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Two-impurity Yu-Shiba-Rusinov states in coupled quantum dots
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Using double quantum dots as the weak link of a Josephson junction, we realize the superconducting analog
of the celebrated two-impurity Kondo model. The device shows a cusped current-voltage characteristic, which
can be modeled by an overdamped circuit relating the observed cusp current to the Josephson critical current.
The gate dependence of the cusp current and of the subgap spectra are used as complementary ground-state
indicators to demonstrate gate-tuned changes of the ground state from an interdot singlet to independently
screened Yu-Shiba-Rusinov (YSR) singlets. In contrast to the two-impurity Kondo effect in normal-state systems,
the crossover between these two singlets is heralded by quantum phase boundaries to nearby doublet YSR phases

in which only a single spin is screened.
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I. INTRODUCTION

Magnetism relies on the presence of magnetic moments
and their mutual exchange interactions. At low temperatures,
local moments in metals may be screened by the Kondo ef-
fect and magnetism can be disrupted. This competition was
first proposed by Mott [1] as a mechanism for the vanishing
of magnetism at low temperatures in the f-electron metal
CeAls, and later explored by Doniach [2] within a simple
one-dimensional Kondo-lattice model, from which he estab-
lished a phase diagram delineating the magnetic phase as a
function of the ratio between the Kondo temperature, Tk, and
the interimpurity exchange. The essence of this competition
was subsequently reduced to the vastly simpler two-impurity
Kondo model, which exhibits an unstable fixed point separat-
ing a ground state (GS) of two local Kondo singlets from an
interimpurity exchange singlet [3]. This competition remains
a central ingredient in the current understanding of many
heavy-fermion materials and their quantum critical properties
[4-9].

In a superconductor (S), the gap around the Fermi surface
terminates the Kondo screening process before its completion,
but local magnetic moments may still be screened by forming
local singlets with BCS quasiparticles. As demonstrated by
Yu, Shiba, and Rusinov (YSR) [10-12], a local exchange
coupling between a superconductor and a magnetic impurity
leads to a subgap bound state. In a full quantum descrip-
tion, the corresponding bound state crosses zero energy and
the singlet subgap state becomes the new GS at a coupling
strength corresponding to Tx =~ 0.3A, where A denotes the
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superconducting gap [13,14]. This quantum phase transition
reduces the spin by /i/2, quenching a spin-1/2 altogether.

Half-filled Coulomb-blockaded quantum dots (QDs) are
model magnetic impurities, and can be readily coupled to su-
perconductors in semiconductor nanowires [15]. In Josephson
junctions (JJs) hosting an impurity, the above GS transition
results in a phase change from 7 to 0 [16-25], and constitutes
a complementary experimental signature to bias spectroscopy
of YSR states crossing zero energy [26—34].

In contrast to the normal-state two-impurity Kondo effect,
the two-impurity YSR ground-state phase diagram depends
strongly on the two different local exchange couplings and
includes not only the two different singlets, but also a doublet
GS in which only a single spin is screened. In a previous
Letter, we used a nanowire device to demonstrate the Joseph-
son effect in a serial double quantum dot (DQD) in the
low-coupling regime, in which the interdot tunnel coupling,
ts, dominated over the dot-lead tunneling rates, I'y, 'z [23].
Here we investigate in the same device the possible GSs at
stronger individual couplings to the leads. As the gate volt-
ages controlling these couplings are tuned, the boundaries
of the honeycomb charge stability diagram between GSs of
different parity are erased and new two-impurity YSR GSs are
accessed. This boundary deletion affects the dispersion in gate
voltage of the extracted Josephson critical current, /., and of a
closely related and directly measurable cusp current [35-40],
as well as the dispersion of the spectral YSR resonances,
which render mutually consistent GS parity information.

The article is organized in sections as follows. In Sec. Il we
show an overview of the DQD and its parameters. In Sec. III
we introduce the method used to extract I.. In Sec. IV we
delineate the theoretical expectations for GS, I, and subgap
spectra in the S-DQD-S system. In Sec. V we show our main
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FIG. 1. (a) Scanning electron micrograph of the device, false-
colored to indicate materials. Yellow lines denote local gates used.
A sketch of the superconductor-double quantum dot-superconductor
(S-DQD-S) system used as a two-impurity YSR model is shown in
inset. (b) Zero-bias conductance, G(Vyr, Ver), colormap providing
an overview of the DQD shell selected for the study (X, inside the
dashed line) and surrounding, less stable shells (Y and Z), which
are affected by instabilities at Vg &~ —0.4 V. The inset shows gate
settings for this measurement. Dots and a line indicate local gate
voltages and backgate voltage, respectively. Vy = —9.2V, V3 =
—9.2V, Vs = =025V, and Vp; = 104 V.

experimental results, making use of the concepts introduced
in Sec. IV. Finally, in Sec. VI we present our conclusions and
comment on the possible applications of our findings.

II. DOUBLE QUANTUM DOT CHARACTERIZATION

The measured device [Fig. 1(a)] consists of an Al-covered
InAs nanowire [41] deposited on top of narrow gates, insu-
lated by 20 nm of hafnium oxide from the wire. Al is etched
away to form a Josephson junction with a bare segment of
InAs nanowire as the weak link. The device has a Si/SiO;
substrate backgate which we operate at V4, ~ 10V to observe
a measurable supercurrent. Gates 1, 3, and 5 are set to negative
voltages to define the DQD, while gates 2 (4) are used as the
plunger Vg (Vgr) to load electrons into the left (right) QD.
Slight changes in the voltage of gate 1 (5) modify I't, (I'r) of
the left (right) QD to the left (right) lead. Small changes in Vyg
also affect these tunneling rates. All measurements are done
in an Oxford Triton® dilution refrigerator at Tiyigee ~ 20 mK,
using standard lock-in techniques with a lock-in AC excitation
of 2V at 116.81 Hz to obtain the differential conductance,
dl/dVy, superposed to a source-drain DC voltage, V4, while

simultaneously recording the current, /, with a digital multi-
meter. The data were corrected for an offset of 3.5 pA from
the current amplifier. To distinguish zero-bias from finite-bias
differential conductance, we use variables G and dI/dVy,
respectively.

Figure 1(b) shows a zero-bias differential conductance
(G) colormap which represents a portion of the honeycomb
stability diagram of the DQD in the superconducting state.
Conductance lines appear at places in which the parity of
the system changes, constituting a way to accurately map GS
boundaries. We label charge sectors of the DQD shell selected
for gate tuning (shell X) by (N., Nr), where N, and Nr are
the (integer) charges in the highest level of the left and right
QDs, respectively. Parity lines separating doublet and singlet
regions according to the total number of electrons in both QDs
alternate in spacing, consistent with shell filling [23,42].

From Coulomb-diamond spectroscopy of shell X, we ob-
tain the charging energies of the left and right QDs, Up ~
1.9meV and Ur ~ 1.6 meV. From this spectroscopy, we also
find that the level spacing of both QDs is equivalent to their
charging energies (AEL ~ 1.6meV and AER =~ 1.8 meV).
A = 0.27meV, the parent Al superconducting gap, is found
from Coulomb-diamond spectroscopy in deep Coulomb
blockade in an opaque regime. The fact that Up,Ur > A
places the system firmly in the YSR regime [43]. From
the (0,2)-(1,1) anticrossing in the charge stability diagram,
we estimate the interdot coupling, 74 = 0.03—0.05meV and
the interdot charging energy, Uy = 0.13—0.23 meV. Measure-
ments of DQD and superconductor parameters are provided in
Appendix A (see Figs. 9-11).

