with respect to the spatial inversion operation, as nuclear spins
and their products are characterized as even-parity tensors.

In the present study we propose that NQR and NMR
can be good probes used to detect cluster odd-parity mul-
tipoles. To demonstrate that, we analyze NQR and NMR
spectra under the odd-parity multipole orderings by consid-
ering the candidate CeCoSi, which may host two types of
odd-parity multipole orders depending on temperature and
pressure [51–58]. The crystal structure of CeCoSi is the cen-
trosymmetric CeFeSi-type structure (P4/nmm, D7

4h, No. 129)
in Fig. 1(a), where there is no inversion center on each atom;
Ce and Si have C4v symmetry and Co has D2d symmetry [59].
Such a crystal structure without local inversion symmetry at
an atomic site enhances the chance to realize the cluster odd-
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FIG. 1. (a) Tetragonal crystal structure of CeCoSi. The nearest-
neighbor Ce-Ce, Ce-Co, and Co-Si bonds are represented by red,
black, and gray solid lines, respectively. The rectangle represents a
unit cell. (b) Uniform and staggered alignments of local even-parity
multipoles in a unit cell, XA + XB and XA − XB, which correspond
to cluster even-parity and odd-parity multipoles (CMP) X (c), respec-
tively. As an example, uniform and staggered alignments of My are
shown. (c) Ce tetrahedrons surrounding CoA (left) and CoB (right)
sites.

parity multipoles by the antiferroic alignment of even-parity
multipoles as mentioned above. In this compound, as two
different Ce sites CeA and CeB are located at positions without
local inversion symmetry and the inversion center is present at
their bond center, the staggered even-parity multipole order at
those Ce sites breaks the global inversion symmetry, which
corresponds to the emergence of odd-parity multipole orders
[60,61]. Recently, the antiferromagnetic (AFM) ordered state
at low temperature was identified as a staggered alignment
of the magnetic moments along the [100] direction with the
ordering vector q = 0 by the neutron diffraction measurement
[56], whereas the other phase mainly found under pressure
[referred to as the pressure-induced ordered phase (PIOP)]
might correspond to the antiferroquadrupole (AFQ) phase,
although it is an as-yet unidentified phase [53,54]. Theoreti-
cally, the authors clarified that odd-parity multipole moments
are induced when the staggered AFM and AFQ phases are
realized [60]: The identified AFM state corresponds to the
cluster magnetic toroidal dipole order and the AFQ state
corresponds to any of the cluster electric toroidal quadrupole
or cluster electric dipole orders depending on the types of
electric quadrupoles of the Ce ion. Thus, CeCoSi is ex-
pected to exhibit electronic-order-driven noncentrosymmetric
physics, such as the Edelstein effect, magnetoelectric effect,
and current-induced piezoelectric effect, which originate from
the cluster odd-parity multipoles [60].

For observed or suggested odd-parity multipole orderings,
we derive a general form of the hyperfine field on the 59Co
nucleus at zero and nonzero magnetic fields with the aid
of magnetic point group analysis. We elucidate that the Co
nuclear spins are coupled with the odd-parity order parameters
from Ce ions once the spatial inversion symmetry is broken by
spontaneous even-parity multipole orderings. The hyperfine
couplings arising from the odd-parity multipoles induce the
sublattice-dependent NQR and NMR spectral splittings. We
show that different odd-parity multipole orders give rise to

different field-dependent NMR spectral splittings, e.g., the
y-type magnetic toroidal dipole in the x-type AFM structure
shows sublattice-dependent splitting except for the magnetic
field normal to the [010] direction. Furthermore, we find that
only the xy-type electric toroidal quadrupole order arising
from the (x2 − y2)-type AFQ structure induces sublattice-
dependent NQR spectral splitting. We also show that the
hyperfine fields from the odd-parity multipoles can be evalu-
ated from NQR and NMR splittings. Our result indicates that
the NQR and NMR spectra in noncentrosymmetric systems
will not only provide information of microscopic hyperfine
fields regarding odd-parity multipoles but also be useful in
identifying what types of odd-parity multipoles emerge.

This paper is organized as follow. In Sec. II we introduce
the multipole degrees of freedom and the local Hamiltonian
of Ce ions. In Sec. III the effective hyperfine field acting on
the Co nucleus is derived based on the symmetry discussion.
The NQR and NMR spectra in the odd-parity multipole orders
are shown in Secs. IV and V, respectively. We summarize
the NQR and NMR splittings for possible odd-parity order
parameters in Sec. VI. Section VII summarizes this paper.
We discuss the molecular mean-field dependence of the odd-
parity multipole moments in Appendix A, show the spectra of
the field-swept NMR in Appendix B, present the result of the
[110]-field NMR in Appendix C, and summarize the result for
another choice of crystal-field level in Appendix D.

II. LOCAL MULTIPOLE MOMENT OF THE Ce ION

We introduce electronic multipole degrees of freedom of
Ce ions in this section. We present the local multipole degrees
of freedom in a 4 f electron of the Ce ion in Sec. II A, we
construct the local Hamiltonian in Sec. II B, and we show the
behavior of the multipole moments induced by the AFM and
AFQ states in Sec. II C.

A. Multipole degrees of freedom

We briefly review the local and cluster multipole degrees of
freedom in CeCoSi following Ref. [60]. We take into account
multipoles activated in the J = 5/2 multiplet from the f 1

configuration in a Ce3+ ion. The sixfold degeneracy of the J =
5/2 multiplet splits into one �6 level and two �7 levels in the
tetragonal crystal field. The experiments indicate that the first-
and second-excited states are located above 100 and 150 K,
respectively, from the ground state [54,56]. In the present dis-
cussion, we consider the local multipole degrees of freedom
of a Ce ion described by the low-energy crystal-field levels up
to the first-excited level. We assume that the low-energy levels
consist of the ground-state �7 doublet and the first-excited �6

doublet in C4v site symmetry [60]. Within these low-energy
levels, even-parity electric and magnetic multipoles with rank
l � 5 are activated, as discussed below [60,62–65]. We also
show the result for other low-energy levels, which consist of
two �7 doublets, in Appendix D.

For the basis function φ = (φ�6↑, φ�6↓, φ�7↑, φ�7↓), where
↑,↓ represent the quasispins, the local multipole degrees of
freedom of the Ce ion are expressed as the tensor product
of two Pauli matrices σμ within the �6 or �7 doublet and τμ

between the �6-�7 doublets for μ = 0, x, y, z (σ0 and τ0 are
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unit matrices) [66]. All 16 multipoles are given as follows:
an electric monopole (charge) Q̂0 = 1

2σ0τ0; two sets of three
magnetic dipoles (M̂�

x , M̂�
y , M̂�

z ) = 1
4 (σx, σy, σz )(τ0 ± τz ),

where the sign is + (−) for the � = �6 (�7) level; and
an electric quadrupole Q̂u (=3z2−r2 ) = 1

2σ0τz in a Hilbert
space within the �6 or �7 doublet; and two magnetic
dipoles (M̂ ′

x, M̂ ′
y) = 1

2 (σxτx,−σyτx ), four electric quadrupoles
(Q̂υ (=x2−y2 ), Q̂xy, Q̂yz, Q̂zx ) = 1

2 (σ0τx, σzτy, σxτy, σyτy), and
two magnetic octupoles (M̂xyz, M̂β

z ) = 1
2 (σ0τy, σzτx ) activated

in a Hilbert space between the �6-�7 doublets.
As there are two Ce ions in a unit cell, CeA and CeB,

as shown in Fig. 1(a), order parameters without breaking
the translational symmetry are described by the uniform or
staggered component of multipole moments in CeA and CeB

sites: the uniform component X̂A + X̂B and staggered com-
ponent X̂A − X̂B, where X̂i stands for the above multipole
degrees of freedom at site i = A, B. In terms of symmetry,
uniform and staggered components are assigned as either
cluster even- or odd-parity multipoles, as shown in Fig. 1(b)
[60]. We adopt the lowest-rank multipoles from the four types
of multipole expressions (electric, magnetic, electric toroidal,
and magnetic toroidal) in each uniform and staggered order
[67,68], as the multipoles with a different rank belong to
the same irreducible representation in a lattice system. For
the uniform component X̂A + X̂B, cluster even-parity multi-
poles are defined as an electric monopole Q̂(c)

