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Quasi-one-dimensional (Q1D) systems, i.e., three- and two-dimensional (3D/2D) arrays composed of weakly
coupled one-dimensional lattices of interacting quantum particles, exhibit rich and fascinating physics. They
are studied across various areas of condensed matter and ultracold atomic lattice-gas physics, and are often
marked by dimensional crossover as the coupling between one-dimensional systems is increased or temperature
decreased, i.e., the Q1D system goes from appearing largely 1D to largely 3D. Phase transitions occurring
along the crossover can strongly enhance this effect. Understanding these crossovers and associated phase
transitions can be challenging due to the very different elementary excitations of 1D systems compared to
higher-dimensional ones. In the present work, we combine numerical matrix product state (MPS) methods
with mean-field (MF) theory to study paradigmatic cases of dimensional crossovers and the associated phase
transitions in systems of both hard-core and soft-core lattice bosons, with relevance to both condensed matter
physics and ultracold atomic gases. We show that the superfluid-to-insulator transition is a first order one, as
opposed to the isotropic cases, and calculate transition temperatures for the superfluid states, finding excellent
agreement with analytical theory. At the same time, our MPS + MF approach keeps functioning well where the
current analytical framework cannot be applied. We further confirm the qualitative and quantitative reliability of
our approach by comparison to exact quantum Monte Carlo calculations for the full 3D arrays.
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I. INTRODUCTION

Quasi-one-dimensional (Q1D) systems, 3D arrays of
weakly coupled 1D quantum systems, appear in a wide variety
of solid state materials and can readily be realized in lattice-
confined ultracold atomic gases. On the materials side, there
is very active research into weakly coupled spin chains and
ladders such as BPCB [1,2] and related magnetic compounds
[3–5], the organic Bechgaard and Fabre salts (“the organics”)
[6–10], the strontium-based telephone number compounds
[11,12], and chromium pnictide [13,14], all three of which are
itinerant systems which can be made to enter an unconven-
tionally superconducting (USC) state. Of these, the organics,
preceding the high-Tc cuprate superconductors as the first
USC materials [15], have received the most in-depth research.
Much of this is due to the abiding challenge of resolving the
microscopic origin of repulsion-mediated electron pairing as
well as the direct transition between the USC state based on
this pairing and an insulating magnetically ordered one, anal-
ogous to that found in the cuprates, which is of first-order type
in the organics [9]. The fascination of the organics is further
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enhanced by their exhibition of dimensional crossover (DC),
shown by various quantum spin systems as well [3,16–18],
where the systems effective dimensionality increases from 1D
to 2D and eventually 3D, as quantum coherence between the
constituent 1D systems increases with decreasing temperature
and/or increased (but still weak) intersystem coupling. These
DCs can further be marked by a phase transition occurring
along the crossover, where DC can then be particularly sharp;
for example, the opening of a gap in each constituent 1D
system can make it much harder for intersystem coupling
to establish coherence and thus ordering in the transverse
direction will be much weaker.

The concept of DC taking place around a phase transition is
especially interesting for the theory of the USC state, as it is in
Q1D models alone that the transition into a superconducting
state based on repulsively mediated pairing of fermions can
be understood at the fundamental level, at least qualitatively.
The prime models for this are 3D arrays of doped, weakly
coupled Hubbard ladders. Here, fusing Tomonaga-Luttinger-
liquid (TLL) theory for the single ladder [19] with either static
mean-field (MF) theory [20] or alternatively renormalization
group treatments [7] allows a qualitative description of the
transition to the USC state as the system crosses over from
effectively uncoupled 1D Hubbard ladders to the 3D ordered
array as temperature decreases.

Going from such a fundamental, qualitative description of
the phase transition marking this specific DC to one allowing
for quantitative accuracy has stayed an open challenge for
which the theoretical tools remain to be developed. Under-
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FIG. 1. A schematic representation of the model described by
Eq. (1) where (a) represents the 3D model and (b) the 1D subsets
of the full 3D model.

standing DC and their associated transitions in general with
quantitative and even qualitative theory can be very difficult,
such as in the case of the organics, because the basis of col-
lective density excitations used to describe the 1D system are
completely different from the one of Landau or Bogoliubov
quasiparticles used for 2D and 3D systems.

The present work is thus motivated by the twin challenge
of developing better theory for DC and associated phase
transitions in Q1D-systems in general, as well as specifi-
cally for the case of the transition into the USC phase in
the Hubbard-ladder array. As a first step towards this end
we set up a comparatively simple model, 3D arrays formed
from weakly coupled chains of interacting lattice bosons with
short-range interactions (cf., Fig. 1). As will be shown and
discussed, this class of models combines several advantages:
(i) They show multiple interesting DCs and associated phase
transitions, including first-order transitions (like the organics
do between the USC and a magnetically ordered insulating
phase) and possibly mixed-order transitions. (ii) They are
perfect testbeds to further advance efficient yet remarkably
accurate numerics based on combinations of matrix product
states (MPS) and MF pioneered, e.g., in Ref. [1]. Crucially,
the accuracy of these MPS + MF numerics can be ascertained
by the gold standard for 2D/3D lattice bosons, quantum
Monte Carlo (QMC) simulations. (iii) Our MPS + MF nu-
merics can be checked directly against fit-free TLL + MF
analytical theory used for the thermal transition to the su-
perfluid regime [21,22]. Additionally, our numerics will work
in regimes where TLL + MF is no longer applicable as well
as making possible efficient real-time many-body dynamics
for Q1D systems. (iv) When specializing the study model to
the case of hard-core bosons (HCBs) with nearest-neighbor
(n.n.) repulsion, it admits mapping to Q1D arrays of doped
Hubbard ladders at the level of low-energy, long-wavelength
effective TLL theory. (v) These systems either already admit

realization in many existing experiments on ultracold lattice
gases, including the possibility of observing mixed-order DC,
or, in the case of HCBs with n.n. repulsion, may do so within
the foreseeable future [23,24].

The present paper is thus structured as follows: Section II
describes the Q1D array model of bosonic chains and intro-
duces the transverse MF approximation. Section III describes
the MPS + MF method we use for fast, efficient calcula-
tions of the systems properties for ground and thermal states.
Details of the QMC calculations are also given. Section IV
discusses the zero-temperature first-order transition we find
between a 3D superfluid (SF) and a 1D charge-ordered (CO)
phase for HCBs with increasing n.n. repulsion and the similar
transition observed for soft-core bosons at integer filling. We
also study the transition between SF and a thermal gas with
rising temperature. The results of the MPS + MF approach
are compared against both QMC and TLL + MF analytics
and found to range from excellent to highly satisfactory. In
Sec. V we summarize the validity of the MPS + MF approach
to phase transitions in bosonic systems and discuss the impli-
cations of our results for DC physics in other systems as well
as consider the efficiency of MPS + MF in comparison with
QMC. Section VI then provides an outlook on future research
on the basis of the present work.

