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We propose a computationally efficient Kerker mixing scheme for robust and rapidly converging self-
consistent-field calculations using all-electron first-principles electronic structure methods based on the
muffin-tin partitioning of space. The mixing scheme is composed of the Kerker preconditioner in combination
with quasi-Newton methods. We construct the Kerker preconditioner in the muffin-tin sphere by determining
the screened Coulomb potential in real space, solving a modified Helmholtz equation by adopting Weinert’s
pseudocharge method for calculating the Poisson equation for periodic charge densities without shape approxi-
mation to the solution of the modified Helmholtz equation. Implemented in a full-potential linearized augmented
plane-wave (FLAPW) method, we found that the Kerker preconditioning scheme (i) leads to a convergence to
self-consistency that is independent of system size, (ii) is extremely robust in the choice of the mixing and
preconditioning parameters, (iii) scales linearly with system size in computational cost, and (iv) conserves
the total charge. We have related the preconditioning parameter to the density of states of the delocalized
electrons at the Fermi energy and developed a model to choose the preconditioning parameter either prior to
the calculation or on the fly. Our computationally validated model supports the hypothesis that, in the absence
of Kerker preconditioning, the delocalized s and p electrons of simple and transition metals are the primary
cause for the slowing of the convergence speed and that the stronger, localized d and f electrons account for
only a small fraction of the charge sloshing problem. The presented formulation of the Kerker preconditioning
scheme establishes an efficient methodology for the simulation of magnetic and nonmagnetic metallic large-scale
material systems by means of muffin-tin-based all-electron methods.

DOI: 10.1103/PhysRevB.102.195138

I. INTRODUCTION

Density functional theory (DFT) is considered the standard
model for the calculation of electronic and structural proper-
ties of materials. In this formalism, the quantum mechanical
ground state of a many-electron system is the exact solution ρ∗
to the Kohn-Sham (KS) equations. Due to the nonlinearity of
the Kohn-Sham equations, a direct computation of the ground-
state charge density ρ∗ is not possible and one has to resort
to a fixed-point iteration scheme—the “self-consistent-field”
(SCF) iteration—where a new, better approximation of ρ∗
is calculated at each iteration step. In practical applications,
an iteration step, or “cycle,” of the SCF iteration includes
solving the Poisson equation, evaluating an approximation
to the unknown exchange-correlation potential for a given
charge density, and subsequently solving the Schrödinger-like
Kohn-Sham equation for each occupied state, from which a
new charge density is synthesized. In this paper, the abstract
functional f describes a cycle, and we aim at improving the
convergence of the whole SCF iteration.

*Corresponding author: m.winkelmann@fz-juelich.de

In the last 35 years, advanced mixing methods such as
Tchebycheff [1], Broyden [2], Anderson [3], or Pulay mixing
[4,5], and variants and adaptations [6–14] of these, have been
introduced in a wide range of electronic structure methods, so
as to ensure SCF convergence with only a few shortcomings
in practical simulations. Their basic principle is to assemble
a new charge density ρ (m+1) for the next iteration m + 1 by
mixing input charge densities ρ (i) and output charge densities
f (ρ (i) ) of previous iterations i � m.

One such shortcoming is “charge sloshing,” which often
occurs in large metallic systems. In each cycle, the charge
moves too far in the physical sample simulated, resulting in
a too strongly restoring electrostatic potential, which even-
tually leads to oscillations of the charge that prevents the
convergence of the SCF iteration. The response strength as-
sociated with the misplaced charge density is proportional
to the Coulomb interaction, which scales as 4π/K2 with the
magnitude of the sampled wave vector K, the smallest of
which has length 2π/L, where L is the characteristic size
of the unit cell. Because of such dependence, we expect
a decrease in the amount of output charge density that is
mixed into the next input charge density and an increase of
the number of iterations to achieve SCF convergence scal-
ing as the square of the system size (L2) [15]. In principle,
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the computation of systems of increasing size and chemical
or structural complexity could be carried out by increasing
the amount of computational resources. On the other hand,
the slowing down of the convergence speed forces the use
of an ever-increasingly disproportionate amount of resources
to the point that it can develop into a roadblock for large-
scale ab initio calculations. Charge sloshing also impedes
a reliable and stable path to self-consistency, an important
requirement for high-throughput calculations in the context
of autonomous computing and materials discovery. Translated
in mathematical terms, the problem of finding the fixed point
is ill-conditioned. A common approach to remedy such a
problem is designing and using a preconditioner.

Sophisticated SCF preconditioners [16–20] have been de-
veloped using a linear approximation of the functional f .
This linearization operates on two fronts: first on the sus-
ceptibility describing the response of the charge density with
respect to the change of the effective potential, and second
on the Coulomb and exchange-correlation kernel, describing
the response of the effective potential with respect to changes
of the charge density. While most SCF preconditioners for
metallic systems show excellent convergence results, they are
too expensive in practical computations.

For plane-wave-based methods, the Kerker preconditioner
[10,11,21] provides a computationally light-weight alterna-
tive, while still significantly improving SCF convergence. In
contrast to the more expensive methods, the Kerker precon-
ditioner discussed in Sec. II A makes a large simplifying
assumption: It replaces the dielectric function of the Kohn-
Sham system, by one of uniform distribution of electrons,
yielding a simple mathematical form of the preconditioner
in reciprocal space. Such a setup effectively enables the
screening of long-range electron interactions and thereby
suppresses charge sloshing. Thanks to this simple scheme,
plane-wave-based pseudopotential [22] or projector aug-
mented plane-wave (PAW) [23,24] methods typically make
use of a Kerker preconditioning scheme.