0 when the local
multipole X is Q̂0, three magnetic dipoles (M̂ (c)

x , M̂ (c)
y , M̂ (c)

z )
when X is

∑
� (M̂�

x , M̂�
y , M̂�

z ) + (M̂ ′
x, M̂ ′

y, 0) (� = �6, �7)
[69], five electric quadrupoles (Q̂(c)

u , Q̂(c)
υ , Q̂(c)

yz , Q̂(c)
zx , Q̂(c)

xy )
when X is (Q̂u, Q̂υ, Q̂yz, Q̂zx, Q̂xy), and two magnetic oc-
tupoles (M̂ (c)

xyz, M̂β(c)
z ) when X is (M̂xyz, M̂β

z ). Meanwhile, since
the staggered component X̂A − X̂B shows odd parity with
respect to the spatial inversion operation, the cluster odd-
parity multipoles are defined by the staggered component as
electric dipoles (Q̂(c)

x , Q̂(c)
y , Q̂(c)

z ) when X is (Q̂zx, Q̂yz, Q̂0 +
Q̂u) [70], magnetic toroidal dipoles (T̂ (c)

y ,−T̂ (c)
x ) when X is∑

� (M̂�
x , M̂�

y ) + (M̂ ′
x, M̂ ′

y) [69], electric toroidal quadrupoles
(Ĝ(c)

xy , Ĝ(c)
υ ) when X is (Q̂υ, Q̂xy), and magnetic quadrupoles

(M̂ (c)
u , M̂ (c)

xy , M̂ (c)
υ ) when X is (

∑
� M̂�

z , M̂xyz, M̂β
z ) [69]. For

clarity, we introduce the superscript (c) as the denotation for
cluster multipoles. The correspondence of local and cluster
multipoles is summarized in Table I. Hereafter, we use the
denotation of the cluster multipoles X̂ (c) instead of X̂A + X̂B

and X̂A − X̂B to clearly represent the effect of the odd-parity
multipoles on NQR and NMR spectra.

B. Local Hamiltonian for 4 f electrons

To examine a hyperfine field on the 59Co nucleus, we need
to take into account an effective field generated from the Ce
site. As described below, an effective hyperfine field on the
59Co nucleus depends on the types of multipole orderings
of 4 f electrons at the Ce site. We here introduce a local
Hamiltonian for the Ce electron at the phenomenological level
to incorporate the effect of odd-parity multipoles. The local

TABLE I. Correspondence of (a) uniform X̂A + X̂B compo-
nents to cluster even-parity multipoles and (b) staggered X̂A −
X̂B components to cluster odd-parity multipoles. Magnetic dipoles
(M̂ tot

x , M̂ tot
y , M̂ tot

z ) represent M̂ tot
μ = ∑

� M̂�
μ + M̂ ′

μ for μ = x, y and
M̂ tot

z = ∑
� M̂�

z , where � = �6, �7 [69]. In the notation of the types
of multipoles (MP), E, M, ET, and MT represent electric, magnetic,
electric toroidal, and magnetic toroidal, respectively.

Cluster Type
multipole MP

(a) Uniform component

Q̂0,A + Q̂0,B Q̂(c)
0 E monopole

M̂ tot
x,A + M̂ tot

x,B M̂ (c)
x x-type M dipole

M̂ tot
y,A + M̂ tot

y,B M̂ (c)
y y-type M dipole

M̂ tot
z,A + M̂ tot

z,B M̂ (c)
z z-type M dipole

Q̂u,A + Q̂u,B Q̂(c)
u (3z2 − r2)-type E quadrupole

Q̂υ,A + Q̂υ,B Q̂(c)
υ (x2 − y2)-type E quadrupole

Q̂yz,A + Q̂yz,B Q̂(c)
yz yz-type E quadrupole

Q̂zx,A + Q̂zx,B Q̂(c)
zx zx-type E quadrupole

Q̂xy,A + Q̂xy,B Q̂(c)
xy xy-type E quadrupole

M̂xyz,A + M̂xyz,B M̂ (c)
xyz xyz-type M octupole

M̂β

z,A + M̂β

z,B M̂β(c)
z z(x2 − y2)-type M octupole

(b) Staggered component
Q̂0,A − Q̂0,B Q̂(c)

z z-type E dipole
M̂ tot

x,A − M̂ tot
x,B T̂ (c)

y y-type MT dipole

M̂ tot
y,A − M̂ tot

y,B −T̂ (c)
x x-type MT dipole

M̂ tot
z,A − M̂ tot

z,B M̂ (c)
u (3z2 − r2)-type M quadrupole

Q̂u,A − Q̂u,B Q̂(c)
z z-type E dipole

Q̂υ,A − Q̂υ,B Ĝ(c)
xy xy-type ET quadrupole

Q̂yz,A − Q̂yz,B Q̂(c)
y y-type E dipole

Q̂zx,A − Q̂zx,B Q̂(c)
x x-type E dipole

Q̂xy,A − Q̂xy,B Ĝ(c)
υ (x2 − y2)-type ET quadrupole

M̂xyz,A − M̂xyz,B M̂ (c)
xy xy-type M quadrupole

M̂β

z,A − M̂β

z,B M̂ (c)
υ (x2 − y2)-type M quadrupole

Hamiltonian for sublattice i is given by

HCei = �(Q̂0i + Q̂ui ) − H (el) · M̂i ∓
∑

X

hs
X X̂i, (1)

where � in the first term is the crystal-field energy of the
�6 level measured from the �7 level (� > 0), which is es-
timated as ∼100 K [53]. We set � = 0.5 in the following
calculation. The second term in Eq. (1) is the Zeeman term
for H (el) ≡ μBH coupled with the magnetic dipoles M =
(Mx, My, Mz ), where μB and H are the Bohr magneton and
magnetic field, respectively. We take the linear combination
of the intraorbital components M̂�6

μ and M̂�7
μ and the interor-

bital component M̂ ′
μ as M̂μ ≡ (M̂�7

μ + δ�6 M̂�6
μ ± δ′M̂ ′

μ) [the
sign is + (−) for μ = x (y)] and M̂z ≡ (M̂�7

z + δ�6 M̂�6
z ). The

parameters δ�6 and δ′ are introduced to represent the differ-
ence of the magnetic susceptibility per different orbitals and
are taken to be (δ�6 , δ′) = (1/4, 1/2), which depend on the
spin-orbit coupling and the crystal field [71]. The last term in
Eq. (1) represents the multipolar mean fields leading to the
multipole orderings with 〈X̂i〉 
= 0, which mimic the effect of
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FIG. 2. (a)–(c) Schematics of local multipoles (MP) and cluster odd-parity multipoles (OPMP) in the (a) Qυ -type AFQ, (b) Qu-type AFQ,
and (c) Mx-type AFM states. The shape of the picture in (a) and (b) represents the charge distribution. The blue and red arrows in (c) represent
the magnetic dipole and magnetic toroidal dipole moments, respectively. (d)–(l) Staggered mean-field dependence of multipoles in the (d)–(f)
zero magnetic field, (g)–(i) magnetic field H ‖ [001], and (j)–(l) H ‖ [100]. The data represent those in (d), (g), and (j) Qυ -type AFQ, (e),
(h), and (k) Qu-type AFQ, and (f), (i), and (l) Mx-type AFM states. Black solid and dashed lines represent the even-parity multipole moments,
whereas colored solid lines are odd-parity multipole moments.

the Coulomb interaction. They originate from the mean-field
decoupling for the intraorbital and interorbital Coulomb inter-
action terms [64]; the multipoles activated in a �6 or �7 level
are relevant to the intraorbital Coulomb interaction, while
those activated between the �6 and �7 levels are relevant to the
interorbital Coulomb interaction. As we focus on the cluster
multipoles induced by the staggered electronic orderings, we
adopt the negative (positive) sign for the A (B) sublattice.
For simplicity, we omit the multipole-multipole interaction
between A and B sublattices, which is renormalized into hs

X
at the mean-field level.

In the following discussion, we mainly consider three
types of staggered orderings: Mx-type AFM, Qu-type AFQ,
and Qυ-type AFQ states, whose schematics are shown in
Figs. 2(a)–2(c), respectively. This is because the neutron
diffraction has indicated the Mx-type AFM state at low
temperatures [56]. On the other hand, as the PIOP is still con-
troversial, we discuss two types of AFQ states for candidates.
One is the Qu-type AFQ state arising from the intraorbital
multipole degrees of freedom, while the other is the Qυ-type
AFQ state arising from the interorbital multipole degrees of

freedom. For completeness, we also investigate other antifer-
roic multipole ordered states and the results are summarized
in Sec. VI.