The DQD parameters I't, and I'r could not be indepen-
dently measured due to the high critical field (B. = 2.1 T) and
high critical temperature (7, = 2.2 K) of the superconducting
device. We calculate in Sec. IV for our approximate DQD pa-
rameters GS boundaries set at 'y ~ I'g =~ 0.4 < AEL, AER,
which provide I'L, I'r sufficiently small to satisfy the single-
level approximation [16]. Multilevel QD JJs show phase
changes at fixed dot charge, irrespective of charge occupation
[16,22], which is not observed in shells X, Y, and Z.

Near charge depletion, QDs are typically strongly con-
fined, but also show the smallest I';/U; ratio, while a sizable
I';/U; ratio for a given temperature is needed to observe a
finite Josephson current [44]. This sets a narrow (AE;, I';, U;)
window which translates into a narrow gate range for single-
level DQD JJ operation and I'; tuning. Outside of this window
either multilevel (AE; < TI';), resonant level (I'; > U,), or too
weakly coupled regimes arise (I'; < U;), which is why only a
few shells near QD depletion could be studied here.

III. DETERMINATION OF CRITICAL AND CUSP
CURRENTS

Next, we focus on the low-bias transport characteristic of
the device in the superconducting state.

Initially intended for two-terminal bias spectroscopy of
YSR excitations in a S-DQD-S system, for sufficiently
strong 74 the device exhibits in dI/dVyy — Vg traces a bias-
symmetric, 20 uV-wide zero-bias peak flanked by negative
differential conductance (NDC) dips, exemplified in Fig. 2(a).
As shown in Fig. 2(b), the corresponding I — V4 traces have
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FIG. 2. (a) d1/dVyy — Vi trace recorded at the same gate voltage
as the leftmost trace in (b). (b) I — V4 traces taken with the gates
swept along the red solid line in Fig. 8(c). Initial and final gate
voltages are indicated. The traces have been shifted horizontally by
120 uV with respect to each other, and are measured from —60 to
60 uV each. Cusp current, I, at positive V4 is plotted as a black
trace to highlight its gate dependence. (c) Electrical circuit model.
Details are given in the text and in Appendix B.

a finite slope between sharp cusps which occur at a current /.
The positive V4 value at which the cusps occur, Vp = 9.1 +
0.6 uV, is gate-independent over three orders of magnitude
of G and over cusp currents, Iy, ranging from 0.3 pA to 50
pPA (see Fig. 12 in Appendix B). Additionally, V{, matches
the Vg value of NDC dips, and Iy shows a gate dependence
similar to G [for example, compare Figs. 14(c) and 14(d) in
Appendix C], indicating common origins for both phenom-
ena.

‘We relate this narrow, bias-symmetric, finite-sloped I — Viy
characteristic, which is cusped at I and locked at Vj, to the
supercurrent of the circuit-damped JJ formed by the S-leads
and the DQD weak link, schematized in Fig. 2(c). This mini-
mal model assumes the presence of a resistance R at the level
of the leads (indicated in green) which was not designed and
which was not independently measured, and which provides
Johnson-Nyquist white noise at a temperature 7 which in
principle can be larger than the temperature in the dilution
refrigerator [35,45]. From its fitted value and position in the
model, we speculate that R comes from the contact resistance
between the nanowire and the Ti/Au leads.

In Fig. 2(c), the designed elements of the circuit at 20 mK
are indicated in black. The JJ is assumed to have a current-
phase relationship I sin ¢, where the critical current, I, is
unknown. This relationship is valid away from phase transi-
tions [23]. Standard filtering and shielding elements include
the following: (1) Two-stage low-pass RC filters with 30 kHz
cutoff frequency, of total resistance R,/2 per line, where
Ry = 8.24 k2, and capacitance per stage Chyer = 2.7 nF. (2)
Seven-stage low-pass m filters with 200 MHz cutoff fre-
quency, positioned at 20 mK in series with the RC filters (not
shown). (3) Lines to the sample are additionally attenuated at
high frequency by Eccosorb® and encased by copper tape. (4)
Radiation shielding is used at several stages in the dilution
refrigerator, with the deepest encasing being at 20 mK at the
sample level.

Nondesigned on-chip elements of known origin in the
experiment are indicated in blue. Using a parallel-plate capac-
itor model, and from the device geometry and materials, we
evaluate the junction capacitance at Cy ~ 3 aF, and the capac-
itance of the large-area bonding pads through the backgate at
C =~ 9 pF. The latter estimation assumes that the resistance
R is somewhere in the leads between the bonding pads and
the device. These capacitances place the JJ in the over-
damped regime, but knowledge of their values is not needed to
extract I..

In the overdamped and voltage-biased regime this circuit
gives rise to a three-parameter (I, R, T) voltage-current re-
lation, as demonstrated by Ivanchenko and Zil’berman [46].
When T > &l /2ekg, corresponding to the limit of large noise
amplitude [35], V} is I.-independent as in the experiment and
its value Vy = 2eRkpT /li = 10 uV is close to the measure-
ment. Additionally, I, can be rescaled to Iy and G, as shown
in Fig. 13 in Appendix B, explaining their connection in the
experiment.

We fit dI/dVyq — Vg and I — V4 curves to obtain [.
Since the device is measured in a two-terminal config-
uration, R, = 8.24 k2 is subtracted from the raw bias
voltage, Vg =V — IR, and raw differential conductance
data, dI/dVyq = (d1/dV)/(1 — RdI/dV), before inputting
them into the formula. Despite the circuit assumptions and
the crudity of the model employed, the fits to the data are
good for Iy between 0.2 pA and 50 pA, and I, ranging from
0.03 nA to 0.8 nA. Examples of the fit are shown as blue
curves in Figs. 2(a) and 2(b).

The parameters R = 3 k2 and 7 = 80 mK are extracted
through the fitting procedure by initially keeping the param-
eters I, R, and T free. As long as RT = 240 kQmK, R
and T can adopt any value and still produce a good fit to
the data. A rescaling by a dimensionless number y to R/y
and Ty globally will merely change /. to ,/yl. without any
qualitative change in its gate dependence. This is crucial for
a robust interpretation of the latter, but it prevents absolute
quantitative /. assessments. Nevertheless, 7' is chosen from
an upper-bound estimate of the electron temperature from the
thermal broadening of a Coulomb peak, which also produces a
reasonable /. value, given the maximum imposed by A and the
DQD couplings. The fitted value of R, in turn, is compatible
with previous measurements of contact resistance in highly
transparent nanowire junctions [47]. Once the noise RT was
set, I. was kept as the only free parameter in the fit to Vyq — 1
curves at other gate voltages. Extraction of an unambiguous I,
value, impeded here by lack of measurement of R [35], should
benefit from a fully designed circuit [48]. A derivation of the
model and additional details are shown in Appendix B.