In contrast, “all-electron” methods, such as the augmented
spherical wave (ASW) [25], linear muffin-tin orbital tech-
niques (LMTO) [26], Korringa-Kohn-Rostoker (KKR) Green
function [27], and full-potential linearized augmented plane-
wave (FLAPW) method [28], treat core electrons on the
same footing as valence electrons. In order to deal with the
Coulomb singularity produced by the nuclear charge and
the associated rapid variation of the charge densities in the
vicinity of the nucleus, all-electron methods partition the
space of the unit cell into muffin-tin spheres in which wave
functions and charge densities are represented in real space.
A Fourier representation of these quantities would hardly
converge. Thus, in order to be able to use the Kerker pre-
conditioner efficiently in all-electron methods, a real-space
formulation is advantageous and conceptually consistent with
the real-space representation of the charge density. A first
implementation and results were reported in Ref. [29]. A
real-space Kerker method has also been developed for pseu-
dopotential approaches [30], but the concept is quite different
to what is presented in this work due to the replacement of
true charge densities in these methods.

Here we present a formulation of the Kerker mixing
scheme for full-potential all-electron methods employing the

muffin-tin decomposition of charge density and potential for
three-dimensional periodic crystalline solids. We focus on
the development of a computationally efficient Kerker pre-
conditioner for stable and fast-converging SCF computations,
the verification of convergence properties, and the setup of a
material-specific rule for the choice of optimal parameters in
the mixing and preconditioning parameter space. The scheme
is implemented in the FLEUR [31] code, a realization of the
FLAPW method [28].

We have demonstrated the performance and efficiency of
the Kerker mixing scheme using the example of metal sur-
faces, which we realize with the supercell approach. The
supercell consists of atoms representing the substrate, atoms
representing the surface and missing atoms representing the
vacuum. This way we work with very unfortunate unit cells,
which have very disproportionate c/a ratios, i.e., very thin and
long wire-shaped unit cells with many atoms in one direction
and a minimum number of atoms in the plane of the unit cell.
Such unit cells of metallic systems are prone to charge slosh-
ing. We study 17 different metals—alkali, transition, noble,
post-noble, nonmagnetic, as well as magnetic metals. We have
chosen both symmetrical and asymmetrical surfaces, varying
the number of atoms in the unit cell between 19 and 79, and
we treated systems with more than 1200 valence electrons.

Our tests show that the convergence provided by the Kerker
mixing scheme is rather robust with respect to the choice
of preconditioning and mixing parameter. Most importantly,
the SCF convergence is shown to become system-size inde-
pendent, as it is typical for the Kerker preconditioner in its
original reciprocal-space formulation and, at the same time,
already effective for relatively small systems. These results
make this mixing scheme applicable to a huge span of sys-
tems all the way up to huge ones investigated using large
parallel compute clusters. The results of the material-specific
model supports the hypothesis that the charge sloshing prob-
lem arises mainly from the response of the s and p electrons
of metals and only in part from the response of the more
localized d and f electrons. On the other hand, our model
can be used to automatize the parameter selection by direct
calculation on the fly, a valuable asset for high-throughput
computing.

The paper is organized as follows: In Sec. II A we introduce
the Jacobian to the residual charge density functional, and
discuss the Thomas-Fermi approximation to the Kohn-Sham
response function and the generalization to a local response
function with a free preconditioning parameter. This is fol-
lowed by a description of the origin of the charge sloshing
and a representation-free formulation of the Kerker precon-
ditioner. The solution of the modified Helmholtz equation
for a residual charge density is introduced as an elementary
step relating the residual charge density to the precondi-
tioned residual density. We conclude with the introduction of
the Kerker mixing scheme, a combination of preconditioner
and quasi-Newton method. In Sec. II B, we briefly illustrate
the representation of the charge density and the potential
in the FLAPW method. We then discuss an extension of
Weinert’s pseudocharge method [32] for the solution of the
Poisson equation applied to the modified Helmholtz equa-
tion described in Ref. [33]. Section II also discusses aspects
of charge neutrality, the treatment of magnetic systems, and
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describes the preconditioning and mixing scheme algorithms.
In Sec. III, we examine the performance of our implementa-
tion of the Kerker preconditioner in the FLAPW code FLEUR

[31], showing improvements of convergence even for bulk
systems of only 19 atoms. In Sec. IV, we develop and an-
alyze a model that relates the preconditioning parameter to
the density of states of delocalized electrons, showing good
agreement of our model and computationally determined op-
timal parameters. We conclude with a summary of the main
points and a discussion of some of the open issues.

II. PRINCIPLE AND GENERAL CONSIDERATIONS

A. Charge sloshing phenomenon and Kerker preconditioner

Charge sloshing is a problem with SCF convergence. The
SCF convergence is mainly determined by the derivative of the
residual functional δρ = f (ρ) − ρ close to the sought-after
fixed point ρ∗. Let ρ (m) and f (ρ (m) ) at some iteration m be
the input and output charge density, respectively. It is well
known that taking the output charge density as new input
for the next iteration, i.e., ρ (m+1) = f (ρ (m) ), only converges
if the eigenvalues of df

dρ
in the vicinity of the fixed point are

sufficiently smaller than 1 in absolute value [34]. Instead, one
could take a mixture of output and input,

ρ (m+1) = ρ (m) + Cδρ (m), (1)

where, after discretization, δρ is a vector quantity and C is, in
general, a square matrix. This way, one has control over the
convergence, since the absolute error of iteration m + 1 is

ρ (m+1) − ρ∗ = (ρ (m) − ρ∗) + C
δρ (m) − δρ∗

ρ (m) − ρ∗ (ρ (m) − ρ∗)

≈ (1 + CJ )(ρ (m) − ρ∗), (2)

where 1 is the identity matrix and J = dδρ

dρ
is the Jacobian

of the residual close to the fixed point. Choosing C ≈ −J−1

brings the right-hand side close to 0 and thus ρ (m+1) close to
the fixed point. So our aim is to approximate −J−1. In general,
C depends on the iteration m.