C. Multipoles in AFQ and AFM orderings

We discuss the behavior of the electronic multipole
moments induced by the staggered mean field with and
without the external magnetic field. We evaluate the ther-
mal expectation value of the multipole moments X ≡ 〈X̂ 〉 =∑

n 〈n|X̂ |n〉 exp(−βEn)/Z , where |n〉 (n = 1–8) is the eigen-
state with energy En of the total Hamiltonian HCeA +HCeB

and Z is a partition function. We set the inverse temperature
β = 10, which corresponds to T/� = 0.2.

Figures 2(d)–2(f) show all the nonzero multipole moments
at zero magnetic field as a function of the staggered fields
hs

Qυ
, hs

Qu
, and hs

Mx
, respectively. It should be noted that Q(c)

u
becomes nonzero irrespective of the types of order parameters
due to nonzero � in Eq. (1). When the mean fields hs

X turn on,
the corresponding cluster odd-parity multipole moments X (c)

become nonzero.
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TABLE II. Multipole moments induced in the Qυ -type AFQ,
Qu-type AFQ, and Mx-type AFM ordered states as well as the param-
agnetic (Para) state. For nonzero fields, additional multipoles induced
by H are shown.

H Para Qυ -type AFQ Qu-type AFQ Mx-type AFM

zero Q(c)
u G(c)

xy Q(c)
z T (c)

y , Q(c)
υ

‖ [001] M (c)
z M (c)

υ M (c)
u

‖ [100] M (c)
x , Q(c)

υ Q(c)
z , T (c)

y G(c)
xy , T (c)

y Q(c)
z , G(c)

xy

The results in the Qυ- and Qu-type AFQ ordered states
are shown in Figs. 2(d) and 2(e), respectively. The odd-parity
electric toroidal quadrupole G(c)

xy is induced in the Qυ-type
AFQ ordering, while the odd-parity electric dipole Q(c)

z is
induced in the Qu-type AFQ ordering. The mean-field de-
pendence of the odd-parity moments are different from each
other: G(c)

xy roughly increases as a function of hs
Qυ

, whereas
Q(c)

z increases as a function of (hs
Qu

)3 in the small hs
X region.

This is attributed to the nature of the odd-parity order parame-
ters, which is understood from the perturbation expansion for
large �, as detailed in Appendix A.

According to the development of G(c)
xy or Q(c)

z , Q(c)
u is sup-

pressed in both AFQ states in different ways. In the case of
the Qυ-type AFQ ordered state, Q(c)

u is suppressed as (hs
Qυ

)2,
while in the Qu-type AFQ state it is suppressed as (hs

Qu
)4. The

different mean-field dependences of the multipole moments
give different multipole-field dependences of the NQR and
NMR frequency shifts, as discussed in Secs. IV and V.

Figure 2(f) shows the result in the Mx-type AFM state with
the odd-parity magnetic toroidal dipole moment T (c)

y . The
mean-field dependence of T (c)

y is similar to that in the Qυ-type
AFQ ordering in Fig. 2(d). As a different point, the additional
even-parity electric quadrupole Q(c)

υ is induced in the AFM
state, which reflects the breaking of the fourfold rotational
symmetry. In other words, T (c)

y and Q(c)
υ belong to the same

irreducible representation in the AFM state.
Next we discuss the effect of the magnetic field, whose

magnitude is set to be |H (el)| = 0.01. The results are shown in
Figs. 2(g)–2(i) in the case of the [001] field and in Figs. 2(j)–
2(l) in the case of the [100] field. There are two important
observations in the magnetic field. The first one is that ad-
ditional multipole moments other than the magnetic dipole
moments M (c) are induced according to the lowering of the
crystal symmetry by the magnetic field. For example, in the
Qυ-type AFQ state, the magnetic quadrupole moment M (c)

υ

becomes nonzero for the field along the [001] direction in
Fig. 2(g), while nonzero Q(c)

υ , Q(c)
z , and T (c)

y are induced for
that along the [100] direction in Fig. 2(j). The second one is
that the additional multipole moments induced by the mag-
netic field are much smaller than primary odd-parity multipole
moments, which indicates that the additional multipoles lead
to the small quantitative change in the NQR and NMR spectra.
We summarize the active multipole moments induced by the
AFQ and AFM orderings at zero and nonzero fields in Ta-
ble II. The obtained results are consistent with those attained
by the symmetry analysis.

III. HYPERFINE FIELD OF THE 59Co NUCLEUS

We discuss the hyperfine field acting on the nuclear spins
of 59Co ions through effective multipole fields generated in
Eq. (1). In general, the hyperfine field up to the second order
of the nuclear spin with I � 1 is given by [72]

H = −γ h̄H · Î + e2qQ

4I (2I − 1)

[
3Î2

Z − Î2 + η
(
Î2
X − Î2

Y

)]
, (2)

where Î = (ÎX , ÎY , ÎZ ) is the nuclear spin operator with the
principal axes of the local electric-field gradient at the Co
nuclear site, (X , Y , Z). The magnitude of Î is given by I = 7/2
for the 59Co nucleus. The first term represents the Zeeman
coupling term; γ and h̄ represent the gyromagnetic ratio and
Dirac’s constant, respectively. The second term describes the
nuclear quadrupole interaction; e is the electric charge, q is
the electric-field gradient parameter, Q is the nuclear electric
quadrupole moment, and η is the anisotropic parameter. The
amplitudes of H , q, and η depend on electronic multipole
moments at four neighboring Ce sites [Fig. 1(c)] as well as the
external magnetic field and crystal-field potential. When we
define H (n) ≡ γ h̄H , the energy scale of the nuclear system is
compared with that of the electronic system as H (n)/H (el) ∼
10−4. We rewrite the Hamiltonian in Eq. (2) in terms of the
crystal axis coordinates (x, y, z) [see also Fig. 1(a)] as

H = C · Î + CuÎu + Cυ Îυ + CyzÎyz + CzxÎzx + CxyÎxy, (3)

where

Îu = 1

2

(
3Î2

z − Î2
)
, (4)

Îυ =
√

3

2

(
Î2
x − Î2

y

)
, (5)

Îyz =
√

3

2
(ÎyÎz + Îz Îy), (6)

Îzx =
√

3

2
(Îz Îx + Îx Îz ), (7)

Îxy =
√

3

2
(Îx Îy + ÎyÎx ). (8)

The coupling constants for the effective magnetic field and
electric-field gradient are parametrized as C = (Cx,Cy,Cz )
and (Cu,Cυ,Cyz,Czx,Cxy), respectively. Among them, Cμ

(μ = x, y, z) includes two contributions from the external field
H (n)

μ and the internal dipole field Cel
μ from the electronic mul-

tipoles as

Cμ = −H (n) + Cel
μ , (9)

whereas Cν (ν = u, υ, yz, zx, xy) consists of two contribu-
tions from the crystal-field potential CCF

ν and the internal
quadrupole field Cel

ν from the electronic multipoles as

Cν = CCF
ν + Cel

ν . (10)

In Eqs. (9) and (10), Cel
μ and Cel

ν depend on the types of
multipole orderings, which become nonzero through the ef-
fective hyperfine coupling between the electronic multipoles
and nuclear spins or quadrupoles.

In the following sections, we focus on the multipole contri-
butions to the effective hyperfine field by setting CCF

ν = 0 for
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TABLE III. Irreducible representations of nuclear multipoles (NMP) and electronic cluster multipoles (CMP) in the local symmetry of the
Co site in zero and nonzero magnetic fields H . Here X± ≡ Xx ± nXy and X2± ≡ Xyz ± nXzx for X = I, Q(c), M (c), T (c) and n = i(1) for 4̄m′2′

(2′22′, 2′). For H‖[001], the multipoles in the square brackets are also activated. The irreducible representations of a magnetic point group are
represented by using the irreducible representations of its unitary subgroup, which is shown below the respective magnetic point groups [74].
The superscript ± of the irreducible representation is the parity with respect to the antilinear-unitary operation (even + and odd −). The axes
of the twofold rotation C2 of 2′22′ and TC2 of 2′ in H⊥[001] (H⊥[1̄10]) are along [110] and [001] ([1̄10]), respectively. The mirror plane in m′ is
normal to the [010] direction.

