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The intrinsic spin Hall effect plays an important role in spintronics applications, such as spin-orbit torque-
based memory. The bulk space group symmetry determines the form of the bulk spin current conductivity tensor.
This paper considers materials for which the local point group symmetry of individual atoms is lower than
the global (bulk) symmetry. This enables a position-dependent spin current response, with additional tensor
components allowed relative to the bulk response. We present a general method to compute the position-
dependent intrinsic spin Hall conductivity, with similar computational effort relative to computing the bulk
spin Hall conductivity. We also present the general symmetry-constrained form of the position-dependent spin
current response. We apply this method to 1T ′-WTe2, which exhibits a conventional spin Hall conductivity tensor
component σ y

xz and a staggered unconventional component σ z
xz. The magnitude of these two components, around

100 and 20 (� cm)−1, respectively, are comparable to the spin-orbit torque exerted on adjacent ferromagnets
in experiments. We then consider orthorhombic PbTe, in which both uniform and staggered spin current
conductivity are one order of magnitude larger.

DOI: 10.1103/PhysRevB.102.195146

I. INTRODUCTION

In spintronics, the efficient generation of spin current is a
key component to electrically controlling a system’s magnetic
state. A prominent mechanism for electrically generating spin
current is the spin Hall effect [1]. The spin current generated
from the spin Hall effect typically flows perpendicular to the
applied electric field, with spin polarization perpendicular to
both flow and electric field directions [see Fig. 1(a)] [1–3].
This prototypical spin current configuration can be under-
stood on general symmetry grounds, and applies to materials
with cubic symmetry. The spin current generated from the
spin Hall effect has been utilized in bilayer heterostructures
composed of a substrate—which functions as a source of
spin Hall current—and a ferromagnetic layer. The spin cur-
rent from the substrate exerts a spin transfer torque on the
adjacent ferromagnet [4–7], an effect which belongs to the
family of so-called “spin-orbit torques.” This mechanism for
electrically controlling the ferromagnetic orientation is useful
for a range of applications, including magnetic random access
memory and magnetic domain wall motion [8]. However, the
symmetry-derived constraints on the form of the spin current
limit its usefulness for some important applications, such as
electrically switching perpendicularly magnetized layers [9].

A recently developed approach to overcoming this limita-
tion of the spin Hall effect is the use of materials or systems
with reduced symmetry [10], enabling additional components
of spin current. Recent experiments [11–15] showed that sub-
strates with broken in-plane symmetry exert unconventional
spin-orbit torques on adjacent ferromagnets. These torques
are consistent with the presence of spin current flowing in the

substrate whose spin polarization is aligned to the direction of
spin flow [see Fig. 1(b)]. Subsequent first-principles calcula-
tions demonstrated that the computed torque in these systems
is indeed mostly the consequence of this unconventional spin
Hall current [16]. Other measurements of nonlocal transport
also indicate an unconventional spin current response in low
symmetry materials [17–19].

The general symmetry constraints on the spin Hall conduc-
tivity for different bulk symmetry groups has been established
previously [20]. However, the experimental work referenced
above utilizes a class of materials with a nonsymmorphic
symmetry group. In such materials, the symmetry of a specific
lattice site can be lower than the global symmetry of the
material. This leads to a spatially varying response which
can be staggered or “hidden”: the system response is nonzero
on individual sites, but vanishes after summing over all sites
comprising a unit cell. Identifying and utilizing the hidden
response of materials has been a common theme in recent
work, such as computing the staggered spin splitting present
in the ground state of bulk materials [21], or the staggered
electrically induced spin present in CuMnAs [8,22].

In this work we present a method for computing the
spatially resolved intrinsic spin current conductivity. This
method requires the same computational overhead as eval-
uating the bulk spin Hall conductivity. We also present the
general symmetry-constrained form of the position-dependent
spin Hall conductivity. Using this approach within density
functional theory, we calculate the staggered spin Hall con-
ductivity for two materials: 1T ′-WTe2 and orthorhombic
PbTe. We find that the magnitude of the unconventional
staggered spin Hall conductivity in WTe2 is similar to the
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FIG. 1. (a) Configuration of conventional spin Hall effect in
crystals with cubic symmetry. The applied electric field (red arrow
along x), spin current flow direction (black arrows), and spin current
spin direction (cyan arrows) are mutually orthogonal. (b) Additional
unconventional spin current response for a system in which y → −y
mirror symmetry is broken in an opposite sense in adjacent layers
(different colors of xy planes represent the broken symmetry).

unconventional dampinglike torque computed [16] and mea-
sured [11] in WTe2-ferromagnet bilayers. For PbTe, we find
a staggered spin Hall conductivity response whose magnitude
exceeds that of WTe2 by an order of magnitude.