II. MODEL

In this work, we consider extended Bose-Hubbard models
with anisotropic tunneling strength. We first focus on hard-
core bosons (HCB), for which the number of allowed particles
is restricted to one boson per site. Further, to connect with
established experiments we can also lift this restriction of one
boson per site and consider the more general case of soft-core
bosons (SCB).

A. Three-dimensional Hamiltonian

The full Hamiltonian is given by the expression

HB = − t
∑
{R̂i}

b†
R̂i+x̂

b
R̂i

+ H.c. − μ
∑
{R̂i}

b†
R̂i

b
R̂i

+U

2

∑
{R̂i}

nR̂i

(
nR̂i

− 1
) + V

∑
{R̂i}

nR̂i+x̂nR̂i

−t⊥
∑

{R̂i},â∈[ŷ,ẑ]

b†
R̂i+â

b
R̂i

+ H.c.

= Ht + Hμ + HU + HV + Ht⊥ , (1)

where {R̂i} denotes the set of all lattice points, b†
R̂i

(bR̂i
) is

the creation (annihilation) operator associated with the site at
R̂i, and nR̂i

= b†
R̂i

bR̂i
is the number operator on that site. We

have set the lattice spacing a = 1.
The transverse hopping t⊥ governs two directions and the

longitudinal hopping one direction. In this paper we con-
sider cases where t⊥/t � 1. Further, we restrict ourselves to
U,V > 0, i.e., repulsive interactions. In addition, note that the
repulsive interaction V between nearest neighbors only occurs
along the strong tunneling direction.
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B. Local Hilbert space truncation

The Hamiltonian Eq. (1) allows any number of bosons on
one site: 〈ni〉 ∈ [0,∞]. In the hard-core case, U → ∞, such
that 0 � 〈ni〉 � 1. In the soft-core case we let 0 � 〈ni〉 � 3.
This cutoff of three bosons per site is chosen such that pro-
jections onto states of larger occupation number carry a small
weight:

〈�| P4(i) |�〉 � 10−4, (2)

where P4(i) is the projector onto the state of four bosons on
site i. For SCB the value of U is of course very important
and will be specified, while for simplicity we fix V = 0 in this
model.

C. Quasi-1D Hamiltonian

We wish to use the density matrix renormalization group
(DMRG) algorithm in matrix product state (MPS) formalism
[25,26] to solve our problem. However, calculations on 3D
models using DMRG scale very poorly with system size. To
bypass this issue we reduce the problem to solving an effec-
tively one-dimensional (1D) model using mean-field theory.
We consider fluctuations around an order parameter

bR̂i
= 〈

bR̂i

〉 + δbR̂i
(3)

and ignore terms in the Hamiltonian of order O(δb2).
We make this substitution only in the transverse hopping
Hamiltonian Ht⊥ . If we consider open boundary conditions
(OBC) this yields the Q1D Hamiltonian

HSMF(α) = −t
L−1∑
i+1

b†
i+1bi + H.c. − μ

L∑
i=1

b†
i bi

+ U

2

L∑
i=1

ni(ni − 1)

+V
L−1∑
i=1

ni+1ni − α

L∑
i=1

(b†
i + bi ), (4)

where indices i have been introduced which indexes the site of
a one-dimensional subset of the 3D model in the longitudinal
direction. In this work we will use both OBC and periodic
boundary conditions (PBC), the latter in which we have the
additional condition of bL+1 = b1 and the term

HL = −t (b†
1bL + H.c.) + V n1nL (5)

must be added to the Hamiltonian Eq. (4).
We only decouple the 3D system transversely since the

coupling t⊥/t � 1 is small by choice. We have routinely ig-
nored any constant contribution to the Hamiltonian. The new
coupling α is obtained as

α(∗) = zct⊥〈b(†)〉, (6)

where zc = 4 is the coordination number for a simple cubic
lattice and we have assumed that α is real. We will call the
constant α a boson injection/ejection amplitude. Notably, the
only difference between a 2D and 3D anisotropic system in
this approach is zc. A schematic representation of this model
is shown in Fig. 1.

III. METHODS

To find ground states and thermal states of the Hamiltonian
Eq. (1) two methods will be used. The first one is comprised
of using DMRG to solve the Q1D Hamiltonian Eq. (4). We
then use quantum Monte Carlo (QMC) simulations [27] for
the simplest case of hard-core bosons that we can directly
compare with DMRG results.

A. DMRG with static mean-field

Since Eq. (4) is a one-dimensional Hamiltonian, the
DMRG algorithm scales well with system size and can be
used to compute ground states and thermal states [26]. The
additional cost to this method is the self-consistent determina-
tion of α. We will call the outlined procedure MPS + MF for
the remainder of this paper.

1. Boson injection convergence

The self-consistent routine starts with guessing a boson
injection amplitude α0 and then computing a new value α1

α1 = zct⊥〈b〉0, (7)

where 〈 〉0 denotes an average with Hamiltonian HSMF(α0)
defined by Eq. (4) with α = α0 and b is in principle any bi

given an infinite system though in practice an average over
several sites. Extending the relation to an arbitrary number of
loops simply yields

αn+1 = zct⊥〈b〉n. (8)

Several exit conditions of the self-consistent loop can be
used. Different observables converge at various rates (e.g.,
density typically converges quickly). In the present case, we
use the Bose-Einstein condensate (BEC) order parameter as
the observable for determining whether the self-consistent
calculation has converged with the condition∣∣∣∣ 〈b〉n − 〈b〉n−1

〈b〉n−1

∣∣∣∣ < ε〈b〉. (9)

The quantity ε〈b〉 = 10−4 is an error tolerance which can be
selected to desired convergence error.

The convergence error should be the largest error in the
problem. Any other larger error scale allows α to fluctuate
within that scale which disallows settling on a value to con-
vergence precision. An example of such a potential error scale
is the truncation error inherent to DMRG.

The fast convergence of this algorithm is highly dependent
on how good the initial guess is. Therefore, we have found it
good practice to implement some guessing heuristic. For the
data shown in this paper, we select an initial value of α which
places us above the converged value and check the trend of the
computed values of α. For the models we consider this trend
is usually exponential. Restarting the whole algorithm using
the extrapolated value from an exponential fit as initial guess
typically brings you closer to the correct value. Thereby the
number of loops required for convergence is reduced.