IV. THEORETICAL INSIGHTS

We introduce below the phase diagram of the S-DQD-S
system, which distills the main consequence of the YSR spin-
screening mechanism: changes in tunneling rates 'y, and I'g
drive GS parity transitions. We also provide calculations of the
parity stability diagram, of I, and of the subgap dI/dVsqs YSR
spectra, of importance to undertake the experimental results
in the next section.
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FIG. 3. (a) Schematized two-impurity YSR interaction (orange
dotted line) of electron spins (black arrows) and quasiparticles (white
arrows) from superconducting leads for different tunneling rates
I'L, I'r. Horizontal lines indicate double quantum dot (DQD) lev-
els. Each level contains one electron. (b) NRG calculation of the
phase diagram of the two-impurity YSR S-DQD-S system for gates
np, = ng = 1 corresponding to single occupancy of both dots.
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In our GS naming convention, the parity is specified by D
for doublet and § for singlet. Indexes depend on QD occupa-
tion, as follows. If the QD levels contain each one electron, we
use two indexes; the first (second) denotes if the left (right)
spin is screened (1) or not (0) [Fig. 3(a)]. If only one QD
contains a single electron and the other is empty/full, we use
a single index, L or R, to indicate if the left or right QD
level is occupied [Fig. 4(a)]. Finally, if both QD levels are
empty/full, we use no index. For example, in Fig. 3(a) Dy,
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FIG. 4. (a) Schematized YSR interaction of electron spins and
quasiparticles from superconducting leads for different I', I'r and
level occupations. The bottom four cases correspond to the one-
impurity YSR system. (b) NRG calculation of the phase diagram of
the one-impurity YSR S-DQD-S system for single occupancy of ei-
ther dot. GS boundaries for n;, = 1, ng = 0 are denoted by a red solid
line, while those for n, =0, ng = 1 are denoted by a green solid
line. Dotted blue arrows indicate qualitatively the gate-tuned I'L, I'r
paths in the sequences of experimental charge stability diagrams in
Figs. 6-8.
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FIG. 5. NRG calculations. (a—c) Charge stability diagram with
doublet-singlet GS boundaries indicated as solid black lines. (d) |/|
along respectively colored dashed lines in (a) and (b). (e, f) Compar-
ison of the gate dependence of |I.| to (g, h) colormaps of subgap
dl/dVy — Vi along the same gate trajectory. The colormaps are
calculated by the Bardeen approach (see Appendix E).

denotes screening of the right-QD spin for the (1,1) charge
state.

In Fig. 3(b) we show the two-impurity phase diagram of the
S-DQD-S system versus 'y, ['r with dot occupations fixed at
ny, = ng = 1. This diagram was calculated with the Numeri-
cal Renormalization Group (NRG) technique [28,49] forty =
0.1 meV, charging energies of the QDs Uy, = Ur = 2meV,
and A = 0.25meV, parameters which are used in all NRG
calculations shown in this work. For simplicity, Uy was kept
at zero. Black lines denote GS parity boundaries between Soo,
811 and Dy, Dy;. These boundaries avoid each other due to #4.
An NRG calculation of the one-impurity phase diagram is in
turn shown in Fig. 4(b). The one-impurity case corresponds to
np =1, ng = 0,2 (red) and to n, =0, 2, ng = 1 (green). In
contrast to two-impurity GS parity boundaries [black dashed
lines overlaid from the calculation in Fig. 3(b)], one-impurity
parity boundaries are straight lines.

GS parity boundaries can also be plotted as function of np ,
ng for fixed 'L, I'r, which encourages qualitative comparison
to experimental charge stability diagrams such as the one in
Fig. 1(b). Three examples calculated by NRG are shown in
Fig. 5. Similarly to the charge stability diagram of shell X
in Fig. 1(b), the GS diagram of Fig. 5(a) exhibits all pos-
sible parity boundaries; its I'L, ['r coordinates situate it at
the bottom-left corner of the two and one-impurity phase
diagrams of Figs. 3(b) and 4(b). In Fig. 5(b), at stronger I'[,
the left spin is screened and the GS changes in the (1,0) and
(1,2) charge sectors from Dy, to St ,, and in the (1,1) sector from
Soo to Dy, deleting the horizontal parity boundaries which
previously existed in Fig. 5(a) between Sy and Dg, and be-
tween D, and S. In Fig. 5(c), at stronger I'g than in Fig. 5(b),
the remaining doublet sector is screened away into a singlet,
resulting in the disappearance of vertical parity boundaries.

Modifications of the GS diagram result in changes of the
gate dependence of I. and subgap YSR spectra which are
also experimentally resolvable. An NRG calculation of |L|
is shown in Fig. 5(d) for an n trajectory which crosses two
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GS parity boundaries in the case of the blue trace, and no GS
parity boundaries in the case of the red one. The blue trace
shows asymmetric peaks located at the two Dy, — S GS parity
changes, whereas the red one evolves into a smooth and broad
peak centered at np = 1. These are the well-known signa-
tures of a w and a 0 QD JJ, respectively. In Figs. 5(e)-5(h)
we compare the gate dependence of these traces [Figs. 5(e)
and 5(f)] to a calculation of subgap dI/dVy [Figs. 5(g) and
5(h)], which is detailed in Appendix E. In Figs. 5(g) and
5(h), the calculation shows dI/dVyy colormaps in which the
innermost red lines appear at eVyy = £(A + EL), correspond-
ing to quasiparticle tunneling from the gap edge of the right
superconductor via the spinless right QD, to the YSR state
at energy Ep in the spinful left QD, with tunneling rate |¢4]>.
Since BCS peaks probe subgap bound states, these peaks are
followed by dips of NDC. This transport channel assumes a
quasiparticle relaxation rate in the left superconductor, which
is faster than the interdot tunneling rate [50]. In Fig. 5(g) the
YSR dI/dVy peaks form the well-known split loop, which
kinks downwards at parity changes coinciding with peaks
in || in Fig. 5(e). In the absence of parity changes as in
Fig. 5(h), the YSR peaks evolve smoothly with minimum
splitting at n, = 1, which coincides with a broad peak in |/|
in Fig. 5(f).

Since the high magnetic field and/or temperature needed
to drive the device into the normal state impede independent
measurement of ', and 'y, these calculations serve only as a
qualitative guide for the gate-tuned behavior of experimental
charge stability diagrams and of the gate dependence of I, I
and YSR excitations in the section below.

V. RESULTS

By following the deletion of parity transition lines in the
charge stability diagram for DQD shell X, while knowing the
departure ground states of each charge configuration (V., Nr)
of the original diagram at weak coupling, it is possible to track
GS changes of the system at stronger coupling to the leads, to
which we access by changing gate voltages other than V1 and
Ver. Before describing the data, we discuss three points not
included in the NRG model above:

(1) While the model is based on a single DQD shell, the
DQD device has a staircase of shells. GS changes demon-
strated here for shell X are not necessarily concurrent in shells
Y and Z, as is typically the case in nanowire-defined QD
devices [24,29].

(2) Parity transition lines in the experimental charge sta-
bility diagram of shell X have an acute angle with respect
to each other due to trivial Vg, Ver cross-talk [51], instead
of the nearly perpendicular angle which they exhibit in the
NRG calculation. While knowledge of the exact angle is not
relevant, it is important to keep track of the slope of the parity
transition lines of both QDs during the experiment, to avoid
confusing gate-controlled parity changes with the formation
of a single QD or with the introduction of a third QD, both
of which should have parity transition lines of different slope.
We therefore keep the same total gate variations AV, and
AV, and aspect ratio in the stability diagrams of Figs. 6-8,
and use red dashed lines to mark the slope of the left and right
QD parity lines. These lines have the same slope in all plots,

showing that the device stays as a DQD through the whole
gating procedure.

(3) As discussed below, electron-hole asymmetric GS par-
ity changes in shell X are observed for YSR screening of
the right-QD spin, which can be modeled by a dependence
of I'r on Vg (see Appendix F). This cross-coupling is not
unreasonable in view of the slight horizontal rightwards shift
of the bottom gates in Fig. 1(a) with respect to the nanowire
channel [24].