The observation that the staggered spin Hall conductivity
can be closely related to the unconventional spin-orbit torque
exerted on adjacent ferromagnets [16] provides a key motiva-
tion for our work. Another motivation is that the computation
of the bulk staggered spin Hall response is significantly
less intensive than the direct computation of the spin-orbit
torque in heterostructures. The method we present here can
be adopted easily in existing first-principles calculations, en-
abling a more efficient search for materials to serve as the
source of dampinglike spin-orbit torque. Finally, we note that
this work focuses on intrinsic contributions to the spin Hall
conductivity, with the expectation that the intrinsic mecha-
nism dominates extrinsic mechanisms such as skew scattering
and side jump in transition metals with strong spin-orbit cou-
pled bands [1,23,24].

II. FORMALISM

A. Method

We first present a method for computing the position-
dependent spin current conductivity tensor within a periodic
unit cell. This method is most readily applied in the tight-
binding representation, which we utilize in this work. The
direct construction of the position-dependent spin current op-
erator in a localized orbital basis is straightforward, however
it generally requires additional computation overhead relative
to the bulk current operator (see Appendix A). Here we show
an alternative approach which does not require this additional
overhead. The idea is to compute the net spin influx into each
atomic site (or each atomic layer), and use this information to
construct the position-dependent spin current.

We consider nonmagnetic materials where the Hamiltonian
is given by

H (r) = p2

2m
+ V (r) + αSOC[p × ∇V (r)] · s, (1)

FIG. 2. Schematic of a tight-binding representation of a lattice.
� and � + 1 label adjacent layers (colored blue and red, respectively).
(a) Jx (� + 1

2 ) is the flux density passing through the plane separat-
ing layers � and � + 1. For this example, î = x̂. (b) The difference
between Jx (� + 1

2 ) and Jx (� − 1
2 ) is the net flux density into the

layer �.

where p is the momentum operator and V (r) includes the crys-
tal field potential and the electron-electron interaction energy
at mean-field level, which may be spin dependent. αSOC pa-
rameterizes the spin-orbit coupling and s is the spin operator.
To proceed, we consider Eq. (1) where the interaction terms
are evaluated in the ground state. Equation (1) can then be
expressed in a single particle tight-binding representation:

H =
∑

ν,ν ′,α,α′
Hνν ′αα′ c†

ναcν ′α′ , (2)

where c†
να is the creation operator for an orbital α (where the

orbital label also includes spin) centered on atomic site ν, and
cν ′α′ is the annihilation operator for orbital α′ on site ν ′. The
tight-binding Hamiltonian matrix element is given by

Hνν ′αα′ =
∫

dr φ∗
να (r)H (r)φν ′α′ (r), (3)

where φνα (r) is the localized real space wave function of
orbital α centered at site ν. The set of orbitals {φνα (r)} form
the basis for the tight-binding representation.

The tight-binding model is an abstraction of the full real
space description of the system. The two primitive objects in
a tight-binding description are sites, and links between sites.
Site-defined quantities include number and spin. Link-defined
quantities include flux and spin flux. In this work we focus on
bulk, periodic systems. In periodic systems, a site in the unit
cell corresponds to an extended layer, which we specify with
an integer label �, and the flux between two sites corresponds
to a flux density J passing through a plane separating layers.
(Note that we use the terms flux density and current density
interchangeably.) We label planes with half-integers; a plane
with label � + 1/2 lies between the adjacent layers � and
� + 1. We also specify the direction normal to the plane in
the subscript of the flux density: Ji (see Fig. 2).

Our method relies on first partitioning a unit cell into layers
stacked along a chosen direction î. Denoting the ith compo-
nent of a site’s position as ri, a layer consists of all sites with
the same value of ri. The number of layers N is therefore equal
to the number of unique values of ri among all sites in the
unit cell.
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For a partition direction î, the number density operator for
layer � is

n(�, î)νν ′αα′ =
{
δνν ′δαα′ if ν ∈ layer �,

0 if ν /∈ layer �.
(4)

A layer is uniquely defined by its layer number � and orienta-
tion î, and we include these arguments explicitly for relevant
operators. The particle continuity equation equates the time
derivative of n(�, î) to the net influx of particle current density:

dn(�, î)

dt
= Ji

(
� + 1

2

)
− Ji

(
� − 1

2

)
. (5)

As described earlier, the flux density operator Ji includes a
subscript indicating the normal direction of the plane through
which particles flow. We use the Heisenberg equation of mo-
tion to rewrite the left-hand side of Eq. (5), obtaining the
identity

1

ih̄

[
H (k), n(�, î)

] = Ji

(
k, � + 1

2

)
− Ji

(
k, � − 1

2

)
. (6)

where we have added the Bloch wave vector k as an argument
to all relevant operators (we explicitly show the k dependence
of all quantities). Equation (6) is often used to define the flux
density operator [25]. The terms in Eq. (6) and all subsequent
equations correspond to matrices in the tight-binding repre-
sentation.