When using this approach we ran into slow-downs of the
self-consistent loop convergence close to phase transitions.
If no extrapolation scheme as described previously is used,
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convergence at transition points may require intractably many
loops.

2. Density targeting

One issue in the mean-field treatment presented in Eq. (4)
is that the Hamiltonian is transformed from representing a
particle number-conserving system to one of nonconserva-
tion. Physically, this means that while the particle number is
conserved in the full 3D system each individual chain may
exchange particles with other chains thus upsetting the con-
served particle number locally.

Often we wish to fix the density of an individual chain to
some value n0 and must choose the corresponding chemical
potential μ. When converging α in the self-consistent loop,
the density for one value of α may have different dependence
on μ than for other α s.t.

nαn (μ) 
= nαn+1 (μ), (10)

where

nαn = 1

L

L∑
i=1

〈ni〉αn
. (11)

This means that in addition to converging α self-consistently
we must do the same for μ simultaneously. This procedure
involves the measurement of density each loop and then the
calculation of a new chemical potential that gives you the
desired density.

Due to this issue the cost of computation increases as each
new μ requires a new state calculation to verify the density,
i.e., one self-consistent loop may require several DMRG com-
putations. Fortunately, the density typically converges faster
than α and the performance is not greatly affected by the
fixation of μ in the cases considered in this paper. The density
is compared to a chosen target and must fulfill the following
condition

|nαn − ntarget|
nαn

< εn, (12)

where εn = 10−5 is the error tolerance used for densities in
calculations.

B. DMRG observables

When using DMRG we will consider two observables to
characterize the studied phases. The BEC order is evaluated
by measuring the expectation values 〈bi〉. When these are
finite it means that there is a finite probability for particles to
tunnel in and out of the quasi-1D system described by Eq. (4),
i.e., the boson injection/ejection amplitude is nonzero. This
quantity is our mean-field order parameter and it is computed
by averaging over several sites of the quasi-1D model

〈b〉 = 1

il − i f + 1

il∑
i=i f

〈bi〉, (13)

where i f (il ) is the first (last) site to be included in the average.
This calculation assumes that there is no preferential site in the
quasi-1D system from which to tunnel in or out. The choice
of i f , il depends on the boundary conditions. This means that

OBC requires an average of the systems central sites to avoid
boundary effects while PBC is free from this issue as all sites
are equivalent.

Typically, DMRG is more efficient with OBC. However,
in the hard-core case, OBC gives the system large boundary
effects, as is shown in Appendix A. Thus, the boundary con-
ditions we will use when resolving the SF-CDW transition are
PBC for the hard-core case and OBC for the soft-core case.

To characterize CDW phases we compute the charge gap,
i.e., the energy required to add or remove one particle from
the system. Since the Hamiltonian Eq. (4) does not conserve
particle number we will, in this work, define the charge gap as
the width in μ of density plateaus

�ρ = μupper − μlower, (14)

where the chemical potentials at the plateau edges are defined
by

n(μ) = const., μ ∈ [μlower, μupper] (15)

n(μupper + δ) > n(μupper) (16)

n(μlower − δ) < n(μlower), (17)

where δ > 0 is a small addition (subtraction) of the chemical
potential. Further details about the charge gap are given in
Appendix B.

1. Truncation error extrapolation of DMRG observables

In order for results from a DMRG solution to be reliable an
extrapolation to zero truncation error is required [26]. This is
done for all observables X using a linear fit to the data points
[28]:

X = X0 + c0εt . (18)

We find for OBC that this expression fits not only energies but
also measurements of the order parameter Eq. (13).

Using OBC the truncation error is small even for a modest
bond dimension as low as χ = 50. Extrapolations to zero trun-
cation error yield no improvements within the self-consistent
error. On such occasion we do not perform extrapolations
and use the largest bond dimension (smallest truncation error)
available.

We note that when using PBC quite large bond dimensions
are required. When computing charge gaps we have found
truncation errors as large as εt ∼ 10−5 for a bond dimension of
χ = 250. Further, the manner in which charge gaps are com-
puted in this paper carries an additional error (see Appendix
B). This has made extrapolations in truncation error difficult.
As a result, the charge gap data in Fig. 2(a) comes with the
caveat that it is affected by notable truncation errors.

2. Finite size extrapolation of DMRG observables

The type of DMRG used in the MPS + MF method is
finite size DMRG to make onsite measurements and corre-
lator measurements possible. We are often interested in the
thermodynamic behavior of a system and thus we must ex-
trapolate results to the limit of infinitely large systems. The
extrapolation scheme used depends on the observable that is
being measured.
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FIG. 2. A comparison of the order parameters characterizing the
two ordered phases at T = 0 at t⊥/t = 0.05. The red dashed line
is the BEC order parameter and the blue solid line the charge gap
(which can be seen as the charge density wave order parameter).
(a) MPS + MF results for a hard-core constraint model with filling
fraction n = 0.5 using PBC. (b) QMC for hard-core boson model
with BEC order parameter Eq. (23) size dependence. (c) QMC for
hard-core boson model with the CDW order parameter Eq. (22) size
dependence. (d) MPS + MF results for a soft-core boson model with
filling fraction n = 1.0 using OBC.

For the charge gap we use a second degree polynomial fit
in L−1:

�ρ (L) = c0 + c1
1

L
+ c2

1

L2
+ O

(
1

L3

)
. (19)

This expression is commonly used to fit the finite size depen-
dence of energies. We find that our charge gap measurements
fit this ansatz as well.

For the order parameter we use two different fitting forms.
When used to characterize the finite-temperature second-order
normal to superfluid phase transition we use a power-law
expression

〈b〉(L) = c0 + c1L−c2 . (20)

This expression is known to hold analytically at the transition
point, and we find our data for finite temperature fits Eq. (20)
quite well.

For the first order zero-temperature transitions from su-
perfluid to CDW we use a second order polynomial for the

squared order parameter

〈b〉2 = c0 + c1
1

L
+ c2

1

L2
+ O

(
1

L3

)
. (21)

These expressions hold close to phase transitions which is also
the area where finite size effects are most prominent. Concrete
examples of such extrapolations are provided in Appendix E.

Frequently, the largest error of the MPS + MF approach is
from the self-consistent convergence as opposed to finite size
errors. When this occurs, fitting to one of the forms Eqs. (19)–
(21) is difficult and yields poor fits. On these occasions we find
that larger sizes do not change measured value outside of the
self-consistent error and we use the largest size measurement
available.