A cycle consists of several steps: Based on a charge density
one first solves the Poisson equation and adds to the solution
an exchange-correlation potential and, if available, an external
potential. The total or “effective” potential then enters the
KS equations, which we solve for the KS orbitals, which
again produce a new charge density by summation over the
lowest-lying orbitals occupied by electrons. The derivative of
the cycle functional f [34],

J = df

dρ
− 1 = χKS(KH + Kxc) − 1, (3)

is closely related to the dielectric matrix, where KH is the
Hartree or Coulomb kernel, respectively, Kxc is the exchange-
correlation kernel, and χKS is the static Kohn-Sham response
function. The derivative of an external potential cancels out,
since Vext is external to the electrons and thus does not depend
on the charge density.

In metallic systems, the Kohn-Sham susceptibility of de-
localized itinerant electrons with large group velocities may
well be approximated by the susceptibility of the homoge-

neous electron gas or jellium system, respectively, known
as the static Lindhard response function [35], χKS(r, r′) �
χL(r − r′). Manninen et al. [36] introduced an efficient mix-
ing scheme for inhomogeneous jellium systems in real space
extended by Kerker [21] to self-consistent pseudopotential
calculations in momentum space, and interpreted by Kresse
et al. [10,11] as a preconditioner, that employs the Thomas-
Fermi (TF) approximation to the KS susceptibility, here
presented in real-space representation,

χTF(r − r′) = −k2
TF

4π
δ(r − r′) (4)

(given in Hartree atomic units), which is today under-
stood as the long wavelength limit of the Lindhard func-

tion, χL(K )
K→0−→ χTF(K ) = − k2

TF
4π

, in momentum space. The
Thomas-Fermi approximation witnesses a K-independent re-
sponse function, which means that the electrons respond in
the same way for each of the long wavelength perturbations
and respond locally in space to the slowly varying potential
changes. The Thomas-Fermi wave number, kTF = (4/π )kF,
is related to the magnitude of the Fermi wave vector, kF =
3π2n◦, and thus to the constant electron density n◦ of the
homogeneous electron gas. Thus, it is a constant of the system
and therefore independent of the state of iteration m. This
makes the Jacobian J (m) → J completely m independent.

Although at long wavelengths one averages over the atom-
istic details, the true solid is beyond the picture of the
homogeneous electron gas, and a one-to-one system specific
relation of the Thomas-Fermi wave number with the elec-
tronic properties of the actual system might be difficult to
achieve. Therefore, one replaces the TF-wave number by a
constant λ, kTF → λ, which represents the inverse of a typical
length scale over which an individual charged particle exerts a
notable effect. Typically λ is treated as an external precondi-
tioning parameter that is fixed “experimentally” based on the
experience of an actual calculation.

So far, little attention has been paid to the relation [37],

χTF(r − r′) = −z(EF) δ(r − r′), (5)

between the TF susceptibility [or through (4) the TF wave
vector] and the density of states (DOS), z(EF), of the homo-
geneous electron gas of electron density n◦ described in terms
of the Fermi energy EF. In fact, this is a special example of
a more general relation between local susceptibility and local
DOS at the Fermi energy. We show in Sec. IV that this relation
offers a much greater potential in optimizing the convergence
of the SCF cycle than the relation between the susceptibility
and the Thomas-Fermi wave number. In the future it might be
interesting to test whether the iteration-step dependent density
of states z(m)(EF) can be used to accelerate convergence.

With the TF approximation to the susceptibility, by ne-
glecting the effect of the exchange-correlation operator in (3),
the preconditioning Jacobian of the Kerker mixing scheme
becomes JK = −1 + χTFKH. Recalling the Poisson equation,
�KH = −4π1 (� stands for the Laplace operator), amount-
ing to (� − λ2)KH = −4π (1 + λ2

4π
KH), we formally write the
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negative inverse Jacobian as

−J−1
K = 1

1 + λ2

4π
KH

= 1 − 1

1 + λ2

4π
KH

λ2

4π
KH

= 1 − λ2

4π
· −4π1

� − λ2
. (6)

We use the Yukawa or screened Coulomb potential δVλ the
solution to the modified Helmholtz equation,

(� − λ2) δVλ = −4πδρ, (7)

to express the preconditioned charge density residual,

δρλ = −J−1
K δρ = δρ − λ2

4π
δVλ, (8)

appearing in (1) as Cδρ.
The Kerker iteration scheme then takes the form,

ρ (m+1) = ρ (m) + δρ
(m)
λ . (9)

The formulation of the Kerker preconditioner in terms of the
last three equations (7), (8), and (9) has the advantage of being
basis independent and can thus be used in any formulation of
an electronic structure method.

Since the Kerker preconditioner is a rough approximation,
Kresse et al. [10,11] have shown that it is advisable not to
rely on the preconditioner alone, i.e., using (9), but to use
it additionally to advanced mixing methods such as Broyden
[2,6,13], Anderson [3], or Pulay mixing [4,5]. These are quasi-
Newton methods and the inverse of the Jacobian, J−1(m) =
−α1 + ∑m

j=2 u j ⊗ v j [38], is typically expressed in terms
of dyadic products of vectors u j and v j that are recursively
synthesized at each iteration step m, where J−1(1) = −α1 is
the starting Jacobian and α is a scalar mixing parameter. The
preconditioner is applied to the residual charge density δρ (m)

[see (1)] and the resulting preconditioned residual charge den-
sity δρ

(m)
λ then substitutes δρ (m) in the entry of the mixing

algorithm of choice implemented in the respective electronic
structure methods, i.e., ρ (m+1) = MIX(ρ (m), δρ (m), α) changes
to

ρ (m+1) = MIX(ρ (m), δρ
(m)
λ , α). (10)

When applied in this way, the mixing method does not
approximate the inverse Jacobian of the residual functional,
but the inverse Jacobian of the preconditioned residual func-
tional. Note that by choosing Kerker preconditioning (C =
−J−1

K ), the matrix 1 + CJ in (2) becomes approximately 0
for all r, and thus ρ (m+1) is brought close to the fixed point.
Therefore, we can apply a stronger mixing than usual with
mixing parameter α much closer to 1. In the absence of Kerker
preconditioning (λ = 0) and large materials systems, conver-
gence is reached only for small mixing parameters α. We show
in Sec. III, that including Kerker preconditioning (λ > 0), the
convergence radius with α changes fundamentally to the point
that it becomes nearly independent of α.