The spin flux density operator Q is the symmetrized prod-
uct of the flux density and spin operators [23,24]:

Qα
i

(
k, � + 1

2

)
=

{
Ji

(
k, � + 1

2

)
, sα

}
, (7)

where {A, B} = 1
2 (AB + BA). The spin flux density Qα

i (� + 1
2 )

is a rank-2 tensor whose components correspond to the spin
direction α and the direction normal to the plane through
which spin flows i. Applying this definition of spin flux den-
sity to Eq. (6), we obtain the net spin influx on atomic layer �,
which we denote as 	Q(k, �, î):

	Qα (k, �, î) ≡ Qα
i

(
k, � + 1

2

)
− Qα

i

(
k, � − 1

2

)

= 1

ih̄
{[H (k), n(�, î)], sα}. (8)

Equation (8) can be used to evaluate the position-dependent
spin influx at each atomic layer. The spin influx at a layer is
equal to the spin current discontinuity at each layer position.

Knowledge of the spin current discontinuity at each layer
determines the “shape” of the spin current distribution, but

FIG. 3. Schematic of spin current distribution Qα (x) for a system
with two sites (layers) in a unit cell. 	Qα (1, x) and 	Qα (2, x) are
discontinuities in Qα (x) at layer 1 and 2, respectively. Q

α

x is the bulk,
constant offset of Qα

x (x).

does not specify the spatially constant value of the spin cur-
rent. This spatially constant component of spin current is the
“bulk” value Q, and can be evaluated in standard fashion, as
the symmetrized product of bulk velocity dH/dki and spin
operators:

Q
α

i (k) = 1

aih̄

{
dH

dki
, sα

}
. (9)

In Eq. (9), ai is the unit cell length along the î direction; this
factor ensures Q has units of spin current density (as opposed
to a spin velocity). As we discuss in Appendix A, one can
show that the bulk spin current equals the spatial average of
the position-dependent spin current:

Q
α

i (k) = 1

ai

∑
�

d

(
� + 1

2

)
Qα

i

(
k, � + 1

2

)
, (10)

where d (� + 1
2 ) is the distance between the adjacent layers �

and � + 1. The physical picture described by these equations
is illustrated in Fig. 3: knowledge of the average spin current,
together with the discontinuities in the spin current at atomic
layers, determines the full position-dependent spin current.

We next use this approach to compute the position-
dependent intrinsic spin Hall conductivity σ . σ is a rank-3
tensor that relates the spin current to an applied electric
field E : Q

α

i (� + 1
2 ) = σα

ji(� + 1
2 )Ej . Note that the position-

dependent σ is defined on interlayer planes. We also evaluate
the electric field-induced spin current discontinuity at each
layer, denoting this response with χ , so that 	Qα (�, î) =
χα

j (�, î)Ej . χ and σ are evaluated with the Kubo formula
expressions:

χα
j (�, î) = 2e2 ai Im

∑
k, n,

m �= n

fn

〈
ψn

k

∣∣ dH
dk j

∣∣ψm
k

〉 〈
ψm

k

∣∣	Qα (k, �, î)
∣∣ψn

k

〉
(Em

k − En
k )2 + η2

, � = {1, 2, . . . , N}, (11)

σα
ji = 2e2 ai Im

∑
k, n,

m �= n

fn

〈
ψn

k

∣∣ dH
dk j

∣∣ψm
k

〉 〈
ψm

k

∣∣ Q
α

i (k)
∣∣ψn

k

〉
(
Em

k − En
k

)2 + η2
, (12)
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where η is the smearing parameter (we use η = 25 meV
throughout the paper unless otherwise noted), fn is the equi-
librium Fermi-Dirac distribution function, and Hk |ψn

k〉 =
En

k |ψn
k〉. We adopt the prefactor 2e2ai to ensure that the unit

of σ is conductivity (� cm)−1. The N unknowns {σ (� +
1
2 )}�=1,...,N are determined by the resulting set of linear
equations,

χα
j (�, î) = σα

ji

(
� + 1

2

)
− σα

ji

(
� − 1

2

)
for � = {1, . . . , N},

(13)

σα
ji = 1

ai

∑
�

d

(
� + 1

2

)
σα

ji

(
� + 1

2

)
. (14)

The evaluation of Eqs. (11)–(14) is equally computation-
ally intensive as the evaluation of other intrinsic response
coefficients, such as the spin Hall conductivity or the spin-
orbit torkance.