In Fig. 6(a) we show a zero-bias conductance colormap
which represents the charge stability diagram of DQD shell
X at slightly different gate settings than in the overview in
Fig. 1(b). In these settings, the DQD has been brought to the
verge of a GS transition due to YSR screening of the left-QD
spin. We tune the leftmost gate of the device, Vyi, to gradually
merge [Fig. 6(b)] and then, in combination with slight changes
in Vg3, Vg5 and Vi, to erase [Fig. 6(c)] the parity transition
lines of the stability diagram corresponding to the loading of
a spin-1/2 in the left QD, consistent with an increase in I'L.
The end result is that the singlet-doublet-singlet GS sequence
S — Dy — S along the solid blue line in Fig. 6(a) changes into
an all-singlet sequence S — S — S along the solid red line in
Fig. 6(c).

To support our interpretation, we show in Figs. 6(d)-6(h)
I., Iy and subgap I — Vi and dI/dVsy — Vg data taken with
VoL swept along these solid lines of corresponding color at
different instances of the GS transition; Vg is also swept to
compensate for cross-capacitance. I, and [y traces (in inset)
in Fig. 6(d) behave similarly to NRG calculations of || in
Fig. 5(d). Asymmetric peaks in the blue trace come together
in the intermediate green trace and merge into a single broad
resonance in the red trace as the coupling I'p is increased
by tuning the V,;. The asymmetric peaks in /. are consistent
with a phase shift of 0 — 7 — 0 added to the current-phase
relationship when the GS parity changes as even-odd-even.
In turn, the culminating single-broad peak is compatible with
an enhanced supercurrent from screening of the spin of the
left QD, as seen in earlier S-QD-S devices [17,20,27]. The
absence of two asymmetric peaks in this trace is related to the
even parity of the GS for all the relevant charge states.

Figures 6(e) and 6(f) compare the evolution of low-bias
I — Vi traces in gate voltage taken along solid lines of corre-
sponding color in Figs. 6(a) and 6(c) to Figs. 6(g) and 6(h),
which show dI/dVyy colormaps versus V. taken along the
same respective gate trajectories, but with V4 swept along a
larger bias window within 22 A, so as to capture the behavior
of YSR subgap dI/dVy peaks. In Fig. 6(g) the lowest-lying,
gapped peaks exhibit a small split-loop structure with kinks at
—3.05 V and —3.1V, which align in gate voltage to peaks in
in the I — V4 traces from Fig. 6(e), as predicted by our NRG
calculations above, and as previously observed in S-QD-S
Josephson junctions [27]. The kinks vanish in Fig. 6(h), indi-
cating absence of parity changes. Instead, the peaks exhibit a
smooth point of inflexion at Vg, = —3.43 V, which aligns with
a broad resonance in the V. dependence of Iy in the I — Viq
traces from Fig. 6(f).

As in our simple model in Figs. 5(e) and 5(f), the lowest-
lying peaks appear split in bias voltage by a gapped region
[26,28-30,52,53], are followed by NDC [27,54-58], and
ascribe to the expected shape in gate voltage [26,28,34,59].
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FIG. 6. (a—) G(V,L, Ver) colormaps taken with V; set to (b) —9.2V, (c) =9 V, and (d) —8.95 V. In (a) and (b), other gates are set to
Vez = =93V, Vg5 = —0.25V, and W, = 10.4 V. In (c), other gates are set to Vo3 = —9.0V, Vo5 = —0.36V, and W, = 11 V. Changes in
Va1 by 0.2 V require compensation in Ver by ~0.03V and in Vg by ~0.04'V to keep the charge stability diagram in frame. (d) I. and I,
(in inset) vs V., with V. and Ver swept along the solid lines of corresponding color in (a)—(c). A black dotted line after the solid lines in
(a)—(c) indicates that the line cuts extend beyond the gate range of the colormap. The traces are horizontally shifted to match the same gate
range. (e, f) Comparison of the gate dependence of I — V4 traces from which the /. and /) data in the blue and red curves in (d) are extracted
to (g, h) colormaps of subgap dI/dVy — Viq measured along these gate trajectories. To avoid crowding, in (e) and (f) only every fifth trace is
plotted, and the traces are horizontally shifted by 65 ©V with respect to each other. V4 is swept between 60 ©V in each trace.
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FIG. 7. Electron-hole asymmetric YSR screening. (a—f) G(Vy, Ver) colormaps with Vs set at (a) —0.5 V, (b) —0.75 V, (c) —1.25 V,

(d) —1.5V,(e) =1.75 V, and (f) —2 V. Other gates are set to Vy; = —9.2V, Vi3 = =9.2V, , = 10V. Changes in V5 by —0.25 V require

compensation in Vyg by ~0.1 V, anin Vg by ~0.008 V to keep the charge stability diagram in frame. The sequence of parity stability diagrams
serves as a prelude for Fig. 8.
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FIG. 8. (a—¢) G(Vg, Ver) colormaps taken with Vi, set to (a) 10 V, (b) 9.74 V, and (c) 9.6 V. Other gates are set to Vg = —9.2V, V3 =
—9.2V, Vs = —2V. Changes in Vpg by —0.4 V require compensation in Vg by ~0.3 V to keep the charge stability diagram in frame. (d) I
and I, (in inset) vs Vg, with Vi and Vr swept along the solid lines of corresponding color in (a)—(c). The traces are horizontally shifted
to match the same gate range. (e, f) Comparison of the gate dependence of I — V4 traces from which the /. and /; data in the blue and red

curves in (d) are extracted to (g, h) colormaps of subgap dI/dVyy

— Vi measured along these gate trajectories. To avoid crowding, in (e) and

(f) only every third trace is plotted, and the traces are horizontally shifted by 65 'V with respect to each other. V4 is swept between 60 ©V
in each trace. The sequence of gate-tuned parity stability diagrams, which started in Fig. 7(a) in a honeycomb configuration, culminates here

in a configuration devoid of parity lines.

However, closer inspection reveals additional complexity in
the form of reduced gap values and peak replicas, which we
will discuss in some detail. If the Bardeen model in Sec. IV is
used to interpret the bias position of the lowest-lying gapped
peak as A§ + Ei, the measurements in Figs. 9(c) and 9(d) in
Appendix A show that the superconducting gap is effectively
reduced with respect to that of the parent Al superconductor
(A) and that it is different for the left (Af = 0.110meV) and
right (A§ = 0.140 meV) leads. By an effectively reduced gap,
we mean that the gapped region in the weak tunneling regime
at Vi < 2A observed at V;,; = —15V in Fig. 9(c) is replaced
in Fig. 9(d), at the backgate voltage of operation of the de-
vice in shell X, V;,; &~ 10V, by conductance resonances above
Vsa > A{ + Ag. In electrostatic simulations of gating in InAs
nanowire/Al hybrids, reduction of the effective induced gap
in the nanowire occurred at more positive gate voltages due to
weaker semiconductor/superconductor hybridization, which
could explain our measurement [60].