B. Solution in the FLAPW method

The basis-set independent formulation of the Kerker pre-
conditioner presented above provides the ground work for
applications in all-electron methods. Typical of all-electron

methods is the Coulomb singularity at the center of the atoms
due to the positively charged nuclei and the rapidly oscillating
core and valence electron wave functions in the vicinity of
the nuclei. To deal with these circumstances, in full-potential
all-electron methods such as the FLAPW method [28], the
computational domain is divided into spheres BRα

(τα ) around
the centers of atoms—the union of all these spheres is called
the muffin-tin (MT) region—and an interstitial (I) region.
Both charge densities and potentials are represented by func-
tions,

g(r) =
{∑

K gI(K )eiK·r r ∈ I∑
L gα

L(rα )YL(r̂α ) r = τα + rα ∈ BRα
(τα ),

(11)

where rα is the radius of the vector rα = r − τα , r̂α = r̂−τα

|r̂−τα | a
unit vector, τα is the location of the sphere α in the unit cell,
and YL are spherical harmonics. L is defined as L := (	, m).
Clearly, the representation in the MT region makes a real-
space formulation of the preconditioner necessary.

For all-electron methods, the central impediment for the
application of the Kerker preconditioning scheme is the low-
cost solution of the modified Helmholtz equation (7) needed to
obtain the screened Coulomb or Yukawa potential [39] of the
residual charge density. It can be obtained efficiently by ex-
tending Weinert’s pseudocharge method [32] for the solution
of the Poisson’s equation (λ = 0) to the case λ > 0 [33,40].

In Weinert’s method, the Coulomb potential in the I re-
gion is solved by the Fourier transformation of the Poisson
equation replacing the true charge density in the MT re-
gion by a Fourier transformable pseudocharge density with
multipole moments equal to the true charge density. Thus,
in case of the modified Helmholtz equation, the interstitial
Yukawa potential δV I

λ undergoes changes indirectly through
the pseudocharge density, and directly by the prefactor 4π

K2+λ2

that substitutes 4π
K2 in relating potential and charge density.

The muffin-tin potential is then determined by a subsequent
solution of a Dirichlet boundary value problem. This involves
a radial Green function, whose radial dependence is slightly
different for the Poisson and modified Helmholtz equation. In
the case of the Poisson equation, we work with a polynomial
radial (r) dependence, i.e., r	 and 1/r	+1. In the modified
Helmholtz equation, these quantities are substituted by the
two modified spherical Bessel functions i	(λr) and k	(λr)
[41,42]. The different radial behavior of the Green function
affects the radial dependence of the muffin-tin Yukawa po-
tential due to both the charge density in the muffin-tin sphere
and on the sphere boundary. It also leads to changes in the
multipole moments of the interstitial and muffin-tin charge
densities in each sphere, qα

L [ρI] and qα
L [ρα], respectively, and

in the Fourier components of the pseudocharge density ρ̄α (K ).
For more details see Ref. [33].

C. Extension to collinear magnetic systems

In the case of a nonmagnetic system, we precondition the
residual charge density by subtracting λ2

4π
δVλ from it [see (8)].

The preconditioned residual charge density then substitutes
the original residual in the call of the mixing routine. In
a system with collinear magnetism, i.e., with spin-up and
spin-down charge densities, we first calculate the total charge
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ALGORITHM I. Kerker preconditioner.

Input: charge density residual δρ = f (ρ ) − ρ, or, in case of collinear magnetism, δρ↑ and δρ↓; preconditioning parameter λ.
Output: preconditioned charge-density residual δρλ, or, in the case of collinear magnetism, δρ

↑
λ and δρ

↓
λ .

1: if collinear magnetism then
2: Convert the pair (δρ↑, δρ↓) to (δρ, δm). � Eq. (12)
3: end if
4: Compute δVλ ← YUKAWA POTENTIAL(δρ). � Alg. 1 in [33]
5: Assemble preconditioned charge-density residual δρλ. � Eq. (8)
6: if collinear magnetism then
7: Convert the pair (δρλ, δm) to (δρ↑

λ , δρ
↓
λ ). � Eq. (13)

8: end if

density δρ and the magnetization δm from the spin-up and
spin-down charge densities,

δρ = δρ↑ + δρ↓ and δm = δρ↑ − δρ↓. (12)

We only precondition the total charge density, i.e., we com-
pute δρλ from δρ by (8) and the screened Coulomb potential
as described in the previous section. Finally we transform the
above system back to the spin-up and spin-down charge den-
sities as if the preconditioning step had not taken place, i.e.,

δρ
↑
λ = δρλ + δm

2
and δρ

↓
λ = δρλ − δm

2
. (13)

The idea behind this is that we do not need to precondition
the magnetization, because the origin of the magnetism, the
exchange interaction, is essentially short ranged.

D. Scheme summary

Algorithm I summarizes the preconditioning scheme for
the simulation of nonmagnetic and collinear-magnetic sys-
tems. The main steps are the computation of the Yukawa
potential and assembly of the preconditioned residual charge
density.