B. Symmetry and physical considerations

We next discuss how the symmetry group determines the
form of χα

ji(�, î) and the ensuing form of σα
ji (�, î). We rep-

resent a unitary symmetry operation u with the Seitz symbol
u = {R|t} where R is a local rotation operator and t describes
a fractional translation within the unit cell [26]. The symme-
try constraint on the bulk spin Hall conductivity σ has been
established previously [20], and is given by

σα
ji = 1

NR

∑
u ∈ G
l, k, β

det(R)Rl jRkiRβα σ
β

lk, (15)

where the sum u is over all operations in the material symme-
try group G, and NR is the number of elements in G.

We determine the symmetry constraint on the position-
resolved spin Hall conductivity σ (� + 1

2 ) by first studying
the constraints on the layer-resolved net spin influx response
χ (�, î). A layer � and orientation î are not necessarily mapped
to the same layer and orientation under a symmetry operation,
so that the response on different layers may be symmetry
connected:

χα
j (�, î) = 1

NR

∑
u ∈ G, l, β

det(R)RβαRl j χ
β

l (u�, uî). (16)

χα
j (�, î), being the net spin influx, has the additional constraint

that its sum over layers in the unit cell must vanish:∑
�

χα
j (�, î) = 0. (17)

This constraint can be understood by noting that the sum of
individual net influxes over all atoms in the unit cell equals
the total spin flux into the unit cell. The periodic boundary
condition forces the spin current at opposite sides of the unit
cell to be equal, so that the total spin flux must vanish. The
symmetry constraints on the position-dependent spin current
response are encoded in Eqs. (15)–(17). We utilize these sym-
metry constraints to analyze the materials studied in the next
section.

We end this section with a brief discussion of the physics
underlying this approach. The microscopic origin of a net spin
current flux into a volume is the nonconservation of spin in-
side that volume. For the nonmagnetic materials studied in this
work, this spin nonconservation is due to spin-orbit coupling.
Spin is one component of the system’s total angular momen-
tum, a quantity which is conserved. In the steady state, the
flux of spin angular momentum into a volume must therefore
be transferred to other degrees of freedom, such as the crystal
lattice [27]. See Ref. [28] for a derivation and discussion of
the steady state angular momentum conservation equation for
electrically driven systems.

III. APPLICATIONS

We apply the method of the previous section to evalu-
ate the position-dependent intrinsic spin Hall conductivities
in WTe2 and PbTe. We begin with WTe2, where we find
that the layer-dependent spin Hall conductivity is consistent
with the measured and computed values of the dampinglike
spin-orbit torque in WTe2-ferromagnetic bilayers. We then
consider PbTe and find a staggered spin Hall conductivity
which exceeds that of WTe2 by an order of magnitude.

A. WTe2

Bulk 1T ′-WTe2 is orthorhombic (No. 31 Pnm21 space
group) with two inequivalent layers of WTe2 [29,30] along
a stacking direction z. We focus on flow in the ẑ direction,
so that the unit cell is partitioned into 12 layers, as shown
in Fig. 4(a). We first analyze the symmetry constraints of the
response. The symmetry operations are

identity E : (x, y, z) → (x, y, z),

mirror Mx : (x, y, z) → (−x, y, z),

glide plane Gy : (x, y, z) → (0.5 + x,−y, z + 0.5),

screw Sz : (x, y, z) → (0.5 − x,−y, z + 0.5),

where the translations are given in fractional coordinates.
Note the glide plane Gy and screw Sz symmetries are nonsym-
morphic, connecting the two monolayers of WTe2. For the
bulk response, these symmetries lead to a conventional spin
Hall conductivity, with mutually perpendicular electric field,
flow, and spin directions.

In Appendix C we use these symmetry operations to ex-
plicitly evaluate Eqs. (16) and (17). Layers 1–6, comprising 1
unit of WTe2, are symmetry connected to layers 7–12, leading
to a relation between the net spin influx response of the two
monolayers of WTe2:

χ y
x (�, ẑ) = χ y

x (� + 6, ẑ), (18)

χ z
x (�, ẑ) = −χ z

x (� + 6, ẑ), � = {1, . . . , 6}. (19)

The above forms for χ determine the position dependence of
the spin Hall conductivity. Evaluating Eqs. (13) and (14) with
the above forms for χ leads to

σ y
xz(� + 1

2 ) = σ y
xz

(
� + 6 + 1

2

)
, (20)

σ z
xz

(
� + 1

2

) = −σ z
xz

(
� + 6 + 1

2

)
, � = {1, . . . , 6}. (21)
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FIG. 4. (a) The partition of the WTe2 unit cell into layers stacked
along the ẑ direction. The set of layers in each monolayer of WTe2

are �1 = 1, . . . , 6 and �2 = 7, . . . , 12, and are connected by nonsym-
morphic symmetry operations. (b) The position-dependent spin Hall
conductivity σ y

xz and (c) the position-dependent σ z
xz at Fermi energy.