H‖[001] H‖[100] H‖[110] H⊥[001] H⊥[010] H⊥[1̄10]

4̄m21′ 4̄m′2′ 2′mm′ 2′22′ 2′ m′ 2′

NMP CMP (4̄m2) (4̄) (m) (2) (1) (1) (1)

Iu Q(c)
u , G(c)

xy A+
1 A+ A′+ A+ A+ A+ A+

G(c)
υ A+

2 A− A′′+ B− A+ A− A−

Ixy Q(c)
xy B+

1 B+ A′′+ A+ A+ A− A+

Iυ Q(c)
υ , Q(c)

z B+
2 B− A′+ B− A+ A+ A−

Iyz Q(c)
yz E+ A′− A− A−

Izx Q(c)
zx A′′− A− A+

Q(c)
x E+ A′′− A− A+

Q(c)
y A′− A− A−

I2+ Q(c)
2+ [iQ(c)

+ ] E(2)+ B+ A− A+

I2− Q(c)
2− [iQ(c)

− ] E(1)+ A− A− A−

[iI2+] Q(c)
+ [iQ(c)

2+] E(2)− A− A− A−

[iI2−] Q(c)
− [iQ(c)

2−] E(1)− B+ A− A+

M (c)
xy A−

1 A− A′− A− A− A− A−

Iz M (c)
z , M (c)

υ A−
2 A+ A′′− B+ A− A+ A+

Mβ(c)
z , M (c)

u B−
1 B− A′′− A− A− A+ A−

M (c)
xyz B−

2 B+ A′− B+ A− A− A+

Ix M (c)
x E− A′+ A+ A+

Iy M (c)
y A′′+ A+ A−

T (c)
x E− A′′+ A+ A−

T (c)
y A′+ A+ A+

I+ M (c)
+ [iT (c)

− ] E(1)− A+ A+ A+

I− M (c)
− [iT (c)

+ ] E(2)− B− A+ A−

[iI−] T (c)
+ [iM (c)

− ] E(2)+ A+ A+ A+

[iI+] T (c)
− [iM (c)

+ ] E(1)+ B− A+ A−

simplicity [73]. We show an effective Hamiltonian for the Co
nucleus in multipole fields from Ce sites in the zero magnetic
field in Sec. III A and in finite magnetic fields in Sec. III B.

A. Zero magnetic field

Before discussing the effect of odd-parity multipoles, we
start from the hyperfine field in the paramagnetic state. In
the paramagnetic state in the zero magnetic field, only the
electric quadrupole Q(c)

u becomes finite among the electronic
multipoles, which corresponds to the second term in Eq. (3),
as shown in Table II. The nuclear Hamiltonian at the single
Co site is given by

Hpara = Cel
u Îu ≡ ce

uQ(c)
u Îu, (11)

where the coupling constant Cel
u is represented by the product

of the hyperfine coupling constant ce
u and the thermal average

of the cluster electronic multipole Q(c)
u , Cel

u = ce
uQ(c)

u . Here
and hereafter, the superscript and subscript in cp

μ represent
the even- or odd-parity (p = e or o) multipoles and the type

of coupled nuclear multipoles (μ = x, y, z, u, υ, yz, zx, xy),
respectively.

The other terms in Eq. (3) become nonzero once the
electronic multipole orderings occur, i.e., for nonzero hs

X in
Eq. (1). One can derive the effective hyperfine field in the
multipole orderings on the basis of magnetic point group
symmetry, as it consists of the coupling terms belonging to
the totally symmetric representation of 4̄m21′. We display
the irreducible representations of the cluster multipoles and
nuclear multipoles in Table III.

The general form of the effective hyperfine field in the odd-
parity multipole orders is given by

Ho
order = co

z M (c)
υ Îz + co

x,y

(
T (c)

y Îx + T (c)
x Îy

) + co
uG(c)

xy Îu

+ co
υQ(c)

z Îυ + co
yz,zx

(
Q(c)

y Îyz − Q(c)
x Îzx

)
, (12)

He
order = ce

z M (c)
z Îz + ce

x,y

(
M (c)

x Îx + M (c)
y Îy

) + ce
xyQ(c)

xy Îxy

+ ce
υQ(c)

υ Îυ + ce
yz,zx

(
Q(c)

yz Îyz + Q(c)
zx Îzx

)
, (13)
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where Ho
order (He

order) stands for the hyperfine field in the
presence of odd-parity (even-parity) multipoles. Interestingly,
the effective hyperfine field includes the coupling between
electronic odd-parity multipoles and nuclear even-parity mul-
tipoles owing to the lack of the local inversion symmetry at the
Co site. The hyperfine fields in Eqs. (11)–(13) are summarized
in Table IV(a).

In CeCoSi, there are two Co ions in the unit cell, which are
connected by the fourfold rotation. As the signs of the odd-
parity crystal field of two Co ions are opposite while those of
the even-parity one are the same, the total nuclear Hamiltonian
in a unit cell is given by

HCo = HCoA +HCoB , (14)

HCoA = Hpara +Ho
order +He

order, (15)

HCoB = Hpara −Ho
order +He

order. (16)

The different sign of Ho
order for the different sublattices is

an important outcome of odd-parity multipoles. In other
words, the presence of the sublattice-dependent splitting of
the resonant spectrum corresponds to the emergent odd-parity
multipoles within the q = 0 orders, as shown in Secs. IV
and V. The obtained hyperfine field including the odd-parity
multipole moments in Eq. (12) is one of the main results in
this paper.

B. Magnetic field

At an external magnetic field, a Zeeman term is taken into
account, which is given by

HZeeman = −H (n) · Î. (17)

Although the Zeeman term induces the magnetic dipole
contribution, it also induces additional electronic multipole
contributions according to the lowering of the symmetry.

By considering the magnetic field along the [001] direc-
tion, additional hyperfine field terms appear as

H̃ [001]
para = c̃e

zQ(c)
u Îz + c̃e

uM (c)
z Îu, (18)

H̃o[001]
order = c̃o

z G(c)
xy Îz + c̃o

x,y

(
Q(c)

x Îx − Q(c)
y Îy

) + c̃o
uM (c)

υ Îu

+ c̃o
υM (c)

u Îυ + c̃o
yz,zx

(
T (c)

x Îyz + T (c)
y Îzx

)
, (19)

H̃e[001]
order = c̃e

x,y

(
Q(c)

zx Îx + Q(c)
yz Îy

) + c̃e
xyM (c)

xyzÎxy

+ c̃e
υMβ(c)

z Îυ + c̃e
yz,zx

(
M (c)

y Îyz + M (c)
x Îzx

)
, (20)

where H̃ [001]
para is the additional hyperfine field induced by

the magnetic field in the paramagnetic state, while H̃o[001]
order

(H̃ e[001]
order ) is the additional hyperfine field in the presence of

the odd-parity (even-parity) multipole orderings. In addition,
c̃p
μ (p = e or o and μ = u, υ, yz, zx, xy) is a magnetic-field-

dependent coupling constant, which vanishes without the
magnetic field.

The appearance of various multipole contributions in
Eqs. (18)–(20) is due to the reduction of the local symmetry
at the Co site 4̄m21′ → 4̄m′2′. Reflecting the breaking of
the time-reversal symmetry, the effective couplings between
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electronic and nuclear multipoles with opposite time-reversal
parity appear. In other words, the electric (magnetic) mul-
tipole at the Ce site is coupled with the nuclear dipole
(quadrupole) at the Co site. From a microscopic viewpoint,
such a coupling originates from the magnetic multipoles
with spatially anisotropic distributions, such as magnetic oc-
tupoles, which are described by the coupling between the
anisotropic charge distribution and the magnetic moment

[36,38]. For instance, in the case of the Qυ-type ordering in
the magnetic field along the [001] direction, the magnetic
quadrupole M (c)

υ with odd time reversal is induced as shown in
Fig. 2(g). Since M (c)

υ belongs to the same irreducible represen-
tation A+ as Iu with even time reversal in the magnetic point
group 4̄m′2′ from Table III, the field-induced M (c)

υ affects the
(3z2 − r2)-type charge distribution and results in the effective
coupling between M (c)

υ and Iu.