Algorithm II displays the embedding of the precondition-
ing scheme into the SCF iteration. The main difference to a
nonpreconditioned SCF iteration is the additional precondi-
tioning step prior to the mixing. The mixing step only changes
insofar as the set of preconditioned residual charge densities
obtained in the current and previous cycles substitutes the set
of residual charge densities in the call of the mixing function.

E. Adjusting the charge

We would like to point out that the preconditioning of the
SCF iteration by (7) and (8) in general prohibits any adjust-
ment of the total charge that may have been calculated during
a cycle, i.e., ∫




δρλ = 0, (14)

even if ∫



δρ = 0. (15)

In the plane-wave formulation the change in charge is given by
the volume of the unit cell times δρλ(K = 0), which is zero
by construction. Alternatively, it can be proven directly for
the basis-independent formulation by applying the divergence
theorem and the periodic boundary conditions,∫




�δVλdr =
∫




div(∇δVλ)dr =
∫

∂


∇δVλ · ndω = 0.

(16)
Then integration of the differential equation (7) leads to∫




δVλ = 4π

λ2

∫



δρ, (17)

which, inserted into (8), yields∫



δρλ =
∫




δρ −
∫




δρ = 0. (18)

ALGORITHM II. Preconditioned self-consistent-field iteration.

Input: starting charge density ρ (0), preconditioning parameter λ and mixing parameter α.
Output: ground-state charge density ρ∗.
1: Set input charge density ρ = ρ (0).
2: Compute output charge density f (ρ ). This is a complex step including the construction of an exchange-correlation potential

and the solution of the Poisson and Kohn-Sham equations.
3: while distance( f (ρ ), ρ ) > 10−6 do
4: Compute the residual δρ = f (ρ ) − ρ.
5: Compute the preconditioned residual δρλ ← Kerker Preconditioner(δρ). � Alg. I
6: Mix new input charge density ρ ← Mix(ρ, δρλ, α).
7: Compute output charge density f (ρ ).
8: end while
9: The ground-state charge density is ρ∗ = f (ρ ).
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As a consequence, if the starting density does not already
integrate to the fully correct total charge, an additional charge
correction treatment is necessary.

III. PERFORMANCE OF THE PRECONDITIONER

In this section we address the following three questions:
(1) Does our implementation improve the SCF convergence
at all? (2) How stable is the SCF convergence with respect to
variations of our parameters? (3) Is the SCF convergence, as
expected, independent of the system size?

In order to answer the questions we run a number of
computational tests on the JURECA [43] commodity cluster
located at the Jülich Supercomputing Centre. Each node of
this cluster is equipped with two Xeon E5-2680 v3 Haswell
CPUs (24 cores) over a Fat-Tree EDR Infiniband interconnect,
and 128 GB of memory. Our implementation of the precon-
ditioner in the FLEUR [31] code features MPI and OpenMP
parallelism over the reciprocal lattice vectors K of the modi-
fied multiple moments synthesized from the interstitial charge
density qα

L [ρI], the Fourier components of modified pseu-
docharge density ρ̄α (K ), and the synthesis of the terms of the
interstitial potential at sphere boundary V I

L (Rα; τα ), which are
all calculated within the scope of Alg. 1 from Ref. [33]. As
elucidated below, the Kerker mixing scheme is very efficient
as it demands only a tiny fraction of the time needed for a
self-consistency step.

As a measure of SCF convergence we use the L2-norm-
induced metric,

distance(ρout, ρin ) =
(

1

|
|
∫




‖δρ‖dr
) 1

2

. (19)

We say that the SCF iteration is converged when the dis-
tance has decreased below a tolerance of 10−6 a.u.−3. We use
Anderson mixing with mixing parameter α in all cases. A pre-
conditioning parameter of λ = 0 stands for no preconditioned
charge density.

In order to select test cases that are prone to charge
sloshing, we work with metallic systems that have strongly
elongated unit cells with large aspect ratios of length to width
and that simultaneously exhibit large charge density inhomo-
geneities. Such unit cells typically occur in the simulation
of metal surfaces using the supercell approach. Except for
the test cases answering question 3, where system sizes vary,
our test cases are supercells of aspect ratio 20:1 consisting
of 19 atoms simulating the substrate and surface atoms and
one layer of vacant atoms simulating the vacuum. In the Cu
unit cell shown in Fig. 1(a) the vacant atom layer simulating a
vacuum is in the center. Despite the limited number of atoms,
such a system is large enough to already exhibit charge slosh-
ing while the stretch in one dimension reduces computational
cost. The noble metal Cu was chosen due to its delocalized
s and p electrons besides its localized d electrons. We use
local orbitals as chosen automatically (and conservatively) by
FLEUR’s input generator, which for most of the 19-atom test
cases translates to a number of 200 to 300 electrons treated
as valence electrons. Switching to the larger systems with 79
atoms this number increases to 869 electrons for Cu and 1264
electrons for Fe.
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λ = 0.0, α = 0.01

(b)

FIG. 1. (a) 19-atom Cu unit cell with empty atom position in the
center. (b) The convergence behavior for the 19-atom Cu test system
for some parameter combinations.

Without the Kerker preconditioner, our 19-atom Cu test
system does not converge for the standard mixing parameter
α of 0.05 [see the blue dotted line in Fig. 1(b)]. Convergence
can be ensured by reducing the mixing parameter to 0.01.
However, with 48 iterations needed, convergence is rather
slow (green dotted line). The preconditioner is much more
effective. For both α = 0.05 and α = 0.01, SCF convergence
is improved by using a preconditioning parameter of λ = 0.6.
Even better results can be achieved, if higher mixing parame-
ters are used in combination with the preconditioner: For α =
0.5, which would quickly diverge without the preconditioner,
the SCF iteration is converged in only 22 iterations.