Additionally, the colormaps display significantly less con-
ducting, bias-symmetric replicas at Vg > Af + Er, as well
as one or more faint replicas at Vy¢ < A} + Ep, the low-
est of which can cross zero bias at parity crossings (see
Appendix C). These replicas are often followed by NDC.
In addition to replicas, on occasion a few straight horizontal
lines cross the colormaps, such as in Fig. 6(h), which shows a
pair of bias-symmetric lines at Vyg = Af. The colormaps also
display additional lines with opposite curvature to that of the
lowest-lying gapped peaks; a clear example of this is seen in

Fig. 6(h) around Vg = —3.43V as split-loops terminating at
the main YSR peaks. These additional lines can also exhibit
replicas. The intricate replica behavior has been previously
related to multiple peaks inside the superconducting gap of
the hybrid nanowire-superconductor leads [61,62], to multiple
Andreev reflection [63,64], quasiparticle relaxation, thermally
excited transport [65-67], and/or inelastic Andreev tunneling
[59]. Understanding the origin of these replicas, some of
which may be visible in this work due to the unprecedented
resolution of our data [the full width at half maximum of YSR
peaks can be as low as 10 uV, as shown in Fig. 14(b)], is
outside of the scope of this work. In what follows, we will
focus only on the gate dependence of the curvature of the
lowest-lying pair of gapped peaks and on its relation to I.
We now bring shell X back to the honeycomb regime, this
time with gate settings which put it close to a GS transi-
tion due to YSR screening of the right-QD spin. Figure 7(a)
shows a colormap of zero-bias conductance which represents
the charge stability diagram of shell X in this regime. The
sequence of colormaps in Figs. 7(a)-7(f) shows tuning of the
stability diagram from the honeycomb pattern into a pattern
lacking parity lines from the right QD. We interpret the change
as stemming from an effective increase in I'r due to our
tuning of the rightmost gate voltage, V,s. The change is more
subtle as V. also affects I'r, as mentioned above. Due to this,
the upper section of the stability diagram transitions into a
new GS faster than the lower one. We are able to model this
qualitatively by introducing a linear dependence of I'r on n,
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FIG. 9. (a) dI/dVs(Via, V1) colormap taken with other gates set at Vo = 2.25V, Vi3 = —6.5V,Vy = —2.16 V, Vs = —6.5V, and V,, =
—15V. (b) d1/dVq(Viq, V1) colormap measured along the same gate trajectory as (a) and zoomed into the superconducting gap. A small gate

shift occurred at V,; 2 2.438 V. In (a) and (b) the colorscale has been

saturated to highlight faint features in the data. (c) dI/dVy(Vyq) trace

obtained along the dashed line in (b). (d) dI/dV(Vsa) traces measured along line of same color in the inset colormap, which corresponds to
the same colormap as the one shown in Fig. 6(g). Only data in (d) correspond to shell X. Blue and yellow shadings separate A, 2A regions,

while red and green shadings separate Ag, A + Af regions.

within a zero-bandwidth approximation of the superconduct-
ing continuum [32], as shown in Appendix F, and find that this
is a faithful demonstration of a Sy, to Dy; GS transition in the
(1,1) charge sector, and of a Dg to S; GS transition in the (0,1)
and (2,1) charge sectors. In Appendix F, we also show that GS
transitions obtained by increasing I';, as those shown Fig. 6,
are not significantly affected by introducing a dependence of
FR on ny..

Finally, departing from the pattern in Fig. 7(f), in which the
right-QD spin of DQD-shell X is screened, we demonstrate
simultaneous screening of the left-QD spin, and therefore,
full YSR screening of the spins of shell X. Figures 8(a)-8(c)
show the step-by-step modification of this stability diagram,
which contains only parity lines of the right QD in shell X
in Fig. 8(a), to a diagram lacking parity lines of this shell
in Fig. 8(c), which marks a Dg; to S;; GS transition. In
Fig. 8(c), after the GS transition occurs, the charge stability
diagram of shell X shows a broad peak of conductance as
the remains of the larger availability of conduction channels
for Cooper pair transport in the (1,1) charge sector. The GS
transition is also reflected in the gate dependence of I, I and
YSR peaks of largest conductance in Figs. 8(d)-8(h), obtained
along gate paths given by solid lines of corresponding color
in Figs. 8(a)-8(c), which cross the (1,1) charge sector. As in
Fig. 6(d), Fig. 8(d) shows that I. and /) (in inset) gradually
change from a split-peak structure in the blue trace to a broad
peak in the red trace. As in Figs. 6(e)-6(h), parity changes
manifested in Fig. 8(g) in two kinks in the split-loop YSR
structure which align to Iy peaks in I — Vyq4 traces in Fig. 8(e)
are replaced by an all-singlet parity sequence, which expresses
itself in the absence of kinks in Fig. 8(h), and in the smooth
inflection point at Vg, = —1.9'V, which coincides in Fig. 8(f)
with a broad [ peak in I — V4 traces.

From the succession of Figs. 7(a)-7(f) and Figs. 8(a)-8(c),
we can see that the GS of the (1,1) charge sector, which started
in Fig. 7(a) as an interdot singlet, Sqo, has been gate-tuned in
Fig. 8(c) into independently screened YSR singlets, S;;. This
GS transition occurred through an intermediate YSR doublet
phase, Dy, as shown in Figs. 7(f) and 8(a).

VI. CONCLUSION

In summary, we have demonstrated one- and two-impurity
YSR physics in a shell of a DQD hybrid nanowire. We obtain
the GS from the gate dependence of I, of I and of YSR sub-
gap conductance peaks, supported by the step-by-step tuning
of the stability diagram to different endpoints of the phase
diagrams. We find a reasonable qualitative agreement between
experiment and theory. However, technical difficulties which
prevent the measurement of I'; and g, together with cross-
couplings in the device, have as a result that the S-DQD-S
model cannot be quantitatively established in relation to the
experiment without free fitting parameters. Quantitative com-
parison between experiment and theory is also complicated by
lack of independent measurement of R within our model for
the characteristic of the JJ circuit, which leads to extraction
of I. only up to a factor ,/yl., and by the complexity of
the reduced hybrid nanowire-superconductor gap, which is
reflected in multiple replicas of the YSR state filling the gap
between the YSR state and the parent Al superconducting gap
edge.

As a spectroscopic probe of parity changes, the narrow
zero-bias conductance peak of the effectively voltage-biased
Josephson junction [35-40] maintains the sharpness of the
relevant features in all charge, or more accurately, parity sta-
bility diagrams independently of the tunneling rates. This is
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in stark contrast to the case of magnetic impurities (spinful
QDs) coupled to normal metals, which broaden the conduc-
tance features at strong hybridization [68—73]. The zero-bias
conductance peak also provides very direct access to I,
just as it provides access to the local superfluid density in
scanned Josephson-tunneling microscopy, which has been
used recently to detect Cooper-pair density waves on surfaces
of Bi,Sr,CaCu,0g., and NbSe, [40,74]. Unlike scanning
tunneling spectroscopies of dimers of magnetic adatoms on
superconducting surfaces [65,75,76], our DQD realization
comprises two spin-1/2 states which are completely screened
by individual superconducting channels. The Kondo-YSR
analogy breaks down towards zero temperature, as confirmed
by the existence of doublet domains in the phase diagram at
kT < A.

By virtue of #4, nonmagnetic, gap-protected superpositions
of the two singlet states found, the exchange singlet Soo and
the independently screened YSR singlet S, could be pre-
pared in future works for parameters close to the anticrossing
in the phase diagram of Fig. 3 [77], with the purpose of using
them as qubits [78]. In addition, the demonstrated gate control
of a two-site quantum dot chain in superconducting proximity
is a crucial step towards the implementation in our hybrid
wires of the YSR analog of Doniach’s Kondo necklace [2] and
of the Kitaev chain [79-81], complementing ongoing research
of emergent manifestations of topology [62,82—87].