Figures 4(b) and 4(c) show that numerical calculations exactly
reflect the symmetry requirement of spin Hall conductivity
tensor. Between the two WTe2 monolayers, the conventional
component σ

y
xz is repeated, while the unconventional compo-

nent σ z
xz flips sign.

Now we focus on two flux plane locations 6 + 1
2 and 12 +

1
2 which separate two monolayers of WTe2. Figure 5 shows
the first-principles results of the two nonzero spin current con-
ductivity components as a function of chemical potential. σ

y
xz

FIG. 5. Spin Hall conductivity of bulk 1T ′-WTe2. (a) and (b) The
chemical potential dependence of position-dependent spin Hall con-
ductivity tensor σ y

xz and σ z
xz, respectively. Two flux plane locations

are 6 + 1
2 and 12 + 1

2 marked in Fig. 4.

is the conventional spin Hall effect in which the electric field
direction, spin current flow direction, and spin polarization
are all perpendicular to each other. σ z

xz is the unconventional
component in which spin polarization and spin current flow
direction are parallel. Although the total σ z

xz in bulk WTe2 is
zero, the magnitude of the spin current conductivity between
each individual layer is around 20 (� cm)−1 near the Fermi
level. Note that the conventional spin Hall component σ

y
xz

has larger magnitude, around 100 (� cm)−1 [30,31], near the
Fermi level.

The σ
y
xz and σ z

xz components of the spin Hall conductiv-
ity are of particular interest in light of recent experiments
involving heterostructures composed of WTe2 and thin film
ferromagnets [11,12,15]. The σ

y
xz component contributes to

the conventional dampinglike torque while the σ z
xz compo-

nent contributes to the unconventional dampinglike torque
which drives the magnetization to an out-of-plane configura-
tion [11,12,16]. We find that the magnitude of both uniform
and staggered spin current conductivity tensor is similar to
the magnitude of spin-orbit torque in experiments [11] and
calculations [16]. This observation indicates that the staggered
spin Hall effect can explain the unconventional spin-orbit
torque exerted on an adjacent ferromagnet. The calculation
of the bulk WTe2 staggered spin Hall conductivity provides a
computationally much cheaper estimation of unconventional
component of the spin-orbit torque as compared to a direct
computation of the torque in a heterostructure.

B. PbTe

We next consider PbTe, a material which is less well
studied for spintronics applications. PbTe belongs to the
family of narrow band gap IV-VI semiconductors which trans-
forms from the rock salt structure to the orthorhombic Pnma
(No. 62) phase under high pressure [32]. Although the Pnma
phase of PbTe is not the ground state under ambient condi-
tions, it serves as an example of a relatively large hidden spin
Hall conductivity. The Pnma phase of PbTe has four Pb atoms
and four Te atoms in the orthorhombic unit cell, as shown
in Fig. 6(a). We again focus on flow in the ẑ direction, and
partition the unit cell into eight layers, shown in Fig. 6(a).

Without translation in the z direction, each individual layer
only preserves one mirror symmetry (x → −x), similar to
1T ′-WTe2. With additional two glide reflections (in the xz
and xy planes) and an inversion center, the unconventional
component σ z

xz vanishes in the bulk and only the conven-
tional component σ

y
xz survives. A symmetry analysis yields

the following relations between the position-dependent spin
Hall conductivity components (see Appendix C):

σ y
xz

(
� + 1

2

) = σ y
xz

(
� + 4 + 1

2

)
,

σ z
xz

(
� + 1

2

) = −σ z
xz

(
� + 4 + 1

2

)
, � = {1, . . . , 4}. (22)

Figures 6(b) and 6(c) show our numerical results of position-
dependent spin Hall conductivity tensor σ

y
xz and σ z

xz. Note that
symmetry dictates that the unconventional component, with
spin and flow direction along z, vanishes at planes 2 + 1

2 and
6 + 1

2 : σ z
xz(2 + 1

2 ) = σ z
xz(6 + 1

2 ) = 0. Additionally, there is no
symmetry-derived relation between the conventional compo-
nent of spin current passing though planes 2 + 1

2 (6 + 1
2 ) and
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FIG. 6. (a) The partition of the PbTe unit cell into layers stacked
along the ẑ direction. (b) The position-dependent spin Hall conduc-
tivity σ y

xz and (c) the position-dependent σ z
xz at chemical potential

μ = −0.38 eV.

planes 4 + 1
2 (8 + 1

2 ), so that this component of the spin cur-
rent generally varies in space.