We observe the same effect for other metals. Figure 2
shows the convergence behavior for Fe, Cr, Ca, and Al with
(solid line) and without (dashed line) preconditioner. In com-
paring SCF iteration with and without preconditioner, we
always choose parameters leading to the best scenario: We
select α and λ > 0 (preconditioning case) or a parameter α

(nonpreconditioning case) that results in the lowest number
of iterations needed to achieve convergence. For these and
other metals, Table I lists the number of iterations up to
convergence for the preconditioning and nonpreconditioning
cases, and, additionally, the speedup we obtain by the usage of
the preconditioner. For most metals, the preconditioned SCF
convergence is 2–3 times as fast as the nonpreconditioned
SCF convergence.

We note that the systems described above inhibit z-
reflection symmetry and thus the length over which charge
can slosh is actually only half of the unit cell. Switching
to a nonsymmetric system of equal size therefore amplifies
the efficacy of the Kerker preconditioner, as the following
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TABLE I. Comparison of the SCF convergence with and without preconditioner for various metallic systems with 19 atoms, and best
parameters.

Best SCF convergence Best SCF convergence
without preconditioner with preconditioner

α No. it. λ α No. it. speedup

Cu 0.01 48 0.6 0.50 22 2.2
Ag 0.02 37 0.7 0.90 18 2.1
Au 0.009 42 0.5 0.90 19 2.2
Li 0.40 23 0.9 0.90 12 1.9
Na 0.35 22 0.7 0.85 12 1.8
K 0.06 28 0.6 0.95 13 2.2
Ca 0.02 38 0.8 0.95 18 2.1
Sr 0.04 39 0.8 0.95 17 2.3
Sc 0.007 55 1.0 0.90 28 2.0
Ti 0.006 54 0.8 0.60 30 1.8
V 0.009 49 1.3 0.75 28 1.8
Cr 0.02 146 1.6 0.90 47 3.1
Fe 0.009 70 1.4 0.50 35 2.0
Co 0.004 67 0.7 0.05 34 2.0
Ni 0.007 63 0.8 0.30 35 1.8
Zn 0.003 133 0.6 0.05 44 3.0
Al 0.20 28 0.8 0.65 14 2.0

example shows. To break z-reflection symmetry we replace
one of the Cu atoms next to the vacancy in the 19-atom
Cu system described above by a V atom. While by using
the Kerker preconditioner in the symmetric 19-atom Cu and
V systems we gained a speedup of about 2, reducing the
number of iterations needed for SCF convergence from 48
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Fe, λ = 1.4, α = 0.50
Fe, λ = 0.0, α = 0.009
Cr, λ = 1.6, α = 0.90
Cr, λ = 0.0, α = 0.02
Ca, λ = 0.8, α = 0.95
Ca, λ = 0.0, α = 0.02
Al, λ = 0.8, α = 0.65
Al, λ = 0.0, α = 0.20

FIG. 2. The best SCF convergence obtained for Fe, Cr, Ca, and
Al, with and without preconditioner.

to 22, and from 49 to 28, respectively, the effect of Kerker
preconditioning in the combined nonsymmetric system with
18 Cu atoms and 1 V atom is even larger, with a speedup
of about 3, reducing the number of iterations from 75 (for
α = 0.007 and λ = 0.0) to 26 (for α = 0.5 and λ = 0.9).
It makes sense that the number of iterations needed does
not change so much between the symmetric and nonsym-
metric systems when the Kerker preconditioner is used, and
that it does change when preconditioning is not used, since
the preconditioner makes the convergence largely system-size
independent and the transition from the symmetric to the non-
symmetric system essentially doubles the length over which
charge sloshing can occur.

To analyze the dependence of the SCF convergence on the
choice of parameters, for the Cu and a similarly constructed
19-atom Fe system, we ran one calculation for each pair of
19 mixing and 13 preconditioning parameters in order to scan
the two-dimensional parameter space (α, λ). The heat maps
in Figs. 3(a) and 3(b) show the distances after 20 (for Cu) and
35 iterations (for Fe), respectively. Qualitatively the same is
shown by the slope of a linear fit of the logarithmically plotted
distance in Figs. 3(c) and 3(d). The optimal preconditioning
parameter depends on the metal and is λ = 0.6 for Cu and λ =
1.4 for Fe. But more importantly, these heat maps reveal a con-
vergence stability with respect to variations in the two param-
eters α and λ. This is particularly relevant when the optimal
parameter combination for a material is not yet known. For
instance, in our experience, using λ = 0.8 improves the SCF
convergence of almost any metallic system for almost any
mixing parameter, without further knowledge of the system.

If the optimal preconditioning parameter is used, the SCF
convergence is expected to be independent of the system size,
the reason being that the size dependence cancels out by
multiplying J with C in (2). In order to test the validity of this
conjecture for real systems, we systematically expanded our
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FIG. 3. The distance of ρout and ρin in me/a3
0 for a number of mixing parameters α and a number of Kerker parameters λ for the 19-atom

system of (a) Cu after 20 and (b) Fe after 35 iterations. The slope of a linear fit of the logarithmically plotted distance for the same systems of
(c) Cu and (d) Fe. The color codes in the slope plots are restricted to values �0. White spots mean that the iteration did not converge within
(a) 20, (b) 35, (c) 30, and (d) 50 iterations, respectively.

19-atom Cu and Fe test systems to 39-, 59- and 79-atom sys-
tems. As for the 19-atom system, they all have only one vacant
atom defect in the center of the supercell. Size independence is
clearly depicted in Fig. 4 for both the Cu and Fe systems: The
lines representing the convergence of the systems of varying
size almost indistinguishably end in the same number of SCF
iterations.