Data availability: All data needed to evaluate the conclu-
sions in the paper are present in the paper. Raw data used to
produce the experimental figures in the paper can be found at
the repository ERDA of the University of Copenhagen at [88].
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APPENDIX A: EXTRACTION OF DQD PARAMETERS

To measure A, we deplete the device by setting Vye =
—15V (which is ~25V more negative than V;, used in
the measurements on shell X in the main text) and perform
Coulomb-diamond spectroscopy as shown in Fig. 9(a). The
repetitive Coulomb-blockade pattern is indicative of a mul-
tilevel QD regime. The Coulomb diamonds appear split by
a forbidden bias window. Zooming in on this window, as
shown in Fig. 9(b), a pair of bias-symmetric lines which cross
all diamonds is identified at eVy = +2A. This feature stems

from the BCS coherence peak from the left lead at energy
—A probing the coherence peak in the right lead at energy
+A via co-tunneling through the QDs. At parity crossings,
which correspond to the apexes of split Coulomb diamonds
in this opaque regime, a few pairs of bias-symmetric subgap
states come down, the lowest of which reaches exactly A. This
occurs when the coherence peak at A in the right lead probes
a YSR excitation in the left lead which crosses zero energy at
parity crossings. At e|Vy4| < A, the conductance is blocked at
all Vg values. In Fig. 9(c) we plot a line cut at the center of one
Coulomb diamond to display the position of the quasiparticle
tunneling peaks at 2A and their extremely narrow width [66].
We measure 2A = 0.54 meV, which provides a value of A
identical to the one obtained from S-QD-N devices made from
the same batch of nanowires [34]. The position of horizontal
lines outside 2A depends on the Coulomb diamond chosen,
as can be seen in Fig. 9(b); we ascribe these lines to the
probing of QD states in co-tunneling by the sharp supercon-
ducting singularities. The trace in Fig. 9(c) is compared to
two traces in Fig. 9(d) displaying YSR excitations in shell
X which are extracted from Fig. 6(g) to show graphically
that Ay < A and that A + A} < 2A, where Af and A}
are the effectively reduced gaps in the left and right leads
at the backgate voltage at which the device is operated, as
in Sec. V. If we assign a bias position E;, + Af to the in-
nermost gapped YSR peaks, we measure A} = 0.140 meV
from the black trace, which is taken at a parity crossing where
E;, =0. In turn, we find Af + A§ =0.250meV from the
green trace, which is taken in the (0,2) charge state, where
E;, approaches asymptotically to Af. From this, we deduce
Af =0.110meV.

To measure Uy, Ur, we perform Coulomb-diamond spec-
troscopy on each QD in shell X as shown in Fig. 10. In spite
of the larger couplings of the DQD in this regime, we observe
faded Coulomb diamonds from which we can trace the actual
diamonds as denoted by dashed lines. U, Ur correspond to
the bias difference between the apex of the central Coulomb
diamond and the edge of the superconducting gap at 2A.
An indication of the order of magnitude of the tunneling
rates of the DQD can be obtained from the full-width-at-half-
maximum of Coulomb lines outside the gap between the pairs
of arrows in Figs. 10(b) and 10(c), which is of 0.6 meV in both
cases.

To estimate 73 and Uy, we use the curvature of the parity
lines at the (1,1), (0,2) charge transition in the charge stability
diagram of shell X. We first prolong the parity lines of the
left and right QDs, as indicated by the yellow dashed lines
in Fig. 11. We join their two intersections by a green line
which separates the (1,1) and (0,2) charge sectors. Afterwards,
by projecting the green line into the two white lines which
indicate the charging energies of the QDs, we convert the gate
scale of the green line into energy. The red lines along the
green line indicate the distance from the curved parity lines
in the colormap to each of the two intersections of the yellow
dashed lines and are each equal to 2¢4; the green line summed
to the two red lines is ~/2U4 + 4¢4. This procedure assumes
that the parity stability diagram in the superconducting state
is similar to that of the normal state. In this way, we measure
tq ~ 0.03-0.05meV and Uy ~ 0.13-0.23 meV.
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FIG. 10. (a) Colormap of zero-bias conductance, G, vs (Vg, Ver) for shell X measured with other gates set at Vyy = —9.2V, Vg3 = =9.3V,
Ves = —0.25V, and Vy,; = 11 V. (b, ¢) Colormaps of dI/dVyy — Viq vs gate voltage representing Coulomb-diamond spectroscopy of the (b) right
QD, (c) left QD. Gate trajectories followed in each colormap are indicated by red and green lines in (a), respectively; however, for simplicity,
only (b) Ver and (c) V. gates are indicated on the horizontal axes. Dashed lines are guides to the eye to follow Coulomb diamonds. In (b) and

(c), the AC lock-in excitation is set to 20 uV.

APPENDIX B: MODEL OF THE CIRCUIT

In this Appendix we elaborate on the extended RCSJ model
necessary to explain the I — Vyq and d1/dVy — V4 curves ob-
served in the experiment. The extension, compared to standard
RCSJ, consists of an additional series resistance R and shunt
capacitance C. This model has been applied to ultra-small
Josephson junctions [89] and S-QD-S setups [19]. Disregard-
ing Cpyer in the circuit depicted in Fig. 2(c), Kirchhoff’s
laws and the Josephson relation yield two coupled Langevin
equations:

du Y s Rusrron- 122 @)
— == —sing — —[u )] - ——14t,
dtv o | Rl R, ag dt?

de . 1 d%

o= +L(t) —sing — wdit (B2)

Here u = V4 /RI. denotes the dimensionless voltage across
the shunt capacitor C and we have introduced the dimension-
less time t = wgpt with wg;, = R/L, where L = ®/I. is the
self-inductance of the Josephson junction set by the critical
current, I, and ® = fi/2e. The two different RC frequencies,
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FIG. 11. Zoomed-in version of the colormap of zero-bias con-
ductance vs (Vyr, Ver) for shell X shown in Fig. 10. Lines are used to
estimate 74 and Uy as described in Appendix A.

WRe, = (RCy)~" and wge = (RC)™!, enter these equations via
the dimensionless parameters o = wg./wrc = R>CI./® and
oy = wre,/wr, = P /R2GyI. Finally, L(7) is a dimensionless
stochastic parameter describing white-noise voltage fluctu-
ation of V4. L(t) is composed of Nyquist noise from the
series resistor (R) at temperature 7* and a stray voltage
noise characterized by a variance, K, to account for imperfect
filtering, such that (L()L(t + A7)) = (EL 4 K§(AT).
Noise from the source resistance Ry is assumed to be excluded
by the RC filters. As K and T* can not be independently
measured in this setup we ascribe all noise to the series resistor
(R) with an effective temperature T = T* + K/(2Rkg) which
can be different from the fridge temperature.

For @ > 1, u changes slowly with time, which allows us
to solve for ¢’s equilibrium distribution keeping u constant.
If furthermore oy > 1, solving the stochastic equation for the
¢ distribution is equivalent to the original RCSJ problem [46]
with the solution

h_iua(A)
(A’

where A = ®I./kpT and I,(z) is a Bessel function. Inserting
this solution into Eq. (B1) a constant average voltage, (u) = 0,
may be enforced by satisfying the equation

Vv R I _iwa(A)
— ) = Tm AL
Iiuya(A)

RJ. R
Two limits of R/R; are of interest. For small R/R;, depending
on I, and T, this equation has three solutions for () arising
from the nonmonotonic behavior of the right-hand side, and
the setup is effectively current biased, exhibiting hysteretic
(I) — V curves. For large R/R;, the solution for (i) is unique
and the system is effectively voltage biased and can exhibit
NDC. The latter case is consistent with the experiment.
Experimental I — (V,4) traces can now be fitted to

Ii—igya(A)
Lia(A)’

which is identical to an earlier formula derived by Ivanchenko
and Zil’berman [46], while the derivative of this formula with
respect to (Vyq) allows fitting of dI/dVyy — Vg traces. In a
typical Josephson junction A > 1 and the cusp voltage scale

(sin¢) = Im (B3)

(B4)

(I =I1.Im (BS)
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FIG. 12. (a, b) Fitted I, extracted cusp current, [y (left axes),
and extracted cusp voltage, V, (right axes) from I — V4 data from
Figs. 8(e) and 8(f), respectively. Data from all measured I — V4
traces in the gate range indicated are included, and not just ev-
ery third trace. An horizontal dashed line corresponds to Vp =
9.1 V. Deviations from constant V; occur only for small current
(Ip < 0.3 pA), e.g., between Vg = —2 and —2.05 V, where data
noise prevents an accurate extraction of V.

is set by Vi & RI.. In our measurements V; is constant over a
wide range of cusp current, Iy, as we show in Fig. 12, where
extracted Iy, V, and fitted I. is shown for two line cuts in the
experiment.