Similarly, the additional hyperfine fields in the [100] magnetic field are given by

H̃ [100]
para = (

c̃e,1
x Q(c)

u + c̃e,2
x Q(c)

υ

)
Îx + (

c̃e,1
u Q(c)

υ + c̃e,2
u M (c)

x

)
Îu + (

c̃e,1
υ Q(c)

u + c̃e,2
υ M (c)

x

)
Îυ, (21)

H̃o[100]
order = (

c̃o,1
x Q(c)

z + c̃o,2
x G(c)

xy

)
Îx + (

c̃o,1
y G(c)

υ + c̃o,2
y T (c)

x

)
Îy + (

c̃o,1
z Q(c)

x + c̃o,2
z M (c)

u

)
Îz + (

c̃o,1
u Q(c)

z + c̃o,2
u T (c)

y

)
Îu

+ (
c̃o,1
υ G(c)

xy + c̃o,2
υ T (c)

y

)
Îυ + (

c̃o,1
yz Q(c)

y + c̃o,2
yz M (c)

xy

)
Îyz + (

c̃o,1
zx M (c)

u + c̃o,2
zx M (c)

υ

)
Îzx + (

c̃o,1
xy G(c)

υ + c̃o,2
xy T (c)

x

)
Îxy, (22)

H̃e[100]
order = (

c̃e,1
y Q(c)

xy + c̃e,2
y M (c)

y

)
Îy + (

c̃e,1
z Q(c)

zx + c̃e,2
z Mβ(c)

z

)
Îz + (

c̃e,1
yz Q(c)

yz + c̃e,2
yz M (c)

xyz

)
Îyz + (

c̃e,1
zx M (c)

z + c̃e,2
zx Mβ(c)

z

)
Îzx + c̃e

xyM (c)
y Îxy,

(23)

where the local symmetry at the Co site reduces as 4̄m21′ →
2′mm′. For in-plane fields, the Îυ term additionally contributes
to H̃ [100]

para due to the breaking of the fourfold improper rota-
tional symmetry.

The additional hyperfine field Hamiltonian in the exter-
nal magnetic field is summarized in Tables IV(b) and IV(c).
One can obtain the hyperfine field Hamiltonian for other
field directions by using the irreducible representation in
Table III.

In the end, the total Hamiltonian in a unit cell in the mag-
netic field is given by

HCo = HCoA +HCoB + H̃CoA + H̃CoB , (24)

HCoA = HZeeman +Hpara +Ho
order +He

order, (25)

HCoB = HZeeman +Hpara −Ho
order +He

order, (26)

H̃CoA = H̃para + H̃o
order + H̃e

order, (27)

H̃CoB = H̃para − H̃o
order + H̃e

order. (28)

We use the above nuclear Hamiltonian HCo to examine the
NMR spectra in the odd-parity multipole orderings in the
following sections.

IV. NQR SPECTRA AT ZERO FIELD

We examine how odd-parity multipole moments affect an
NQR spectrum. In the paramagnetic state, the nuclear Hamil-
tonian given by Eq. (14) leads to three NQR frequencies
f = νQ, 2νQ, and 3νQ, where h̄νQ = 3ce

uQ(c)
u . We take νQ = 1

as the frequency unit.
In the following, we show the resonance frequencies in

odd-parity multipole orderings in Secs. IV A–IV C: the Qυ-
type AFQ state with G(c)

xy in Sec. IV A, the Qu-type AFQ state
with Q(c)

z in Sec. IV B, and the Mx-type AFM state with T (c)
y

in Sec. IV C. In the calculations, we set the coupling constant
in Eqs. (11) and (12) as ce

u = cQ, which is estimated from
the NQR frequency in Ref. [75] as cQ = 0.13 when setting
γ h̄ = 1, while the coupling constants are set to be c for the pri-

marily induced multipoles and c′ for the secondarily induced
multipoles as the unknown model parameters for simplicity.

A. Staggered Qυ-type AFQ

We discuss the NQR spectrum in the staggered Qυ-type
AFQ state, where the effective nuclear Hamiltonian is rep-
resented by considering the finite electronic multipoles in
Eqs. (11)–(13) as

HCoA (B) = (
cQQ(c)

u ± cG(c)
xy

)
Îu. (29)

The positive (negative) sign in the second term corresponds to
HCoA (HCoB ).

The NQR frequencies of CoA and CoB sites as a function
of G(c)

xy with fixed c = 0.02 are shown in Fig. 3(a). The color
scale in Fig. 3 shows the intensity of the NQR spectrum,
which is calculated by the magnitude of the matrix element of
Ix between different nuclear states i and j at the CoA (B) site,
|Ĩ i j

x,A (B)|2 ≡ |〈i|Ĩx,A (B)| j〉|2, where Ĩμ (μ = x, y, z) represents
the normalized Iμ satisfying Tr[ĨμĨ†

μ] = 1.
The result shows that the NQR frequencies for CoA and

CoB have different values and show the spectral splittings
and shift in the Qυ-type AFQ state. The sublattice-dependent
splitting is due to the effective coupling between G(c)

xy and Iu

with different signs for different sublattices. In other words,
the odd-parity multipole moment G(c)

xy in Eq. (29) plays a
significant role in the splitting of the NQR frequencies. In fact,
the splittings of the NQR frequencies are proportional to G(c)

xy .
On the other hand, the shift of the frequency to smaller f is
due to the decrease of the dominant cQQ(c)

u (cQ � c) term in
Eq. (29) by the suppression of Q(c)

u while increasing G(c)
xy as

shown in Fig. 2(d). Note that it might be difficult to detect the
splitting due to the odd-parity multipoles even for a saturated
multipole moment G(c)

xy ∼ 0.5 when the coupling constant c is
small, since the splittings are proportional to cG(c)

xy .
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FIG. 3. Odd-parity multipole (upper scale) and its hyperfine field
(lower scale) dependences of the NQR frequency f in the staggered
(a) Qυ -type AFQ, (b) Qu-type AFQ, and (c) Mx-type AFM states. The
coupling constants co

u, co
υ , and co

x,y are set as co
u = co

υ = c = 0.02 in
the AFQ states and co

x,y = c = 0.3 in the AFM state. Other coupling
constants are set to be c′ = 0.02. As an intensity of the spectrum,
|Ĩ i j

x,A (B)|2 is shown by the colorplot in red (blue) for the CoA (CoB)
site. When the spectra from CoA and CoB are equivalent, their inten-
sities are shown by violet.

B. Staggered Qu-type AFQ

In the staggered Qu-type AFQ state with Q(c)
z , the effective

nuclear Hamiltonians of CoA and CoB are represented by

HCoA (B) = cQQ(c)
u Îu ± cQ(c)

z Îυ. (30)

The NQR spectrum for the coupling constant c = 0.02 is
shown in Fig. 3(b). In contrast to the result in the Qυ-type
AFQ state, there is no splitting in the NQR spectrum. This is
because the different sign of Q(c)

z in Eq. (30) is not relevant to
the splitting, which is consistent with the symmetry argument
that there is no linear coupling between Q(c)

z and Q(c)
u in the

free-energy expansion at the Co site. In the end, nonzero Q(c)
z

just affects the spectral shift.

In addition to the splitting, the difference is found in the
odd-parity multipole dependence of the frequency shift. The
frequencies in the Qu-type AFQ state in Fig. 3(b) decrease
with increasing Q(c)

z faster than those in the Qυ-type AFQ state
in Fig. 3(a). This is understood from the different dependences
on the multipole moments as discussed in Sec. II C; Q(c)

u in the
Qu-type AFQ state decreases by ∼[Q(c)

z ]4/3, while that in the
Qυ-type AFQ state decreases by ∼[G(c)

xy ]2.

C. Staggered Mx-type AFM

In the staggered Mx-type AFM state, the nuclear Hamilto-
nian is represented by

HCoA (B) = ±cT (c)
y Îx + cQQ(c)

u Îu + c′Q(c)
υ Îυ. (31)

It should be noted that nuclear dipole contribution in the
Mx-type AFM appears even without the net magnetization or
the magnetic field. Figure 3(c) shows the NQR spectrum for
the coupling constants c = 0.3 and c′ = 0.02 in the Mx-type
AFM state, where c is estimated from the magnitude of the
internal magnetic field in Ref. [75]. The NQR frequencies split
into seven due to the contribution from the internal magnetic
field arising from the first term in Eq. (31). Meanwhile, the
NQR frequencies for CoA and CoB sites are the same, which
indicates that there is no sublattice-dependent splitting in the
presence of the odd-parity T (c)

y . This means that T (c)
y does not

linearly couple with Q(c)
u in the free-energy expansion, which

is consistent with the symmetry argument. Thus, it is difficult
to conclude the presence of T (c)

y only from the seven splittings
in Fig. 3(c). In fact, the NQR spectra split into seven can
be obtained in the even-parity magnetic dipole order, such as
M (c)

x , in Table I.