C. Quantum Monte Carlo

Our large-scale QMC simulations have been performed
with the stochastic series expansion (SSE) algorithm [27] on
3D arrays of coupled chains, using anisotropic lattices of sizes
Lx × Ly × Lz, with Lx = L and Ly = Lz = L/ f for an integer
f . We have only focused on the case of HCB, but extending
to SCF is straightforward. Note also that PBC are used in all
directions.

In order to address the bosonic phases and associated
transitions for the 3D model Eq. (1) at both zero and finite
temperatures, we compute the three following observables.
Charge density wave order is evaluated with the staggered cor-
relation function at mid-distance, along the chain directions

Cstagg. = 1

N

∑
i

(−1)L/2(〈nini+L/2〉 − 〈ni〉〈ni+L/2〉), (22)

where the sum is performed over the N = L3/8 sites and
where f = 2 has been used for the aspect ratio. The BEC
order parameter (condensate density) is obtained by summing
off-diagonal correlators

ρ0 = 1

N2

∑
i, j

〈b†
i b j〉, (23)

where an aspect ratio of f = 4 has been used.
The superfluid response can be evaluated for longitudinal

(intrachain) and transverse (interchain) directions with the
superfluid stiffness

ρS,‖(⊥) = 1

N

∂2E0(ϕ‖(⊥) )

∂ϕ2
‖(⊥)

∣∣∣∣
ϕ‖(⊥)=0

. (24)

In the above definition, E0 is the total energy, and ϕ‖(⊥) is a
small twist angle enforced on all bonds in both longitudinal
and transverse directions. Technically, the superfluid stiffness
[29] is efficiently measured via the fluctuations of the winding
number [30] during the SSE simulation [31].

IV. RESULTS

For most of the results we perform three different types of
calculations: (i) an MPS + MF calculation of both ground and
thermal states for hard-core bosons which we also compare
with (ii) a correspondent QMC calculation and finally (iii)
calculations of both ground and thermal states for soft-core
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bosons using MPS + MF. For MPS + MF, a bond dimension
of χ = 50 has been used with OBC. For PBC we instead
use a bond dimension of χ = 250. As stated in Sec. III B 1
truncation error extrapolation has proved difficult since other
error sources are dominant. Nevertheless, such extrapolations
have been used where possible. We have omitted error bars
where the error is smaller than the symbol size in all figures.
For all data, the error due to truncation error is much smaller
than other sources and we omit such analyses.

First, we analyze the system when interaction strength
U, V is varied. We choose to analyze commensurate den-
sities, where we expect quantum phase transitions to occur
at zero temperature. In the hard-core case it is known that
charge ordering occurs for a half-filled isolated chain via a
Berezinskii-Kosterlitz-Thouless (BKT) transition at Vc = 2t
[32]. This particular density n = 1

L

∑L
i=1 〈ni〉 = 0.5 is inter-

esting as it forces the system to incur some energy penalty
along with an energy gain from hopping due to the repulsive
interaction. We expect there to be a charge-ordering transition
for the quasi-1D model as well but with a shifted Vc compared
to the 1D case.

For the soft-core case we instead target n = 1 and fix V =
0 to simplify the analysis. This unit-filled regime with only
local repulsions can generally be expected to yield some type
of order-to-order phase transition [33].

Second, we analyze the same systems but at finite temper-
ature. We are primarily interested in the critical temperature
and how it depends on the microscopic parameters of the
Hamiltonian. In this context, we are interested in how ac-
curate our approximate (but numerically low-cost) MPS +
MF-based calculations of Tc are in comparison to those from
quasiexact QMC.

A. Zero temperature results

For small values of repulsion we expect there to be a BEC
superfluid (SF) phase. At large values of repulsion, the system
should become insulating and exhibit a charge-ordered phase
(CDW). To analyze this transition we fix t⊥/t = 0.05.

1. BEC/superfluid to CDW at T = 0

MPS + MF results are shown in Fig. 2(a) where the charge
gap is plotted together with the BEC order parameter as a
function of the nearest-neighbor repulsion V . Note that for an
isolated 1D system the transition into CDW occurs at V/t = 2
whereas in the quasi-1D case we discuss here, the transition is
pushed to quite a higher value Vc/t ≈ 3.02, while t⊥/t = 1/20
is small. Importantly, one observes clear discontinuities for
both order parameters at Vc, indicating a first-order transi-
tion between a gapless BEC-SF and a CDW insulator. The
MPS + MF results can be directly compared to the QMC
simulations shown in Figs. 2(b) and 2(c). The agreement is
very good, since QMC results find a first-order transition for
Vc/t ≈ 3, the first-order (discontinuous step) character of the
transition becoming more and more evident upon increasing
system size.

QMC data in Figs. 2(b) and 2(c) show strong finite size
effects, which are more pronounced close to the transition.
The BEC density ρ0 [panel (b)] is shown for an aspect ratio
of 4. There, ρ0(L) becomes steeper when increasing system

size, a trend which is clearly compatible with a small but finite
jump at the thermodynamic limit. This is further discussed in
Appendix C where such a jump is more visible due to a larger
value of the transverse tunneling. The CDW order parameter
Cstagg, shown in Fig. 2(c), has been computed for a different
aspect ratio of 2 in order to get a better convergence towards
the thermodynamic limit. Using a general finite size scaling
of the form

Cstagg(L) = C∞
stagg + A/LB exp(−L/ξ ), (25)

a very good description of finite size data is obtained. The
infinite size extrapolation C∞

stagg, plotted against V/t , is clearly
compatible with a jump at the transition. Note however the
strong error bars in the critical regime, characteristic of a first
order transition.

The soft-core boson data has been computed for V = 0.
Since we fix the density to n = 1.0 a nearest neighbor repul-
sion would disturb the potential Mott insulator that can be
established at large U . In Fig. 2(c) a transition to the CDW
phase can be seen at Uc/t ≈ 8.12. This strongly contrasts with
the isolated chain case where a BKT transition occurs for a
much smaller onsite repulsion at Uc/t ≈ 3.3 [34].

At the transition point the charge gap attains a large value
seemingly discontinuously while no such strong first order
behavior is apparent when considering the order parameter.
It is possible that the latter has a jump so small that it is
undetectable by the current method we are using (see Sec. V).

B. Finite temperature

Using the MPS + MF method it is also possible to obtain
thermal averages [26], while for QMC finite temperature is
natural. Thus, we next investigate T > 0 physics.