In terms of computational cost, the Kerker preconditioner
is quite inexpensive compared to the benefit it delivers. For
the 19-atom Cu system in a calculation on 1 MPI rank with
24 threads and with 30 k points, the overhead of the pre-
conditioner over the entire computation is 0.2s per cycle, or
equivalently 1.5% of the total time. For a 39-atom system the

overhead reduces to 0.33% of the total time. This is mainly
due to the linear growth of time spent in the preconditioner
compared to the cubic growth of time needed for the rest of the
cycle. Thus, the price paid for introducing the preconditioner
in the SCF iteration matters less and less the larger the system
is, while it delivers a remarkable advantage in terms of the
total execution time of the simulation.

IV. A MODEL FOR THE PRECONDITIONING
PARAMETER UTILIZING THE DENSITY OF STATES

For a homogeneous electron gas, the Thomas-Fermi ap-
proximation to the Kohn-Sham response function [37] [see (4)
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FIG. 4. System-size independence of the SCF convergence for
Cu and Fe. (a) Cu for α = 0.5 and λ = 0.6 (dark colors) and for
comparison without preconditioner for α values resulting in best SCF
convergence (pale colors). (b) Fe for α = 0.1 and λ = 1.0.

and (5)] provides a connection between the preconditioning
parameter λ and the density of states z at the Fermi energy EF,

λ2 = 4πz(EF), (20)

in Hartree atomic units. The density of states in Eq. (20)
is a volume-averaged quantity, making the preconditioning
parameter system-size independent. In the following we in-
vestigate to which extent this relationship also holds for more
complex metallic systems.

To gain a deeper understanding of the relation of the pre-
conditioning parameter λ and the density of states in the
context of the homogeneous electron gas, it is worth resorting
to an atomiclike angular-momentum-resolved characteriza-
tion of the valence electron states, e.g., denoted by s, p,
etc. Apart from s and p electrons of metals, which due to
their delocalization behave similarly to the electron gas, a
metallic system may also comprise strongly localized d and
f electrons. Since these participate to a lesser extent in the
long-range interactions that cause the charge sloshing, we
expect that the contribution of the d and f density of states
to the preconditioning parameter will be much smaller. We

approximate the proportion of the density of states relevant
for the preconditioning by the full s and p parts plus strongly
reduced d and f fractions. More precisely, we model the
preconditioning parameter by

λ2 = 4π

V 


(
Zsp(EF) + Z I

sp(EF) + αZdf (EF) + βZ I
df (EF)

)
,

(21)

where we now average over the unit-cell volume V 
 explicitly
and where Zsp(EF), Zdf (EF), Z I

sp(EF), and Z I
df (EF) refer to

the contributions from the s and p electrons and d and f
electrons, respectively, to the local density of states integrated
over the muffin-tin and interstitial (I) regions, respectively,
having the space partitioning of the FLAPW method in mind.
Since the notion of s, p, d , and f electrons as well as the cor-
responding density of states are properly defined only in the
muffin-tin sphere, we estimate their contributions, Z I

sp(EF) and
Z I

df (EF), to the interstitial density of states based on the easily
obtainable total density of states of the unit cell, Ztotal(EF),
the orbital-projected local densities of states, Zsp(EF) and
Zdf (EF), as well as the volumes of the unit cell V 
 and the MT
region V MT. We estimate the contribution of the delocalized s
and p electrons to the density of states in the interstitial vol-
ume, V I = V 
 − V MT, by making the reasonable assumption,

Z I
sp(EF)

V I
= Zsp(EF)

V MT
, (22)

of a homogeneous density of states across the unit cell and
thus, their total contribution to the parameter by

Z I
sp(EF) + Zsp(EF)

V 

= Zsp(EF)

V MT
. (23)

In the model proposed, the strongly localized d and f elec-
trons contribute with αZdf (EF) + βZ I

df (EF), where we expect
the interstitial contribution to have a stronger weight than the
muffin-tin contribution, i.e., 0 � α � β � 1, and where the
interstitial contribution is obtained by subtracting all other
contributions from the total density of states Ztotal(EF),

Z I
df (EF) = Ztotal(EF) − Zdf (EF) − Zsp(EF) − Z I

sp(EF). (24)

Inserting (24) and (22) into (21), we finally obtain as a model
for the preconditioning parameter,

λ2 = 4π

V 


(
(1 − β )

V 


V MT
Zsp(EF) + (α − β )Zdf (EF)

+ βZtotal(EF)

)
, (25)

containing solely quantities easy to read off during the SCF
cycle, whereas α and β are adjustable parameters. In principle,
optimal material-class specific parameters can be determined.

Figure 5 shows, for the 17 different metals listed in Table I,
the comparison of the computationally determined optimal
preconditioning parameter (data points indicated as circles)
versus the model parameter for α = 0.05 and β = 0.5. We
already observed in Sec. III that there is a wide range of
preconditioning parameters λ, for which the convergence is
substantially improved, meaning that even if the model param-
eter is far away from the computationally optimal parameter,
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FIG. 5. Comparison of optimal computational preconditioning parameter λ with the parameter determined according to the (density-of-
states dependent) model (25) for α = 0.05 and β = 0.5 for a diverse number of metals. The circles indicate the optimal computational λ

according to Table I. The short vertical lines show parameter ranges within which the convergence deviates from the optimal convergence by at
most 10% (dark lines) or 25% (light lines). The gray diagonal line is the identity and indicates a match of computational and model parameter.
The elements in the legend are listed in increasing order of model parameters.

it could be that the model parameter is still sufficiently good in
a sense that is still to be specified. Therefore, in addition to the
data points, Fig. 5 shows ranges of parameters with acceptable
convergence. In particular, the dark (light) lines depict ranges
of preconditioning parameters such that, for at least three
mixing parameters from the set {0.05, 0.10, . . . , 0.95}, the
computationally optimal convergence indicated by the circle
is at most 10% (25%) faster. For all of the tested metals,
except Cr and Zn, the model parameter lies within the 25%
range of the computational optimum, and in more than half of
the cases even in the 10% range. Nine out of 17 metals find
the computationally optimal preconditioning parameter on the
identity line (gray line) indicating a match of computational
and model parameters.