V. NMR SPECTRA

In this section we discuss the NMR spectra in the odd-
parity multipole orderings. The applied resonance fields are
along the [001] and [100] directions in Secs. V A and V B,
respectively. We set γ h̄ = 1 and |H (n)| = 1. The coupling
constants are set as ce

u = cQ = 0.13 as well as that in NQR
in Sec. IV. The other coupling constants are set to be c for
the primarily induced multipoles and c′ for the secondarily
induced multipoles for simplicity. The field-swept spectra are
shown in Appendix B.

A. The [001]-field spectrum

We discuss the NMR spectra in the paramagnetic state, Qυ-
type AFQ state, Qu-type AFQ state, and Mx-type AFM state
in Secs. V A 1–V A 4, respectively.

1. Paramagnetic state

In the paramagnetic state in the [001] magnetic field
H (n) = (0, 0, H (n)

z ), the effective nuclear Hamiltonian is rep-
resented by

HCoA (B) = ( − H (n)
z + c′M (c)

z

)
Îz + cQQ(c)

u Îu, (32)

H̃CoA (B) = c′Q(c)
u Îz + c′M (c)

z Îu. (33)
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FIG. 4. Odd-parity multipole dependences of the NMR frequency f in (a)–(c) the [001] magnetic field and (d)–(f) the [100] magnetic field.
The data are for the (a) and (d) Qυ -type AFQ, (b) and (e) Qu-type AFQ, and (c) and (f) Mx-type AFM states. The color scales represent the
intensities with (a)–(c) |Ĩ i j

x,A (B)|2 and (d)–(f) |Ĩ i j
y,A (B)|2. The coupling constants are set as co

u = co
υ = c = 0.02 in the AFQ states and co

x,y = c =
0.3 in the AFM state. Other coupling constants are set to be c′ = 0.02.

The first term in Eq. (32) includes the Zeeman term from
the external magnetic field. The sum of the external magnetic
field and the hyperfine field in Eqs. (32) and (33) results in
the seven spectral peaks separated by the same interval in the
NMR measurement.

2. Staggered Qυ-type AFQ

In the Qυ-type AFQ state, the effective nuclear Hamilto-
nian is obtained as

HCoA (B) = (−H (n)
z + c′M (c)

z

)
Îz + (

cQQ(c)
u ± cG(c)

xy

)
Îu, (34)

H̃CoA (B) = c′(Q(c)
u ± G(c)

xy ± M (c)
υ

)
Îz + c′(M (c)

z ± M (c)
υ

)
Îu.

(35)

The frequency-swept NMR spectrum for c = c′ = 0.02 is
shown in Fig. 4(a), where the color scale represents the in-
tensity of the [001]-field NMR spectrum. Figure 4(a) shows
that G(c)

xy leads to sublattice-dependent spectral splittings due
to the different frequencies of CoA and CoB as well as the

result in NQR. The NMR spectrum is mainly determined by
the following dominant contributions: the Zeeman term, the
cQQ(c)

u term, and primarily induced G(c)
xy terms. The spec-

tral splittings originate from the odd-parity multipoles G(c)
xy

and M (c)
υ , which are coupled with Q(c)

u and M (c)
z , though the

contribution from M (c)
υ is much smaller than that of G(c)

xy , as
discussed in Sec. II C. Additionally, each spectrum is shifted
by [G(c)

xy ]2 as discussed in Sec. IV B.

3. Staggered Qu-type AFQ

In the Qu-type AFQ state, the effective nuclear Hamilto-
nian is described as

HCoA (B) = ( − H (n)
z + c′M (c)

z

)
Îz + cQQ(c)

u Îu ± cQ(c)
z Îυ, (36)

H̃CoA (B) = c′Q(c)
u Îz + c′M (c)

z Îu ± c′M (c)
u Îυ. (37)

The NMR spectrum for c = c′ = 0.02 is shown in Fig. 4(b).
The seven frequencies have no additional splitting for both Co
sites, since the induced odd-parity multipoles Q(c)

z and M (c)
u in
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TABLE V. Sublattice-dependent NQR and NMR splittings in the AFM, AFQ, and AFO states in the six field directions [001], [100], [110],
⊥[001], ⊥[010], and ⊥[1̄10]. The local multipoles (LMP) at the Ce site and cluster odd-parity multipoles (OPMP) are shown in the second and
third columns, respectively. The mark � represents the presence of the sublattice-dependent splittings.

NMR

State LMP OPMP NQR H‖[001] H‖[100] H‖[110] H⊥[001] H⊥[010] H⊥[1̄10]

AFM Mx Ty � � � � �
AFM My Tx � � �
AFM Mz Mu �
AFQ Qu Qz � � �
AFQ Qυ Gxy � � � � � � �
AFQ Qxy Gυ �
AFQ Qyz Qy �
AFQ Qzx Qx � �
AFO Mxyz Mxy

AFO Mβ
z Mυ � � �

the ordered state do not couple with Q(c)
u or M (c)

z . Meanwhile,
each frequency is shifted by [Q(c)

z ]4/3, which is understood by
the behavior of Q(c)

u , as discussed in Sec. IV B.
For fully saturated Q(c)

z = 0.5, all the NMR frequencies
become f ∼ 5.2, which corresponds to the frequency only in
the external magnetic field. This is because Q(c)

u in the crystal-
field term vanishes for Q(c)

z = 0.5, as shown in Fig. 2(h).

4. Staggered Mx-type AFM

In the Mx-type AFM state, the effective nuclear Hamilto-
nian for the Co nucleus is represented as

HCoA (B) = (−H (n)
z +c′M (c)

z

)
Îz ± c′T (c)

y Îx +cQQ(c)
u Îu+cQ(c)

υ Îυ,

(38)

H̃CoA (B) = c′Q(c)
u Îz + c′M (c)

z Îu ± c′T (c)
y Îzx. (39)

The NMR spectra for c = 0.3 and c′ = 0.02 are shown in
Fig. 4(c). The spectra show no sublattice-dependent splitting,
which is similar to those in the NQR spectra in Sec. IV C,
as T (c)

y does not couple with Q(c)
u or M (c)

z . The shift of the
resonance frequency in relation to T (c)

y is small compared to
that in the Qu-type AFQ state in Fig. 4(b), which reflects the
different behavior of Q(c)

u , as shown in Fig. 2(i).

B. The [100]-field spectrum

We show the [100]-field NMR spectrum in the param-
agnetic state, Qυ-type AFQ state, Qu-type AFQ state, and
Mx-type AFM state in Secs. V B 1–V B 4, respectively.

1. Paramagnetic state

In the paramagnetic state in the [100] magnetic field, the
effective nuclear Hamiltonian of the Co nucleus is represented
by

HCoA (B) = ( − H (n)
x + c′M (c)

x

)
Îx + cQQ(c)

u Îu + c′Q(c)
υ Îυ. (40)

H̃CoA (B) = c′(Q(c)
u + Q(c)

υ

)
Îx

+ c′(Q(c)
υ + M (c)

x

)
Îu + c′(Q(c)

u + M (c)
x

)
Îυ. (41)

The nuclear Hamiltonian in Eqs. (40) and (41) leads to seven
spectra similar to those in the [001] magnetic field. However,
the intervals between the resonance frequencies are not equiv-
alent, since the magnetic field normal to the z axis leads to the
emergence of Q(c)

υ .

2. Staggered Qυ-type AFQ

In the Qυ-type AFQ state, the effective nuclear Hamilto-
nian is described as

HCoA (B) = (−H (n)
x +c′M (c)

x

)
Îx +(cQQ(c)

u ± cG(c)
xy )Îu+c′Q(c)

υ Îυ,

(42)

H̃CoA (B) = [
c′(Q(c)

u + Q(c)
υ ± Q(c)

z ± G(c)
xy

) ± c′
MT (c)

y

]
Îx

+ c′(Q(c)
υ + M (c)

x ± Q(c)
z ± T (c)

y

)
Îu

+ c′(Q(c)
u + M (c)

x ± Q(c)
z ± G(c)

xy ± T (c)
y

)
Îυ. (43)

Figure 4(d) shows the [100]-field NMR spectra for c =
c′ = 0.02 and c′

M = 0.3, where the color scale represents
the intensity of the NMR spectra. The result indicates that
sublattice-dependent spectral splitting occurs as well as the re-
sults for NQR (Sec. IV A) and [001]-field NMR (Sec. V A 2).
Also in the [100]-field NMR, the spectrum is mainly deter-
mined by the following dominant contributions: the Zeeman
term, the cQQ(c)

u term, and primarily induced G(c)
xy terms. In

other words, among the odd-parity multipoles G(c)
xy , Q(c)

z , and
T (c)

y , the important contribution comes from G(c)
xy , since the

magnitudes of Q(c)
z and T (c)

y are much smaller than that of G(c)
xy ,

as shown in Fig. 2(j). Meanwhile, the shift of the spectra is
dominated by Q(c)

u .