1. SF to normal

An interesting transition that should occur for finite tem-
perature is that of 3D superfluid to a thermal gas (the normal
or disordered phase). We wish to compute the critical temper-
ature where the system looses BEC coherence and enters the
normal phase. We will let the repulsion vary in the system to
see how critical temperature is affected. Since we are mainly
interested in the SF to normal phase transition we will stay
away from values of the repulsion in which there is no SF
even at zero temperature, i.e., we stay at V/t < 3 for hard-core
bosons and U/t < 8.12 for soft-core bosons.

The critical temperature of the transition can be found by
finding the point at which 〈b〉 → 0 in the thermodynamic
limit. From Fig. 3 it is clear that for t⊥/t = 0.05 this point
lies close to T/t = 0.4. An important question using our
MPS + MF approach is how accurate the observed critical
temperatures are (i.e., how incorrect is the mean-field approx-
imation). A full mean field analysis overestimates the critical
temperatures by a factor of 2 compared to exact calculations
using QMC in the 3D case [35]. Hence, it is important to de-
termine if and by how much our MPS + MF hybrid approach
improves upon this factor.

We have therefore performed finite-T QMC simulations of
the full 3D Hamiltonian Eq. (1). We determine the critical
temperatures using standard finite-size scaling analysis which
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FIG. 3. A plot of the superfluid order parameter defined by 〈b〉 =
1

il −i f

∑il
i=i f

〈bi〉 extrapolated to infinite longitudinal size vs tempera-

ture. (a) Hard-core constraint model with V = 0 and filling fraction
n = 0.5 using OBC. (b) Soft-core boson model with filling fraction
n = 1.0 and U/t = 6.0 using OBC.

yields crossings for stiffnesses and BEC order parameter:

ρS,‖(⊥)(Tc) × Lz+d−2, (26)

with d = 3, z = 0 for a thermal transition, and

ρ0(Tc) × L2β/ν, (27)

where β = 0.3486 and ν = 0.6717 are the critical exponents
of the 3D XY universality class [36,37]. From the results given
in Fig. 4 the three crossings are in perfect agreement, giving
for V = 0 a critical temperature Tc/t = 0.323(1). Compared
to the critical temperature from our MPS + MF approach of
Tc/t ≈ 0.4 we find that the difference is significantly better
than a factor of 2 [38].

The soft-core model finite temperature data is computed
for U/t = 6.0 since leaving U too small makes the local
Hilbert space truncation increasingly erroneous. A notable
feature is the increased critical temperature at around
Tc/t ≈ 0.95 as seen in Fig. 3(b), which puts these transitions
squarely within the range of being observable within current
experiments.

2. Tc dependence on t⊥

The dependency of 〈b〉 on T does not change qualitatively
with t⊥, but the value of Tc does scale with t⊥, as shown in
Fig. 5. Combining bosonization and mean field theory this

scaling has been obtained as Tc ∼ t
2
3
⊥ for this system [22].

Thus, we have performed a fit to the data with a power law
given by

Tc = c1t c2
⊥ . (28)

In Fig. 5(a) we perform a power-law fit of our data and obtain
the exponent c2 ≈ 0.628. The scaling disagrees somewhat
with the analytical value of c2 = 2/3. This is expected as the
analytical value is less accurate for larger Tc. Further, we find

FIG. 4. Finite temperature QMC data for the full 3D model
Eq. (1) at V = 0 indicating a transition at Tc/t = 0.323(1) using
(a) the transverse superfluid stiffness ρS,⊥ scaled with L, (b) the
longitudinal superfluid stiffness ρS,‖ scaled with L, (c) the condensate
density ρ0 scaled with L2β/ν (see text).

the QMC Tc scaling, c2 ≈ 0.629, by fitting to all data points in
the same manner. We do not expect the scaling to agree with
the analytical expression which relies on mean-field theory—
see Sec. V for a discussion of the different scaling behaviors.

Using the same approach it is also possible to produce an
analytical expression for the critical temperature [22]:

Tc = vsn

4π

[
F (K )

t⊥zc

vsn

] 2K
4K−1

, (29)

where K, vs are the Tomonoga-Luttinger liquid (TLL) param-
eters [19], n is the density, and zc the coordination number.
The function F is given by

F (K ) = AB(K ) sin
( π

4K

)
β2

(
1

8K
, 1 − 1

4K

)
, (30)

where the amplitude AB(K ), relating the microscopic lattice
operators to the ones of the effective field theory, is nonuniver-
sal and depends on the specifics of the model, and β(x, y) is
the Euler beta function. Within the mean-field approximation,
Eq. (29) is exact and fit free, as long as K, vs, and AB are
known. Hence, using ground-state DMRG we can obtain these
three parameters from numerical fitting of the single particle
density matrix [19] at T = 0. Thus, it is possible to produce
critical temperatures given a ground-state calculation of a 1D
system with conserved quantum numbers which is consider-
ably less costly computationally. These values will be good
approximations as long at Tc is only a small fraction of the
systems bandwidth—the deviations between Eq. (29) and our
MPS + MF numerics at larger Tc values visible in Fig. 5(a) are
due to this. Conversely, at small Tc the agreement is excellent.
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FIG. 5. The critical temperature Tc of hard-core bosons at V = 0
and n = 0.5 vs the transverse hopping t⊥. (a) The red dashed line is a
power-law fit to the data points (black crosses). The orange solid line
is an analytical computation of Tc based on Eq. (29). (b) A power-law
fit to the QMC Tc data. (c) The constant R from Eq. (31) so that the
QMC Tc fits the analytical expression.

It is possible to extract critical temperature dependence on
t⊥ from QMC as well, and the results are shown in Fig. 5(b).
Using the analytical expression Eq. (29) with a renormaliza-
tion of t⊥ allows the overlapping of QMC data and analytical
data [39]:

Tc = vsn

4π

[
F (K )

R · t⊥zc

vsn

] 2K
4K−1

, (31)

where the renormalization constant R ∈ [0.74, 0.66], depend-
ing on t⊥, is found to fit the QMC data as shown in Fig. 5(c).
This renormalization constant has been discussed in the lit-
erature extensively [5,39–44], but here we find that as t⊥
decreases, it appears to converge to a larger value than the one
found in Ref. [39] for the case of an SU (2)-invariant system.

3. Tc dependence on V

The data presented so far for finite temperature have been
in the simplified regime of no nearest-neighbor repulsion
V = 0. However, the MPS + MF algorithm garners none or

FIG. 6. A plot of the critical temperature from superfluid to nor-
mal phase. The blue dashed line is computed using MPS + MF with
OBC and the orange solid line using QMC. The black dash-dotted
line is a ratio of the two results with values on the right axis.

slight penalties in having finite V . This yields the possibility of
measuring how the critical temperature depends on repulsive
interactions. Further, it is interesting to see whether the rela-
tion between Tc estimates from QMC and MPS + MF remains
the same when interactions are turned on.