This is consistent with the large-noise limit, A < 1, of
Eq. (B5) where one can perform a Taylor expansion of
Eq. (B5) around A & 0 to obtain [46]

1 LA (u)
21+ A2 (u)?’
from which it is clear that the cusp voltage V) =

argmax(l)({(Vsq)) = RkgT /P is solely determined by noise
and is independent of /.. Cusp current,

(1) (B6)

Iy ={Y(Vo) = 1.-A/4, (B7)
and zero-bias conductance,
G = d(I)/d(Vi)(0) = A*/2R, (B3)

can also easily be identified in this limit. We also identify a
scaling y withR =R/y,T = Ty and I, = ,/y1. which keeps
Vo and Eq. (B6) unchanged.

If the limits above are satisfied we indeed have a model
where (1) The junction is overdamped and nonhysteretic, (2)
the junction is effectively voltage biased allowing measure-
ments of NDC, and (3) the I — V4 curves are cusped with
an Iy-independent cusp voltage V. We will now discuss the
validity of the above limits. By fixing 7 = 80 mK, consistent
fits of Eq. (B5) can be done for all gate ranges yielding a con-
stant series resistance R = 3 k2 and variable I. in the range
I. ~ 0.02-3 nA which roughly corresponds to o ~ 10-100
and g ~ 10*~10° using the geometric estimates of C and
Cj, consistent with our assumption that o, og > 1. For these
parameters Eq. (B4) has only one solution, consistent with
the junction being voltage biased. Lastly, for these parameters
A < 1 for the fitted range of 1. with A ~ 1 for the largest /.. In
Fig. 13 we compare the simple large-noise-limit expressions
for Iy and G using I, from the fitting with measured I, and
G and find excellent agreement with the largest discrepancies
occurring for large /. values consistent with our Taylor expan-
sionin A o I..

As the above analysis is a fully classical treatment we
will now discuss the impact of quantum fluctuations. The
characteristic frequencies of the circuit are estimated to be

~1A/4

I, (PA)
G (e?%h)
o o
e
?
(®)

T
i

0" /O N
c_2@ 1k g @ 1|
s 4 FL X SZo002f
EO& O:.——v—"’&{ IL,M‘ \'.,”M <| ‘:;/ ] :’ 1 } ";..
-24 i . "A‘l ; ; o Of‘v-n-"*“/ L"""""‘”“ ‘\*\-m.‘-u
-2.2 -2.1 -2.2 -2.1
Va (V) ol

FIG. 13. (a—d) Comparison between the gate dependence of
rescaled /. and (a) measured Iy from Fig. 14(c) and (b) G line cut
through Fig. 14(d). To obtain /; in (a), data from all measured / — V4
traces corresponding to the gate trajectory in Fig. 14(c) is included,
and not just every third trace. (c, d) Difference between the scaled
and measured curves in (a) and (b).

wgre ~ 0.01 GHz, wg;, ~ 0.1-10 GHz, and wgc, ~ 10° GHz.
With 7 =80 mK, ie., kg7 /i~ 10 GHz, and I. = 0.02
— 3 nA, we arrive at the following hierarchy of frequencies:

(B9)
For these values, one may safely neglect the large capaci-
tance, C, in the effective circuit impedance experienced by the
junction

Zepp(@) = [1/R + iCio + 1/(iLw)] ",
and which determines the mean-squared phase fluctuations,
Sy = ((¢ — (¢))?), which is given by Refs. [90-92],

S, /"0 dw ReZg(w) 1

0= o @ 2Ry 1 — e heo/ksT

wre L opy S kT /I K wpe,

(B10)

(B11)

with Rq = h/ 4¢*> ~ 6.5 kQ. Within a fully quantum mechan-
ical treatment, this correlation function in turn leads to an
approximately exponential reduction of the critical current
[90,92]:

I* ~ I exp(—S,). (B12)

As a function of temperature, Sy is roughly constant and due
to quantum fluctuations for kT < hwgy. For hwgp < kpT,
corresponding to the parameters found above, the fluctuations
are largely classical and S, increases linearly with 7', consis-
tent with the classical treatment employed above. Since kT is
Jjust barely larger than /icwg,, and R just barely smaller than Ry,
a further reduction of /. due to quantum fluctuations must be
expected to reduce the actual values for I, which we deduce
from the strictly classical analysis above and report in the
figures throughout the main text. Nevertheless, the marked
gate dependence of I, remains and this is what provides the
real value of the zero-bias conductance peak as a probe of
YSR screening and the concomitant quantum phase transi-
tions reported in this paper.

Summarizing the circuit analysis, the magnitudes of /. ob-
tained by fitting I — Vg and d1/dVyy — Viq traces are expected
to be slightly overestimated by leaving out quantum, and
retaining only thermal fluctuations of the electromagnetic en-
vironment. Additionally, T has been fixed by an independent
measurement which is only an estimate of the effective tem-
perature experienced by the circuit. Relaxing this constraint
on T, we can still obtain consistent fits utilizing a global
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FIG. 14. (a—d) Comparison between the gate dependence of (a,
c) I — Vg traces and respective (b, d) dI/dVy colormaps which
represent the gate dependence of the corresponding low-lying non-
gapped YSR subgap states for (a, b) the S — D, — S and (c, d) the
Sk — Do1 — Sk GS sequences. In (a) and (c), to avoid crowding,
only every seventh (every third) trace is plotted, and the traces are
horizontally shifted by 65V with respect to each other. In each
trace, Viq is swept from —60 to 60 nV. To acquire the data sets in
(a)—(d), the gates were swept along the solid lines in Fig. 6(a) for
plots (a) and (b), and in Fig. 8(a) for plots (c) and (d).

scaling of R and I... The value of these measurements therefore
lies in the gate dependence of I, not its amplitude which can
include a global scaling, in good qualitative agreement with
NRG calculations.