3. Staggered Qu-type AFQ

The effective nuclear Hamiltonian in the Qu-type AFQ
state is

HCoA (B) = ( − H (n)
x + c′M (c)

x

)
Îx + cQQ(c)

u Îu

+ (
c′Q(c)

υ ± cQ(c)
z

)
Îυ, (44)
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H̃CoA (B) = [
c′(Q(c)

u + Q(c)
υ ± Q(c)

z ± G(c)
xy

) ± c′
MT (c)

y

]
Îx

+ c′(Q(c)
υ + M (c)

x ± G(c)
xy ± Q(c)

z ± T (c)
y

)
Îu

+ c′(Q(c)
u + M (c)

x ± G(c)
xy ± T (c)

y

)
Îυ, (45)

which is the same as that in the Qυ-type AFQ state in Eqs. (42)
and (43), as the magnetic point group symmetry in the mag-
netic field is the same as 2′mm′ in this case. Thus, in contrast
to the results for the NQR (Sec. IV B) and [001]-field NMR
(Sec. V A 3), the sublattice-dependent splittings occur in the
[100] magnetic field as shown in the NMR spectra for c =
c′ = 0.02 and c′

M = 0.3 in Fig. 4(e).
However, the mean-field dependence of the spectra is

different from that in the Qυ-type AFQ state, since the mag-
nitude of Q(c)

z is much larger than that of other multipoles. In
particular, the spectral shift reflects the different mean-field
dependence of Q(c)

u , as already discussed in Sec. IV B.

4. Staggered Mx-type AFM

The nuclear Hamiltonian in the Mx-type AFM state is

HCoA (B) = (−H (n)
x +c′M (c)

x ± cT (c)
y

)
Îx +cQQ(c)

u Îu + c′Q(c)
υ Îυ,

(46)

H̃CoA (B) = c′(Q(c)
u +Q(c)

υ ± Q(c)
z ± G(c)

xy

)
Îx

+ c′(Q(c)
υ + M (c)

x ± G(c)
xy ± Q(c)

z ± T (c)
y )Îu

+ c′(Q(c)
u + M (c)

x ± G(c)
xy ± Q(c)

z ± T (c)
y

)
Îυ, (47)

where the same multipoles appear in the two AFQ states in
Eqs. (42)–(45), since the magnetic point group symmetry in
the [100] magnetic field reduces to 2′mm′ also in this case.
Thus, the sublattice-dependent NMR splittings occur, which
are similar to those in the AFQ states. However, the dominant
odd-parity multipole to induce the spectral splitting is given
by T (c)

y . The [100]-field NMR spectra for c = 0.3 and c′ =
0.02 is shown in Fig. 4(f).

VI. SPECTRAL SPLITTINGS FOR ODD-PARITY
MULTIPOLES

So far, we have focused on the NQR and NMR spectra in
the two AFQ and AFM ordered states in the magnetic fields
along the [001] and [100] directions as well as the zero mag-
netic field. In a similar way, possible NQR and NMR splittings
in other odd-parity multipole orderings in any field directions
can be calculated. We show the presence or absence of the
sublattice-dependent NQR and NMR splittings for the other
candidate odd-parity multipole orders in CeCoSi, which are
expected from the low-energy crystal-field level. The present
analysis is applicable once the phase transition occurs in the
magnetic field unless the second-excited levels are involved in
the phase transition. It should be noted that our analysis can
be extended to other electronic orderings in different crystal-
field levels as discussed in Appendix D and other multiorbital
systems.

The results in the present �6-�7 levels are summarized
in Table V. We list the other candidates, as discussed in
Sec. II A: two AFM states, three AFQ states, and two
antiferromagnetic octupole (AFO) states. We also include

the results in the Qυ- and Qu-type AFQ states and the
Mx-type AFM state discussed in Secs. IV and V in
the other magnetic-field directions. The table exhibits when
the sublattice-dependent spectral splittings occur in the pres-
ence of odd-parity multipoles. For example, in the AFQ phase,
the NMR measurement in the zx-plane (yz-plane) magnetic
field is useful in identifying the odd-parity multipole order
parameter; the sublattice-dependent splittings which always
appear when the magnetic-field direction is rotated in the zx
(yz) plane indicate the emergence of G(c)

xy . Meanwhile, in the
AFM phase, the sublattice-dependent splittings in the mag-
netic field along the x direction will indicate the presence of
T (c)

y . In this way, as the different spectral splittings are found
in the different odd-parity multipole orderings depending on
the magnetic-field directions, the detailed investigation of the
field angle dependence enables us to identify the order param-
eter in CeCoSi.

VII. SUMMARY

We have discussed the effect of the odd-parity multipoles
on the NQR and NMR spectra. First, we derived the hyperfine
field of the Co nuclei in consideration of the contribution from
the electronic multipole moments at Ce sites. We showed that
the hyperfine field in the presence of the odd-parity multi-
pole moments causes the sublattice-dependent splittings of the
NQR and NMR spectra. Moreover, we obtained the different
spectral splittings for the different odd-parity multipoles by
considering the NQR spectral splitting as well as [001]- and
[100]-field NMR spectral splittings in the three ordered states:
the Mx-type AFM state with T (c)

y and Qυ- and Qu-type AFQ
states with G(c)

xy and Q(c)
z , respectively.

We emphasize that not only the even-parity multipoles but
also the odd-parity multipoles affect the nuclear spin unless
the NMR site is located at the inversion center. As the key in-
gredient is the emergence of the cluster odd-parity multipoles,
which consist of the spatial distributions of the even-parity
multipoles such as magnetic dipoles and electric quadrupoles,
the odd-parity-hosting candidate materials to have the AFM
structures, e.g., Ce3TiBi5 [76] and AOsO4 (A = K, Rb, Cs)
[77], might be good targeting materials.
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APPENDIX A: MULTIPOLE MOMENTS IN CONJUGATE
MEAN FIELDS

In this Appendix we discuss the different mean-field de-
pendences of G(c)

xy in the Qυ-type AFQ state and Q(c)
z in the

Qu-type AFQ state from Sec. II C. The result from the numer-
ical diagonalization indicates that G(c)

xy roughly increases as a
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FIG. 5. Odd-parity multipole dependences of the field-swept NMR spectra in the (a)–(c) [001] magnetic field and (d)–(f) [100] magnetic
field. The data are for the (a) and (d) Qυ -type AFQ, (b) and (e) Qu-type AFQ, and (c) and (f) Mx-type AFM states. The color scales represent
the intensities with (a)–(c) |Ĩ i j

x,A (B)|2 and (d)–(f) |Ĩ i j
y,A (B)|2. The coupling constants are co

u = co
υ = c = 0.02 in the AFQ states and co

x,y = c = 0.3
in the AFM state. Other coupling constants are set to be c′ = 0.02.

function of hs
Qυ

, whereas Q(c)
z increases as a function of (hs

Qu
)3

in the small hs
X region as shown in Figs. 2(d) and 2(e).

The difference is understood by the power expansion of the
multipole moments

X̃ (c) = XA − XB = a(1)
X

(
hs

X

) + a(3)
X

(
hs

X

)3 + · · · , (A1)

where X̃ (c) = G(c)
xy (Q(c)

z ) for X = Qυ (Qu) and a(n)
X are the co-

efficients that depend on the crystal-field splitting �. It should
be noted that the even order of hs

X does not appear due to the
different parity with respect to the inversion symmetry.