In general, when repulsive interactions are turned on we
know from Fig. 2 that the superfluid should weaken. We
expect that the critical temperature is depressed for stronger
interactions and this can be seen in Fig. 6. Remarkably, the
ratio of critical temperatures is confined to a narrow band

0.73 <
T QMC

c

T MPS+MF
c

< 0.82. (32)

This remains true even when the quantum critical point at
Vc/t ≈ 3 is approached.

We point out that the MPS + MF approach we have de-
veloped here has a crucial advantage over the TLL + MF
framework behind Eq. (29): It can compute Tc even in regimes
where the individual 1D systems no longer realize a TLL, such
as for V/t > 2 for HCBs and U/t > 3.3 for SCBs, as shown
in Figs. 3(b) and 6.

V. DISCUSSION

The zero-temperature SF-CDW transition is an example of
so-called dimensional crossover [21]. We can see this by not-
ing that the order parameter for SF witnesses an exchange of
bosons between chains. When the order parameter for SF goes
to zero tunneling between chains is completely suppressed.
The system now behaves more like a set of 1D systems with
a remnant of interchain coupling only QMC can still resolve,
whereas in the case of finite SF order parameter the exchange
of particles made the system fully 3D. So, the crossover
from 3D to 1D becomes especially pronounced around the
transition point. A major difference to the quantum phase
transitions from SF to CDW occurring in 3D systems with
isotropic tunneling and interactions that we are showing here
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is that the transition in the present quasi-1D systems is not
second order but first order for HCBs (see Appendix D), and
possibly also for SCBs, as discussed below.

At the same time, it is evident from Fig. 2 that soft-core
and hard-core bosons have qualitatively similar behavior. One
notable difference is that the charge gap is much larger in the
soft-core case. This is likely due to the transitions occurring
at much larger values of U . Thus, the energy penalty for
adding and removing particles is much larger than in the
hard-core case. In addition, there is a small region around the
transition where the two order parameters coexist, i.e., where
both are small but finite. But as the limitations of mean-field
approaches (of which we are using a partial one) in predicting
supersolids are well documented, we refrain from concluding
the existence of such a state here. We also note that the SF
order parameter is enhanced for the soft-core case. This could
be explained by the fact that sites are almost never locked as
they often would be in the hard-core case. In other words, it
is almost always possible to inject particles into the system in
contrast to the hard-core case. If the maximum boson number
is reached the site is artificially locked but the amplitude for
a state where this occurs is negligible in accordance with
Eq. (2).

For soft-core bosons, in the true 1D case the CDW transi-
tion occurs at U1D/t ≈ 3.3 [34] whereas in the quasi-1D case
with t⊥/t = 0.05 (see Fig. 2) it does not occur until UQ1D/t ≈
8.12 [45]. For comparison, a 3D system with isotropic tun-
neling yields U3D/t = 29.94(2) [46] indicating that the large
increase we observe from U1D to UQ1D is reliable and the value
of UQ1D is heavily dependent on t⊥.

Overall, the soft-core boson case appears to differ quali-
tatively from the hard-core case when it comes to transition
order. In the soft-core model we could not find any clear first
order behavior in the superfluid order parameter while the
charge gap behaves similarly to the hard-core case—in fact,
charge gaps in both cases show a more pronounced discon-
tinuity than the supefluid order parameter or the transverse
superfluid stiffness (see Fig. 2). While we cannot detect a
jump in the SF order parameter, and thus a full first-order
transition, for the SCB system, this scenario remains the most
likely explanation for the observed behavior. We note that
there may be effects of the mean-field approximation that de-
grade any jump below the threshold that we could numerically
resolve. The only other alternative we see that could explain
the behavior of Fig. 2 is that of a simultaneous SF and CDW
order, i.e., a supersolid. As discussed above, it appears to us
that such an alternative would however require more evidence
than what can be supplied with the MPS + MF approach on
its own.

For the critical temperatures of the SF to normal transition,
the analytical prediction agrees well with the numerical corre-
spondents as seen in Fig. 5, especially at low Tc’s. It is notable
that the scaling of both MPS + MF and QMC data are very
similar, another positive for the approximative MPS + MF ap-
proach, with a power below that of the power of 2/3 predicted
from TLL + MF. At small t⊥ we expect and find improved
agreement between analytical theory and MPS + MF, in line
with the fact that the TLL + MF prediction will work better
as Tc becomes a small fraction of the systems bandwidth. For
both the MPS + MF and the QMC data we find that increas-

ingly constraining the fitting window to the smallest values of
t⊥ yields exponents approaching c2 ≈ 2/3 from below, show-
ing that the mean-field approximation becomes better with
decreasing t⊥. The close agreement in the scaling behavior
of Tc with t⊥ between the QMC and MPS + MF techniques,
and their common disagreement with the t2/3

⊥ -scaling derived
from TLL + MF points to the source being within the TLL
approximation of the microscopic lattice Hamiltonian of the
chains.

For the temperature data at finite repulsion in a hard-core
system it is interesting to note the relative constancy of the
Tc ratio between MPS + MF and QMC. The different critical
temperatures seem to agree less for larger values of repulsion
with the exception of the point at V = 2.75 where there is a
different trend.

While the results between QMC and MPS + MF differ
somewhat we note the differing efficiency of the two algo-
rithms. QMC data in this paper have been obtained using
30 000 equilibration steps and 1 000 000 measurement steps.
For a single core [Intel(R) Xeon(R) Gold 6140 CPU @
2.30 GHz] we find that

(i) CPU time for equilibration ≈0.001L4 sec,
(ii) CPU time for measurements ≈0.1L4 sec.
For MPS + MF we note that scaling is exactly that of

typical DMRG:

ttot ∼ Nsold
2χ3L, (33)

where d is the local Hilbert space dimension, χ is the bond
dimension, and L the system size. The MPS + MF routine has
the added complication of having to perform several DMRG
calculations. We have found that the number of required solu-
tions Nsol vary greatly, particularly close to transitions. Deep
in an ordered phase the number of required solutions can be
as low as Nsol ∼ 5. Close to a phase transition we find this
number able to reach Nsol ∼ 50 for OBC and Nsol ∼ 30 for
PBC including the various guessing heuristics we employ as
mentioned in Sec. III. Most important is that Nsol is not very
dependent on system size, approximately conserving the L
dependence of Eq. (33).