Figure 7 summarizes our calculations of the spin Hall
conductivity components σ

y
xz and σ z

xz as a function of chem-
ical potential. We focus on the hole-doped case where the
chemical potential is measured with respect to the valence
band maximum. In Fig. 7(a) we find that conventional
spin Hall conductivity σ

y
xz can be quite large, more than

1000 (� cm)−1, at some chemical potentials. Additionally, we
find the symmetry-required relations σ

y
xz(2 + 1

2 ) = σ
y
xz(6 + 1

2 )
and σ

y
xz(4 + 1

2 ) = σ
y
xz(8 + 1

2 ) are satisfied.
The numerical results of PbTe indicate that these doped

orthorhombic IV-VI semiconductors are candidates for the
efficient generation of both conventional Qy

z and unconven-
tional Qz

z spin current flowing along ẑ direction with applied
electric filed in x̂ direction. This real-space staggered spin

FIG. 7. Spin Hall conductivity of orthorhombic phase PbTe.
(a) and (b) The chemical potential dependence of position-dependent
spin Hall conductivity tensor σ y

xz and σ z
xz, respectively. Four flux

plane locations are marked in Fig. 6(a). In (b) we do not plot
σ z

xz(2 + 1
2 ) and σ z

xz(6 + 1
2 ) because they are exactly zero.

current generation can be used to exert a torque on the ad-
jacent perpendicularly magnetized ferromagnets with similar
experimental setups of 1T ′-WTe2/ ferromagnets [11].

IV. CONCLUSION

In this paper we present a method to compute the position-
dependent intrinsic spin Hall conductivity. This method
requires similar computational effort as other standard cal-
culations of intrinsic response, e.g., anomalous Hall effect.
We verify the validity of this method by direct comparison
to other, more direct approaches to computing the position-
dependent spin current. Note that our method focuses on
how the electric field-induced spin current varies within a
periodic unit cell; this is more narrow in scope than recent
work [33] which derives the general local form for the spin
Hall conductivity. We also derive the symmetry constrained
form of the position-dependent spin current response. This
general expression is useful for efficiently determining a class
of materials which exhibit a particular desired response. We
apply this method to compute the position-dependent spin
Hall conductivity for WTe2 and PbTe. For WTe2 we find
the bulk conventional and staggered unconventional spin Hall
conductivity values are similar to the torque measured and
computed in WTe2-ferromagnet bilayers. This indicates that,
at least for this material, the torque in a bilayer heterostructure
can be estimated a priori by computing the bulk spin Hall
conductivity, which is computationally much less intensive
than directly computing the torque in a heterostructure. We
next compute the response for PbTe, and find an order of
magnitude large response relative to WTe2, indicating the
potential usefulness of this material heterostructures with a
ferromagnet.
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APPENDIX A: DIRECTION CONSTRUCTION OF
POSITION-DEPENDENT SPIN CURRENT OPERATOR

Here we describe the method for directly computing the
position-dependent spin current operators. It suffices to con-
sider a 1D system, as shown in Fig. 8. Below we show
the Hamiltonian for an infinite chain with second nearest-
neighbor hopping:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
...

. . . U t t ′ 0 0 . . .

. . . t† U t t ′ 0 . . .

. . . (t ′)† t† U t t ′ . . .

. . . 0 (t ′)† t† U t . . .

. . . 0 0 (t ′)† t† U . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)
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FIG. 8. (a) Schematic of interactions entering the flux operator
for z = z2. (b) Same schematic for z = z3.

U is a matrix describing the primary unit cell. t (t ′) is a matrix
describing the coupling, or “hopping,” between a primary unit
cell and its copy, translated by 1 (2) lattice spacings. Generally
one invokes Bloch’s theorem to map this infinite system to the
primary unit cell:

H0(k)φ0 = Eφ0, (A2)

where H0(k) = (U/2 + teika + t ′e2ika) + H.c. From this, the
eigenvector φ0 and eigenvalue E are readily obtained. The
current averaged over the primary unit cell is obtained with
the operator dH0/dk.