In order to understand the contribution of the d and f
electrons to the accuracy of the model (21) to predict an
optimal preconditioning parameter, we present in Fig. 6 a
comparison of the computationally determined parameter λ

with the model neglecting the contribution of the d and f
electrons (α = β = 0),

λ2 = 4π

V MT
Zsp(EF). (26)

We find only one metal on the identity line, six are in the
10% range, 15 are in the 25% range, and two metals (Cr and
Fe) are outside these ranges. In the simpler model, far fewer
model parameters coincide with the computationally optimal
ones, but since most of them lie in the 10% range, the average
increase in the number of iterations amounts to just 13%.
Considering that by preconditioning we gain a convergence
speed-up of 2–3, we find that the simplified model in which
just the local density of states of the s and p electrons in the
muffin-tin sphere enters, is still very powerful.

The comparison of the computational experiment and
model supports the hypothesis that the charge sloshing prob-
lem arises mainly from the response of the s and p electrons
and only in part from the response of the stronger localized
d and f electrons. Our model not only sheds some light on
the origin of the parameter values—why they are material
dependent and how they are connected with the charge distri-
bution on the energy scale—it can also be used to automatize
the choice of parameter for a metal whose density of states
information is readily accessible.

We would like to note that although the Kerker precon-
ditioning scheme is intended for use in metallic systems
only, the simple models relating the density of states to the
preconditioning parameter is still valid for insulating and
semiconducting systems. Not using the preconditioner corre-
sponds to choosing λ = 0 in (8) and (9), and this is exactly
the value we would obtain from the model, since the density
of states at the Fermi energy is zero for insulators and semi-
conductors.

V. CONCLUSION

We developed a Kerker mixing scheme for the SCF iter-
ation of all-electron electronic structure methods based on
density functional theory that make use of muffin-tin partition-
ing of the unit cell applicable to large bulk metallic systems
that are either nonmagnetic or collinear magnetic. The Kerker
mixing scheme is composed of the Kerker preconditioner and
the use of quasi-Newton methods. The scheme requires the
determination of the screened Coulomb or Yukawa potential,
which involves the adaptation of Weinert’s pseudocharge den-
sity method for the solution of the Poisson equation such that
it provides a solution to the modified Helmholtz equation, as
well as provisions enabling minor adjustments of the total
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FIG. 6. As Fig. 5, but for parameters α = 0 and β = 0.

charge throughout the SCF iteration. The method is imple-
mented into the FLEUR code, a realization of the FLAPW
method.

Tests confirmed that the Kerker preconditioner signif-
icantly improves the SCF convergence for the above-
mentioned class of systems. One of the crucial characteristics
of the preconditioner is the system-size independence of the
SCF convergence. Moreover, the preconditioner also scales
linearly with the system size in all-electron methods, is com-
putationally lightweight, and starts to be effective even in
relatively small systems.

Although the application of the preconditioner introduces
the additional preconditioning parameter λ, it does not com-
plicate the choice of parameters. In fact, the application of
preconditioning increases the radius of convergence with re-
spect to the mixing parameter and reduces the risk of SCF
divergence posed by choosing a too large mixing parameter.
Furthermore, the SCF convergence is not particularly sensitive
to the choice of the preconditioning parameter λ. Our analysis
shows that a close-to-optimal model preconditioning param-
eter can even be computed beforehand or on the fly, given
the orbital-projected density of states in the MT spheres and
the total density of states in the unit cell at the Fermi level.
A similar approach could be pursued in plane-wave methods
by calculation of the orbital-projected density of states in a
sphere around the atoms. As a consequence, our model can be
used to automatize the parameter selection by direct calcula-
tion, which can be a very valuable asset for high-throughput
computing. Our experimentally validated model supports the
hypothesis that the charge sloshing problem arises mainly
from the response of the delocalized electrons. These are
the s and p electrons in simple and transition metals, and
the s, p, and d electrons in rare earth and actinide systems.
The stronger localized d and f electrons only account for a
small portion of the charge sloshing problem and are generally
relevant for the preconditioning only due to their large number
in the range of the Fermi energy.

The Kerker preconditioner conserves the total charge and
thus does not contribute to numerical convergence of the total

charge neutrality throughout the SCF cycle. Thus, the starting
density should be charge neutral to high numerical precision,
or provisions should be in place enabling minor adjustments
of the total charge throughout the SCF iteration.

Although the implementation and tests have been per-
formed in the context of the FLAPW method, both readily
transfer to all other all-electron methods, making use of the
muffin-tin partitioning of space. Since muffin-tin spheres of
methods with volume-filling spheres (e.g., KKR-GF, ASW,
LMTO) are larger than the ones in the FLAPW method, we
speculate that the simplified model (26) for choosing the
preconditioning parameter might even be more effective for
those methods than for the FLAPW method. The models
introduced to choose the preconditioning parameter can be
applied directly to all other implementations, making use of
the Kerker preconditioning scheme, e.g., pseudopotential or
PAW methods.

We conclude that our formulation of the Kerker precondi-
tioner establishes a new state of the art for the simulation of
large bulk metallic systems in all-electron methods. A gener-
alization of the Kerker mixing scheme in all-electron methods
for systems with strongly varying charge densities such as
metallic heterostructures containing interfaces with insulators
or systems with surfaces is still pending.
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