For large �, by treating the mean-field term in Eq. (1)
perturbatively, the basis function at the Cei site in the Qυ-type
AFQ state changes into

φ̃�7σ,i = 1

N

(
φ�7σ,i ± hs

Qυ

2�
φ�6σ,i

)
, (A2)

where the sign + (−) is taken for i = A (B), N is the nor-
malization factor, and σ =↑,↓ is the quasispin. Then G(c)

xy is

obtained as

G(c)
xy = 1

N

hs
Qυ

2�
=

[
1 +

(
hs

Qυ

2�

)2
]−1/2

hs
Qυ

2�

∼ 1

2�
hs

Qυ
−

(
1

2�

)3(
hs

Qυ

)3
. (A3)

This indicates that a(1)
Qυ

(= 1
2�

) � a(3)
Qυ

[=( 1
2�

)3] is satisfied for
hs

Qυ
/� � 1, which results in the linear behavior of G(c)

xy in
Fig. 2(d). In a similar way, the linear behavior of T (c)

y in
Fig. 2(f) is accounted for in the Mx-type AFM state.

In contrast, in the Qu-type AFQ state, Q(c)
z becomes zero

for large �, which means that

Q(c)
z = 0

(
� > hs

Qu

)
, (A4)

Q(c)
z = 1

(
� < hs

Qu

)
. (A5)

Thus, the onset of Q(c)
z for small hs

Qu
in Fig. 2(e) is due to the

finite-temperature effect. Numerically, the opposite relation
(a(1)

Qu
� a(3)

Qu
) to the Qu-type AFQ ordered case with respect
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FIG. 6. Odd-parity multipole dependences of the (a)–(c) frequency-swept NMR spectra and (d)–(f) field-swept NMR spectra in the [110]
magnetic field. The data are for the (a) and (d) Qυ -type AFQ, (b) and (e) Qu-type AFQ, and (c) and (f) Mx-type AFM states. The color scales
represent the intensities with |Ĩ i j

[1̄10],A (B)
|2. The coupling constants are co

u = co
υ = 0.02 in the AFQ states and co

x,y = 0.3 in the AFM state. Other
coupling constants are set to be c′ = 0.02.

to a(1)
Qu

and a(3)
Qu

is obtained for large �; a(1)
Qu

∼ 10−2a(3)
Qu

for
� = 0.5 and β = 10. This implies that Q(c)

z increases as a
function of (hs

Qu
)3 in the small hs

Qu
region in Fig. 2(e).

APPENDIX B: FIELD-SWEPT NMR

We show the field-swept NMR spectra for the reso-
nance frequency ω = 1.1γ in the [001] and [100] magnetic

fields. We set γ = 1 and the coupling constant as well as
that in Sec. V. Figures 5(a)–5(c) show the spectra in the
[001] magnetic field, whereas Figs. 5(d)–5(f) show those
in the [100] magnetic field. The results show a similar
tendency in the cases of the frequency-swept spectra in
Fig. 4.

APPENDIX C: THE [110]-FIELD NMR

We show the effective hyperfine fields and NMR spectra in the case of the [110] magnetic field in the Qυ- and Qu-type AFQ
states and the Mx-type AFM state. The hyperfine field Hamiltonian is given by

H̃ [110]
para = (

c̃e,1
x,yQ(c)

u + c̃e,2
x,yQ(c)

xy

)
(Îx + Îy) + [

c̃e,1
u Q(c)

xy + c̃e,2
u

(
M (c)

x + M (c)
y

)]
Îu + [

c̃e,1
xy Q(c)

u + c̃e,2
xy

(
M (c)

x + M (c)
y

)]
Îxy, (C1)

H̃o[110]
order = c̃o,1

x,y G(c)
xy (Îx + Îy) + [

c̃o,2
x,y

(
T (c)

x − T (c)
y

) + c̃o,3
x,y Q(c)

z + c̃o,4
x,y G(c)

υ

]
(Îx − Îy) + c̃o

z

(
Q(c)

x − Q(c)
y

)
Îz

+ c̃o
u

(
T (c)

x + T (c)
y

)
Îu + [

c̃o,1
υ G(c)

υ + c̃o,2
υ

(
T (c)

x − T (c)
y

)]
Îυ + [

c̃o,1
yz,zxM (c)

u + c̃o,2
yz,zxM (c)

xy

]
(Îyz − Îzx )
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TABLE VI. Sublattice-dependent NQR and NMR splittings in the AFM, AFQ, AFH, and AFT states in the six field directions [001],
[100], [110], ⊥[001], ⊥[010], and ⊥[1̄10], when the crystal-field first-excited state is a �7 doublet. The local multipoles (LMP) at the Ce site
and cluster odd-parity multipoles (OPMP) are shown in the second and third columns, respectively. The mark � represents the presence of the
sublattice-dependent splittings.

NMR

State LMP OPMP NQR H‖[001] H‖[100] H‖[110] H⊥[001] H⊥[010] H⊥[1̄10]

AFM Mx Ty � � � � �
AFM My Tx � � �
AFM Mz Mu �
AFQ Qu Qz � � �
AFQ Qyz Qy �
AFQ Qzx Qx � �
AFH Qα

4z Gu � � �
AFT M5u Tz �

+ [
c̃o,3

yz,zx

(
Q(c)

x − Q(c)
y

) + c̃o,4
yz,zxM (c)

υ

]
(Îyz + Îzx ) + [

c̃o,1
xy G(c)

xy + c̃o,2
xy

(
T (c)

x + T (c)
y

)]
Îxy, (C2)

H̃e[110]
order = [

c̃e,3
x,y

(
M (c)

x − M (c)
y

) + c̃e,4
x,yQ(c)

υ

]
(Îx − Îy) + [

c̃e,1
z

(
Q(c)

yz + Q(c)
zx

) + c̃e,2
z M (c)

xyz

]
Îz

+ c̃e
υ

(
M (c)

x − M (c)
y

)
Îυ + c̃e,1

yz,zxMβ(c)
z (Îyz − Îzx ) + [

c̃e,2
yz,zx

(
Q(c)

yz + Q(c)
zx

) + c̃e,3
yz,zxM (c)

z + c̃e,4
yz,zxM (c)

xyz

]
(Îyz + Îzx ). (C3)

We set the coupling constants as ce
u = cQ = 0.13 and co

x,y = 0.3 and the others are set to be 0.02 for simplicity.
Figures 6(a)–6(c) show the frequency-swept NMR spectra for the magnetic field |H (n)| = 1, whereas Figs. 6(d)–6(f) are the

field-swept NMR spectra for the resonance frequency ω = 1.1γ , where γ is set to be 1. The intensity of the spectra is calculated
as |Ĩ i j

[1̄10],A(B)
|2 for I[1̄10] = (Ix − Iy)/2.

In the Qυ-type AFQ [Figs. 6(a) and 6(d)] and Mx-type AFM states [Figs. 6(d) and 6(f)], the splittings in the [110] field show
a similar tendency to those in the [100] field in Secs. V B 2 and V B 4. Their splittings are dominantly characterized by G(c)

xy and
T (c)

y , respectively. On the other hand, in the Qu-type AFQ state in Figs. 6(b) and 6(e), there are no spectral splittings, in contrast
to the result in the [100] field in Sec. V B 3. The reason why no splittings occur in the [110] field is attributed to the difference
of the site symmetry at the Co site. As the present site symmetry is 2′22′, which is different from 2′mm′ in the [100] direction,
there is no coupling between odd-parity Q(c)

z and any of Ix + Iy, Iu, and Ixy in Eq. (C2).

APPENDIX D: SPECTRAL SPLITTINGS FOR OTHER
LOW-ENERGY CRYSTAL-FIELD LEVELS

The different low-energy crystal-field levels activate differ-
ent types of odd-parity multipole orderings. In this Appendix
we show the expected sublattice-dependent splittings in NQR
and NMR spectra by supposing the low-energy crystal-field
level consists of the two �7 doublets [56]. In this case,
two other multipole orderings become possible: Qα

4z-type an-
tiferroic hexadecapole ordering (AFH) with the odd-parity
electric toroidal quadrupole Gu and M5u-type antiferroic tria-

contadipole ordering (AFT) with the magnetic toroidal dipole
Tz. The functional forms of Qα

4z and M5u are shown in
Ref. [78].

By performing a procedure similar to that in Secs. III–V,
the presence or absence of the sublattice-dependent spectral
splittings in NQR and NMR is obtained. The results are sum-
marized in Table VI. The common multipoles appearing in
both the two �7 doublets and �6-�7 doublets, Tx, Ty, Mu, Qz,
Qx, and Qy, give the same result in Table V. Note that electric
toroidal quadrupoles Gυ and Gxy and magnetic quadrupoles
Mυ and Mxy are not activated within the low-energy crystal-
field levels unless the first-excited state is a �6 doublet.
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