To construct the position-dependent current operator, the
infinite matrix Eq. (A1) with N nearest neighbors is first
truncated to dimension (2N + 1) × (2N + 1). In our example,
N = 2 (second nearest-neighbor hopping) so that we use a
5 × 5 matrix:

Hs =

⎛
⎜⎜⎜⎜⎝

U t t ′ 0 0
t† U t t ′ 0

(t ′)† t† U t t ′

0 (t ′)† t† U t
0 0 (t ′)† t† U

⎞
⎟⎟⎟⎟⎠, (A3)

The resulting finite matrix equation satisfies Schrödinger
equation only in the primary unit cell at the center of the finite
system (for this case, site 3):

Hs

⎛
⎜⎜⎜⎜⎝

φ0e−2ika

φ0e−ika

φ0

φ0e+ika

φ0e+2ika

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−
−

Eφ0

−
−

⎞
⎟⎟⎟⎠. (A4)

The blank components of the vector on the right-hand side
of the above equation are unknown, but are not important.
We can utilize the validity of the Schrödinger equation in
the central unit cell to construct position-dependent current
operators in that region. In our example. the current operators
J2 and J3 (depicted in Fig. 8) are given as

J2 = i

⎛
⎜⎜⎜⎝

0 0 t ′ 0 0
0 0 t t ′ 0

−(t ′)† −t† 0 0 0
0 −(t ′)† 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠,

J3 = i

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0 0 t ′ 0
0 0 0 t t ′

0 −(t ′)† −t† 0 0
0 0 −(t ′)† 0 0

⎞
⎟⎟⎟⎠.

The position-dependent current for state φ0 is evaluated using
φs = (φ0e−2ika, φ0e−ika, φ0, φ0, eikaφ0e2ika)T and the opera-
tors above: 〈J2,3〉 = 〈φs|J2,3|φs〉.

In general, the current operator for a plane z0 is

Jz0 =
∑
j ∈ zL

k ∈ zR

i(Hjkc†
j ck − Hk jc

†
kc j ), (A5)

where zL is the set of sites with z coordinate less than z0,
and zR is the set of sites with z coordinate greater than z0.
We emphasize that with this approach, z0 must lie within the
central unit cell (site 3 in this example). We have checked that
the position-dependent spin current obtained with this direct
construction of the spin current operator agrees “exactly” (to
within machine precision) with the alternative approach given
in the main text.

The spin Hall conductivity is a piecewise constant func-
tion having finite number of pieces depending on the atomic
locations shown in Figs. 4 and 6. With the explicit form of
the position-dependent current operators, one can prove the
equality Eq. (10) of the main text by directly evaluating both
sides of the equation: the “integration” of position-dependent
spin Hall conductivity is identical to the bulk spin Hall con-
ductivity.

This direct method for computing the spin current is less
desirable than the approach described in the main text because
it requires the additional overhead of constructing the current
operator matrices which can be quite large depending on the
hopping cutoff in the constructed supercell.

APPENDIX B: FIRST-PRINCIPLES DETAILS

We provide technical details for the first-principles cal-
culations presented in the main text for 1T ′-WTe2 and
orthorhombic PbTe. We use QUANTUM ESPRESSO [34] and
WANNIER90 [35] to obtain the spin-orbit coupled localized
orbital Hamiltonian in the atomic basis. In the QUAN-
TUM ESPRESSO implementation, we use the pseudopotentials
from PSlibrary [36] generated with a fully relativistic cal-
culation using projector augmented-wave method [37] and
Perdew-Burke-Ernzerhof exchange correlations [38]. We uti-
lize a 12 × 10 × 6 (11 × 12 × 4) Monkhorst-Pack mesh [39],
1088 eV cutoff energy for WTe2 (PbTe). We project plane-
wave solutions onto atomic d orbitals of transition metal
atoms, s and p orbitals of chalcogen atoms and Pb atoms.
We then symmetrize the spin-orbit coupled Wannier Hamilto-
nian [40] since the presence of slight asymmetry could result
nonvanishing staggered spin Hall conductivity. We perform
a dense k mesh of 480 × 270 × 120 (480 × 490 × 170) to
evaluate the spin current conductivity for WTe2 (PbTe). In the
implementation of Eq. (11) we adopt the approximation [41]
that Wannier orbitals are perfectly localized on atomic sites
and spin matrix is half of Pauli matrix in the space spanned by
Wannier orbitals.

APPENDIX C: SYMMETRY ANALYSIS

In this Appendix we provide the explicit evaluation of
Eqs. (16) and (17) for WTe2 and PbTe.
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1. WTe2

The layers of the unit cell stacked along the ẑ direction are
shown in Fig. 4(a). We first introduce notation to distinguish
the two halves of the WTe2 atoms comprising the unit cell.
We denote the set of layers 1–6 with �1, and the set of layers
7–12 with �2. �1 and �2 are related via �2 = �1 + 6. We start
with the most general form of the net spin current flux tensor
χ at layer �:

χ (�, ẑ) =
⎛
⎝χ x

x (�, ẑ) χ x
y (�, ẑ) χ x

z (�, ẑ)
χ

y
x (�, ẑ) χ

y
y (�, ẑ) χ

y
z (�, ẑ)

χ z
x (�, ẑ) χ z

y (�, ẑ) χ z
z (�, ẑ)

⎞
⎠. (C1)

The representation of the rotation parts of the symmetry
operations are given by

Mx =
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠, (C2)

Gy =
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠, (C3)

Sz =
⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠. (C4)

We note again that the symmetry operations Gy and Sz involve
translation along the z direction, mapping layer �1 to layer �2.