We compare data using a PBC model, and the efficiency
should be compared between these two cases as well. Note
that using OBC gives an incredible boost to efficiency due
to the lower bond dimension, which can be used for the
finite temperature case. It is further worthwhile to note that
QMC would obtain a better scaling with system size for finite
temperature and thus shorter run times as well.

On an [Intel(R) Xeon(R) Processor E5-2630 v4 CPU @
2.20 GHz] we find an L = 60 system running for ≈1600
seconds per solution in MPS + MF. With the largest number
of loops at Nsol ∼ 30 we arrive at

(i) QMC time: 15 days,
(ii) MPS + MF: 0.55 days.
As expected the MPS + MF algorithm ends up comparing

well when doing single-core calculations. It is worthwhile to
mention that QMC can scale up its measurement phase to
several cores where calculation speed increases linearly with
each core added. The degree with which MPS-based codes
can exploit parallelism varies widely by implementation, but
linear speedups in the number of CPU cores are generally
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not available over as wide a range as for QMC. Nevertheless,
scientific projects typically address some finite area of param-
eter space, meaning that the MPS + MF can obviously exploit
perfect (and trivial) parallelism in system parameters.

VI. CONCLUSION

Our results show that an approach using DMRG to solve
a decoupled 3D system self-consistently is valid for use
on an anisotropic system and also reproduces the transition
points with reasonable accuracy. In particular, the SF to CDW
phase transition has nearly equal critical repulsion Vc for the
MPS + MF case compared to QMC. The major benefit is
that the DMRG approach is computationally cheaper than the
corresponding exact QMC. We will further be able to simulate
real-time dynamics on the states produced by this framework
of MPS + MF. For the finite temperature transition to a nor-
mal phase the critical temperature deviates more from the
exact case. However, this deviation is much less sizable than
what a full mean-field approximation produces. This method
presents a powerful possibility of treating anisotropic 2D and
3D systems quickly using DMRG, in particular beyond the
TLL approach.

Another key finding of this work is the first-order nature of
the quantum phase transition between the superfluid and the
charge density wave order for hard-core bosons in these quasi-
1D anisotropic systems, as opposed to the expected purely
second order transition in a 3D system isotropic in tunneling
(and interactions, in the case of HCBs). At the same time, the
discontinuous opening of the charge gap contra the apparent
continuous vanishing of the SF order parameter, which occurs
for the case of soft-core bosons, may indicate different orders
of the transition in that specific system. The former suggesting
first order while the latter looks like second order. Our current
method and analysis is insufficient to determine whether there
is a very small jump. If that is the case it is further possible
that the gap gets smoothed out by the mean-field treatment.
A more detailed analysis of the soft-core model is required to
ascertain whether the transition is truly first order.

The method presented in this paper reproduces previous
analytical results. Critical temperature calculations using this
method scale with transverse hopping strength t⊥ correspond-
ing to what you would obtain using an effective field theory
on the 3D system and then decoupling with mean-field theory.
Replacing the effective field theory with DMRG we find sim-
ilar scaling laws with a modified exponent. In addition, using
ground state data from the normal 1D MPS routine we may
produce a critical temperature estimate from the field theory.
Both the scaling and estimated value agree well with the
presented approach at small t⊥, where agreement is expected.
The reasonably close agreement to theory allows us to trust
our numerical methods in the context of mean-field theory.
Combining analytical and numerical methods in this manner
could allow us to obtain Tc estimates in parameter regions
that are too computationally costly. This will be especially
true for an extension of our method to fermionic systems,
where, even putting aside the sign problem, auxiliary-field
QMC approaches scale much worse in the number of lattice
sites than in QMC for bosons (cubic vs linear scaling).
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APPENDIX A: OBC BOUNDARY CONTAMINATION

When using OBC the boundaries are dissimilar from other
sites in the system in that they are missing one neighboring
site. Depending on the Hamiltonian this causes a bias towards
either holes or particles to occupy the edge sites.

The usual method to deal with this bias is to focus on the
central part of the system and assume that boundary effects do
not reach in beyond a certain point. However, as can be seen
from Fig. 7, the assumption does not hold for the case of the
Hamiltonian in Eq. (4).

Instead we see the boundaries start a pattern of alternating
particles and holes. Since it is clearly preferable to have par-
ticles on the edges in the considered system, the two edges
have large weight on the occupation state. After V/t = 3 the
pattern becomes increasingly apparent and finally the average
simply does not attain the system center value. Further, even
if the average was a good measure of the center value it can
be seen from Fig. 7 that the boundaries actually incur a finite
superfluid order inside the system which leads to a transition
occurring only at Vc/t = 3.24.

It is further clear that this is a boundary effect since when
system size is increased above the sizes used in this paper the
finite size trend changes, making extrapolations difficult. In
practice, to overcome the boundary effect on superfluid or-
der in the hard-core system with nearest neighbor interaction
we find that sizes of L = 200 are insufficiently long to see
any convergence. This clearly shows the periodic boundary
conditions are necessary to analyze the hard-core bosons with
nearest neighbor repulsion since extrapolations to infinite size
suffer no trend changes at moderate sizes.

This is a much smaller problem in the case of soft-core
bosons with onsite repulsion as seen in Fig. 8. We can clearly
see the order parameter saturate to a specific value at the
center of the system quite quickly. Further, the plateauing does
not seem to be strongly affected by the onsite repulsion.

Evidently, when there is no nearest neighbor interaction the
effect of the boundaries is much smaller and OBC can safely
be used. Due to these observations we assume that PBC will
not yield a different result than OBC and neglect to perform
the costly computations soft-core bosons with PBC would
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FIG. 7. Order parameter 〈b〉 across the hard-core system for dif-
ferent values of nearest neighbor repulsion V using OBC. The OBC
data is for an L = 100 system and the PBC data is extrapolated to
L → ∞.

entail. Thus we have chosen to use PBC for the hard-core
system with nearest neighbor interactions and OBC for the
soft-core system with onsite interactions.

APPENDIX B: DENSITY PLATEAUS

When the considered model does not conserve particle
number it is not possible to use energy differences of states
with different particle number to determine the charge gap (as
in, e.g., Karakonstantakis et al. [20]). This is because it can
occur that

n(μ) = n(μ + δμ), (B1)

where δμ is some small shift from μ. In practice, this occurs
in the CDW phase which yields a certain arbitrariness to the
energy since certainly

E (μ) 
= E (μ + δμ) (B2)

as long as there are any particles in the system, while from
Eq. (B1) we would obtain

E (N ) = E (n(μ)) = E (n(μ + δμ)). (B3)

Another method may be used based on the variation of μ.
When computing density versus chemical potential, in the
CDW phase you find plateaus of constant density, as shown in

FIG. 8. Order parameter 〈b〉 across the soft-core system for dif-
ferent values of onsite repulsion U using OBC.