APPENDIX C: ASYMMETRIES IN CUSP CURRENT

While the model displays Iy symmetric in Vg, in some
instances the experiment fails to do so, with the discrepancy
attributed to conduction through low-lying YSR subgap peaks
which approach V4 = 0. In Fig. 14 we show two examples in
which subgap peaks approach zero bias, and the effect which
this has on the symmetry of I in V4. The extreme case when
a pair of subgap peaks reaches all the way to Vyq = 0 at two
singlet-doublet parity crossings is shown in Fig. 14(b), and its
effect on I — V4 traces is shown in Fig. 14(a). Blue arrows
indicate the subgap peak of largest conductance among the
ones at positive and negative bias for a given gate voltage. To
the left of state Dy , this peak is at negative bias, whereas to the
right it is at positive bias; i.e., the peak of largest conductance
is antisymmetric with respect to the center of the state Dy .
Unsurprisingly, the same antisymmetry is observed for I,
with the negative-I (positive-I) cusp occurring at larger |/|
than its positive-/ (negative-/) counterpart to the left (right) of
state Dp.. This occurs between the pairs of gate points marked
by blue pins. This behavior contrasts with the hysteresis of
underdamped Josephson junctions, where a sweep of Vg from

negative to positive values, as it is always the case in our
device, would result in larger switching current for positive
than negative /. Along the gate voltage delimited by the pair of
red pins, the subgap states remain close to Vg = 0, affecting
the positive-negative symmetry of the I cusps, which are just
barely well-defined in this region. To the left and right of
the parity crossings, in the S states, YSR subgap peaks are
far enough away from the supercurrent zero-bias conductance
peak, and I — V4 traces are consequently fully symmetric
in Vsd-

Figures 14(c) and 14(d) show a different example with sub-
gap peaks appearing near Vg = 0 in Fig. 14(d). Nevertheless,
these are far enough away to not affect the cusp symmetry in
the respective I — V4 traces in Fig. 14(c).

It is natural to expect that the appearance of such additional
subgap conductance channels close to zero bias affects the
resistance of the junction, and therefore the effective relation
between (I) and (Vyq). The modeling of this additional com-
plication, however, is beyond the scope of this work.

APPENDIX D: TWO-IMPURITY MODEL

We model the double quantum dot system using the fol-
lowing superconducting generalization of the two-impurity
Anderson impurity model:

H = ZHimp,i + Higr + ZHBCS.i + Zthb,ia (D)

L L

where the impurity Hamiltonians for quantum dots i = L (left)
and i = R (right) with on-site energies ¢; and electron-electron
repulsion (Hubbard) parameters U; are

U;

Hinpi = 7(’%‘ — )%, (D2)

where the impurity occupancy (charge) operators are 7; , =
d;(,di,aa fl,’ = fl,‘yT + I”\l,"i, while n; = 1/2 + Gi/U,‘ is the im-
purity energy level €; (controlled by the corresponding gate
voltage) expressed in the dimensionless units of electron num-
ber. The interdot tunneling amplitude, z4, enters through a
tunneling term,

Hg =Y _ted] ,dr, +Hec., (D3)
o
the leads are modeled using BCS Hamiltonians
Hpcsi = ZEkCZkaci«k” + Z ACIkTCzT,ki + H.c., (D4)

k.o k

IL=0.7TA, [R=0.2mA
(a) (b) (c)

IL=0.8TA, [R=0.2mA ML=0.97A, [R=0.2mA

Dwr | S Dor S QR/) S
N1 So Do.| ng1 b So @ Nut So Sy
0 1 2 0 1 2 0 1 2

nr Nr Nr

FIG. 15. Parity transition lines calculated using a ZBW approxi-
mation with a gate-dependent tunnel coupling fr. Black lines indicate
changes of GS parity. Increasing I'y, from (a) to (c). These figures
should be qualitatively compared with Fig. 6.
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FIG. 16. Parity transition lines calculated using a ZBW approxi-
mation with a gate-dependent tunnel coupling #z. Black lines indicate
changes of GS parity. Increasing I'g from (a) to (f). These figures
should be qualitatively compared with Fig. 7.

Uy is set to zero, and the QD-lead tunneling amplitudes, # /g,
enter through the hybridization terms

Hyyoi = 1; Z CI-T!,«,d,;l7 +H.c.
ko

(D5)

In these expressions, d;, are QD operators, while c;, are
lead operators. Finally, the tunneling rates are defined as I'; =
n,oitiz, where p; is the density of states in lead i in the normal
state (i.e., in the absence of superconductivity).

APPENDIX E: FINITE-BIAS CONDUCTANCE AT WEAK
INTERDOT COUPLING

For weak #4, dI/dV,,; can be estimated using the tunnel-
ing (Bardeen) approach, similar to that used in the analysis
of scanning tunneling microscopy (STM) experiments. We
assume that the voltage drops entirely across the weak link
between the two dots, and that each quantum dot is in thermo-
dynamic equilibrium with the neighboring lead. The chemical
potential shifts in the leads are pup r = £eViq/2, and the lo-
cal spectral functions on the dots are equally shifted. The
superconductors are described in the semiconductor model,
neglecting all coherence effects. The current is then given by

4 o0
I= %mz/ (@ — ) — flw— )]
x Ap(w — up)Ar(w — ur) dow, (ED)

where f(x) = [1 4 exp(x/kgT)]~' is the Fermi function. At
zero temperature, this becomes

4re +eVsa/2
= —|t) / AL(w — eV /2)Ar (@ + eVia/2) dw.
h —eVa)2
(E2)

I.=0.6TA, M[r=0.9TA M.=0.7TA, [k=0.9TA I.=0.91A, M[r=0.9TA

(a) (b) (c)
Sir S Sir S S S
-
-
L1 Dy Do n.1 Di. Do 1 S, Si.
A
-
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0 1 2 0 1 2 0 1 2
ng ng Nr

FIG. 17. Parity transition lines calculated using a ZBW approxi-
mation with a gate-dependent tunnel coupling #z. Black lines indicate
changes of GS parity. Increasing 'L from (a) to (c). These figures
should be qualitatively compared with Fig. 8.

We computed the spectral functions Ap g(w) for the two
subsystems with #; = 0 using the density-matrix numerical
renormalization group algorithm with discretization parame-
ter A = 2, and broadened raw spectra using the broadening
parameter o, = 0.2. After convolution of the spectral func-
tions to obtain the current, dI/dVyy was computed by
taking numerical differences. This single-particle tunneling
approach, valid only to second order order in 74, neglects
Andreev reflections altogether and presumes that relaxation
rates of quasiparticles in the subgap states are larger than the
interdot tunneling rate.

APPENDIX F: EFFECTS OF FINITE INTERDOT
CHARGING ENERGY AND GATE-DEPENDENT
TUNNEL COUPLING

In this section we investigate the effects of a possible in-
fluence of V1 on tg. For efficient parameter exploration, we
do this using a zero-bandwidth (ZBW) approximation [32]
of the superconducting leads in Eq. (D1), taking Hgcs, ~
> chfT Cj¢ + H. c. and numerically diagonalizing the Hamil-
tonian. We model the tunnel couplings, #;, as t;, = /2AI'L/2
and tr = /2AI'R/2(1 + np/4), where g now depends on
Ver. through ny.. To more realistically mimic the experimental
scenario we also include an interdot Coulomb repulsion, Uy,
such that Himp = Zi:L,R U;/2(n; — I’li)2 + Uqg(Aiy, — np) (AR —
ng) with Uy =05meV and #; = + 7, being the
electron counting operator. Other parameters are identical to
parameters used for the NRG calculations presented above.
Comparing Fig. 16(a) to Fig. 5(a), the main effect of Uy is to
provide an angle on the ng, ny, parity lines.

In Figs. 15-17 we show GS parity transition lines (black
lines) of the S-DQD-S charge stability diagrams for various
values of I'L, and I'r, corresponding qualitatively to data in
Figs. 6-8. The gate-dependent coupling is seen to account
in Fig. 16 for the asymmetric screening around the electron-
hole symmetry point occurring when I'y, is increased, which
is necessary to explain the experimental findings in Fig. 7,
that is, the observation that the doublet to singlet transition
reflected by the vanishing of the two parity transition lines
happens faster on the top (Vg &~ —2.1V) than at the bottom
(Voo = —2.3V).
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