We first consider how the symmorphic symmetry Mx con-
strains the response by applying Eq. (16) with only this
operation:

χ (�, ẑ) = 1
2

[
χ (�, ẑ) − MT

x χ (�, ẑ)Mx
]
, (C5)

where the minus sign comes from det(Mx ). The resulting
χ (�, ẑ) has the form

χ (�, ẑ) =
⎛
⎝ 0 χ x

y (�, ẑ) χ x
z (�, ẑ)

χ
y
x (�, ẑ) 0 0

χ z
x (�, ẑ) 0 0

⎞
⎠, (C6)

which allows the unconventional component χ z
x . Now we

apply both symmorphic and nonsymmorphic symmetries
using Eq. (17),

χ (�1, ẑ) = 1
4

[
χ (�1, ẑ) − MT

x χ (�1, ẑ)Mx

− GT
y χ (�2, ẑ)Gy + ST

z χ (�2, ẑ)Sz
]
, (C7)

χ (�2, ẑ) = 1
4

[
χ (�2, ẑ) − MT

x χ (�2, ẑ)Mx

−GT
y χ (�1, ẑ)Gy + ST

z χ (�1, ẑ)Sz
]
. (C8)

The resulting tensors are

χ (�1, ẑ) =

⎛
⎜⎝

0 1
2

[
χ x

y (�1, ẑ) + χ x
y (�2, ẑ)

]
1
2

[
χ x

z (�1, ẑ) − χ x
z (�2, ẑ)

]
1
2

[
χ

y
x (�1, ẑ) + χ

y
x (�2, ẑ)

]
0 0

1
2

[
χ z

x (�1, ẑ) − χ z
x (�2, ẑ)

]
0 0

⎞
⎟⎠, (C9)

χ (�2, ẑ) =

⎛
⎜⎝

0 1
2

[
χ x

y (�1, ẑ) + χ x
y (�2, ẑ)

]
1
2

[
χ x

z (�2, ẑ) − χ x
z (�1, ẑ)

]
1
2

[
χ

y
x (�1, ẑ) + χ

y
x (�2, ẑ)

]
0 0

1
2

[
χ z

x (�2, ẑ) − χ z
x (�1, ẑ)

]
0 0

⎞
⎟⎠. (C10)

The remaining constraint is that
∑

� χ (�, ẑ) = 0, as discussed in the main text. This implies that the xy and yx components of
each tensor above vanishes: χ x

y (�1) + χ x
y (�2) = 0, while it imposes no additional constraint on the xz and zx components. One

finally obtains

χ (�1) =
⎛
⎝ 0 0 1

2

[
χ x

z (�1, ẑ) − χ x
z (�2, ẑ)

]
0 0 0

1
2

[
χ z

x (�1, ẑ) − χ z
x (�2, ẑ)

]
0 0

⎞
⎠

= −χ (�2, ẑ). (C11)

2. PbTe

A similar symmetry analysis can be performed for PbTe. After summing over symmetry operations, the χ tensors at four
different layers, χ (�1) = χ (1) + χ (2), χ (�2) = χ (3) + χ (4), χ (�3) = χ (5) + χ (6), χ (�4) = χ (7) + χ (8), are

χ (�1) =
⎛
⎝ 0 χ x

y χ x
z

χ
y
x 0 0

χ z
x 0 0

⎞
⎠, (C12)

χ (�2) =
⎛
⎝ 0 −χ x

y χ x
z

−χ
y
x 0 0

χ z
x 0 0

⎞
⎠, (C13)

χ (�3) =
⎛
⎝ 0 χ x

y −χ x
z

χ
y
x 0 0

−χ z
x 0 0

⎞
⎠, (C14)
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χ (�4) =
⎛
⎝ 0 −χ x

y −χ x
z

−χ
y
x 0 0

−χ z
x 0 0

⎞
⎠. (C15)

Note that these tensors automatically satisfy
∑

� χ (�) = 0, so that this condition adds no new constraints. However, the global
system symmetry requires σ z

xz = 0, so that
∑

� σ z
xz(� + 1

2 ) = 0. From this we obtain the relations between position-dependent
spin conductivity components, given by Eq. (22) of the main text.
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