Fig. 9(a), whose width are the energy required to increase par-
ticle number by one. It is possible to compute how much the
chemical potential μ must be increased (decreased) to obtain
an increase (decrease) in the systems density. This yields an
upper and lower chemical potential for that particular density.
The difference of this upper and lower bound is then the
energy required to increase/decrease particle number.

The width of the density plateau W is related to an energy
difference obtained from a number-conserving calculation
once you enter the CDW phase of the system

W ≈ E (N + 1) + E (N − 1) − 2E (N ). (B4)

Further, as can be seen from Fig. 9(b), when repulsion is
decreased and we enter the superfluid phase the plateauing
tendency disappears. For charge gaps computed in the paper
we have used a precision which is at worst εμ = 1e−3 for the
upper and lower limit of the plateau.

APPENDIX C: ISOTROPIC TUNNELING

The first-order nature of the transition is not entirely clear
in the QMC data in Fig. 2. This is due to the fact that t⊥ =
0.05t is very small. To elucidate the nature of the transition we
may consider larger values of t⊥ as we still expect the system
to be in the same universality class.

For an isotropic case of t⊥ = t the correspondent result of
Figs. 2(b) and 2(c) is given in Fig. 10. Both order parameters
tend to exhibit clear jumps that become sharper as system size
is increased. We thus reason that the gap should remain, albeit
diminished, in the case of anisotropic tunneling.
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FIG. 9. Showing the density of a system with α = 0 at a V in the
(a) CDW phase and (b) the TLL phase. Note the clear plateau around
n = 0.5 inside the CDW phase.

APPENDIX D: FIRST ORDER TRANSITION

The jump in the order parameters given by the MPS + MF
routine in Fig. 2(a) and Fig. 2(c) do not by themselves guar-
antee first-order behavior. For the latter one of the order
parameters seems to vanish continuously as far as we can
resolve.

To clarify the transition order we compute additional indi-
cators. For the soft-core case we find no issue in computing

FIG. 10. BEC order parameter and CDW order parameter for the
isotropic case t⊥ = t .

FIG. 11. Density-density correlator and single-particle density
matrix vs onsite repulsion U/t in an L = 100 system for transverse
hopping t⊥ = 0.05t at bond dimension χ = 50.

FIG. 12. Energy gaps to the first excited state extrapolated to
infinity using PBC for bond dimension χ = 250 with transverse
hopping t⊥ = 0.05t .
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FIG. 13. Squared order parameter and charge gap vs inverted system size (black squares) for the hard-core boson model with PBC. The
blue solid line is a fit following Eq. (21) for the order parameter and Eq. (19) for the charge gap.

correlation functions and obtaining correlation lengths using
the scaling behavior for single-particle density matrix and
density-density correlator, respectively:

〈b†
i bi+r〉 ∼ A0 + B0 exp(−r/ξ ), (D1)

〈nini+r〉 ∼ A1 + B1 exp(−r/ξ ), (D2)

where ξ is the correlation length (differing between the two
correlators).

As can be seen from Fig. 11 there is a change of trend in
the correlation length at the transition. In addition, the single-
particle density matrix has an increasing correlation length
with a maximum at the transition. As far as we can resolve
there is no divergence and no increased tendency thereof with
increased bond dimension. This indicates we are capturing
the correct behavior. Since the correlation length is finite all
across the transition we conclude that the soft-core superfluid
to charge density wave transition is first order.

For the hard-core system it is difficult to fit Eqs. (D1) and
(D2) to the measured correlators. We find a nonexponential
trend taking over after a short distance suggesting insufficient
bond dimension for carrying the correlations over sufficient
distance to obtain good fits for a correlation length.

To obtain additional proof of the transition order in this
case we instead measure the (infinite size) gap to the first
excited state

�s = lim
L→∞

E1(L) − E0(L). (D3)

For a second order transition we would expect the gap to the
first excited state to be unchanged across the transition.

As can be seen from Fig. 12 the gap defined by Eq. (D3)
jumps by an order of magnitude across the transition and
changes direction abruptly. We take this to indicate a first
order transition since the gap to the excited state is not chang-
ing smoothly over the transition. Together with the jumplike
behavior of both the SF and CDW order parameter in Fig. 2(a)
we conclude that the hard-core transition is first order as well.

FIG. 14. Squared order parameter and charge gap vs inverted system size (black squares) for the soft-core boson model with OBC. The
blue solid line is a fit following Eq. (21) for the order parameter and Eq. (19) for the charge gap.
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APPENDIX E: FINITE-SIZE EXTRAPOLATION

We present the finite size data which after extrapolation
yields the data given by MPS + MF in Figs. 2(a) and 2(d).
The finite size data has been computed for a varying range of
sizes depending on when a clear trend which could be extrap-
olated appeared. Results for the hard-core model are shown
in Fig. 13. Notably, on the superfluid side order parameter
increases with size. In addition, there is a certain size at which
the system no longer supports superfluidity (e.g., L = 40 for
n.n. repulsion V = 3.005). With increasing repulsion larger
sizes are required to obtain superfluidity. We find that after
V = 3.02 no sizes manage to obtain superfluidity and all order
parameters are zero.

For the charge gap similar conditions hold. We find that be-
low transition smaller sizes obtain a finite charge gap whereas
in larger systems it is consistently zero valued. This comes as
no surprise since when superfluidity fails the system is truly
1D and should follow such physics. In this case, a truly 1D

system at these parameters transitions to a CDW phase at
V = 2 and we find the expected charge gaps at sizes where
superfluidity disappears.

For the soft-core case results look somewhat different as
shown in Fig. 14. This is mainly due to OBC allowing us
access to much larger system sizes such that only systems with
finite order parameter have been considered on the superfluid
side. We note that the order parameter seems to obtain large
fitting errors. In relation to the size of the order parameter
these errors typically remain on the order of marker size and
are included in Fig. 2(d).

For the charge gap we note that it looks finite before
transition. This is within the error produced by our charge
gap routine as outlined in Appendix B and we consider these
charge gaps zero valued. At onsite repulsion U = 8.12 we find
the curious case of simultaneous finite (but small) charge gap
and order parameter despite extrapolation which is discussed
in Sec. V.
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