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First-order phase transitions in the square-lattice easy-plane J-Q model
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We study the quantum phase transition between the superfluid and valence bond solid in easy-plane J-Q
models on the square lattice. The Hamiltonian we study is a linear combination of two model Hamiltonians:
(1) an SU(2) symmetric model, which is the well known J-Q model that does not show any direct signs of a
discontinuous transition on the largest lattices and is presumed continuous and (2) an easy-plane version of the
J-Q model, which shows clear evidence for a first-order transition even on rather small lattices of size L ≈ 16.
A parameter 0 � λ � 1 [λ = 0 being the easy-plane model and λ = 1 being the SU(2) symmetric J-Q model]
allows us to smoothly interpolate between these two limiting models. We use stochastic series expansion (SSE)
quantum Monte Carlo (QMC) to investigate the nature of this transition as λ is varied—here we present studies
for λ = 0, 0.5, 0.75, 0.85, 0.95, and 1. While we find that the first-order transition weakens as λ is increased
from 0 to 1, we find no evidence that the transition becomes continuous until the SU(2) symmetric point, λ = 1.
We thus conclude that the square-lattice superfluid-VBS transition in the two-component easy-plane model is
generically first order.

DOI: 10.1103/PhysRevB.102.195135

I. INTRODUCTION

The quantum transition from Néel or superfluid to a va-
lence bond solid (VBS) has been proposed to be described
by the deconfined criticality scenario [1,2]. In this scenario
it is generically possible to have a direct continuous Néel-
VBS transition. A number of field theoretic formulations
that describe this putative critical point at long distances
have been put forward and interesting connections between
different representations have been conjectured via duality
arguments [3–5]. Establishing these fascinating connections
nonperturbatively by lattice simulations is an exciting field of
current research. In the original study two kinds of symmetries
were highlighted for their possibility as platforms for decon-
fined criticality, an SU(2) symmetric system and a U(1)×Z2

symmetric system. Physically, the SU(2) field theory could
be a description for a rotationally symmetric S = 1/2 anti-
ferromagnet and its transition to a valence bond solid. The
U(1)×Z2 system can be thought of as a model for the same
Néel-VBS transition in magnet with easy-plane anisotropy or
alternatively as a model for a superfluid to Mott transition.1

In the years since the original proposal, it has been demon-
strated that the Néel-VBS transition and many of its variants
can be studied in sign problem free quantum spin Hamiltonian
models on large lattices [6]. Through extensive numerical
simulations in the SU(2) symmetric models many aspects
of the proposal have been borne out and no direct evidence
for a first-order transition has been observed [7–17]. Nu-
merical studies of classical statistical mechanics models of

1We will use the terms magnetic and superfluid interchangeably
throughout this paper.

tightly packed loops and dimer models in three dimensions
that have been argued to realize the same universal physics
as the SU(2) Néel-VBS transition are also consistent with
the deconfined criticality scenario [18–24]. Despite this large
body of evidence for the deconfined criticality scenario, nu-
merical studies have observed scaling violations whose origin
is currently unclear [15,18,25–27].

In contrast in the easy-plane case where SU(2) is broken
to U(1)×Z2 a number of numerical studies have concluded
that the transition is first order [27–32]. Recently however it
has been claimed that a continuous transition has been found
in a square-lattice model with somewhat weaker easy-plane
anisotropy [33,34], suggesting that perhaps a large easy-plane
anisotropy could result in a first-order transition, and the first-
order and second-order regime are separated by a multicritical
point.2 Motivated by this study, we address the issue of how
the easy-plane transition is connected to the symmetric one
by studying a model that interpolates between these two lim-
iting cases on the square lattice. For the symmetric model we
use the popular J-Q model which shows no direct evidence
for first-order behavior even on the largest studied lattice
sizes. For the easy-plane case we use an easy-plane J-Q that
was shown to have a first-order transition already visible on
L ≈ 16. The interpolating model introduced in detail below is
slightly different from the one studied in Refs. [33,34] where

2We note for completeness that a model of hard core bosons at
1/3 filling on the Kagome lattice has been argued to be described
by a similar field theory and host a putative easy-plane deconfined
critical point [39]. Although it was originally determined to have a
first-order transition [40], it has been claimed in recent work to host
a continuous transition [39].
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FIG. 1. Phase diagram of HJQ
λ described by Eq. (1) as a function

of λ and g ≡ Q/J . Using the model HJQ
λ we can access the phase

boundary between the Néel and VBS phases. The transition at λ = 0
was demonstrated to be first order previously [28]. We find that
this transition is first order for all values of λ < 1. The signals of
first-order behavior that we detect in our QMC simulations vanish
at the symmetric point λ = 1 even on the largest lattices simulated
here. We note that when λ = 1 the model has a higher SU(2) sym-
metry; everywhere else in this phase diagram it only has the generic
U(1)×Z2 easy-plane symmetry.

the easy-plane anisotropy was introduced only in the J term;
both models are believed to have the same universal features
however. In this work we present studies on larger lattices and
a more thorough analysis. Contrary to the previous study, we
find no evidence for new continuous easy-plane criticality.
Instead we find a first-order transition for 0 � λ < 1 that
weakens as λ is increased and we approach the symmetric
point (λ = 1) at which all our direct signals of a first-order
transition vanish and the transition is presumed continuous.
This is the primary result of our paper and is summarized in
Fig. 1. Although no numerical study can rule out that the tran-
sition becomes continuous for a very small but finite window
close to λ = 1 (with finite easy-plane anisotropy), we find this
rather unlikely given our results below. We thus conclude that
the easy-plane Néel-VBS transition is generically first order
on the square lattice.

II. THE MODEL

The Hamiltonian studied here is an S = 1
2 system on an

L × L square lattice,

HJQ
λ = λHJQ

s + (1 − λ)HJQ
ep , (1)

and is a linear combination of two parts; HJQ
s is the SU(2)

symmetric part and HJQ
ep is the easy-plane part that explicitly

breaks the SU(2) symmetry. λ is an anisotropy parameter that
allows us to smoothly interpolate between the easy-plane limit
(λ = 0) and the SU(2) symmetric limit (λ = 1). We define the
singlet projection operator on a bond between two sites i and
j as

Pi j = 1

4
− �Si. �S j . (2)

Sμ
i = 1

2σ
μ
i are standard spin- 1

2 operators where σ
μ
i are Pauli

matrices.

Then HJQ
s , which is the well-known J-Q model [7], can be

written as

HJQ
s = −J

∑
〈i j〉

Pi j − Q
∑
〈i jkl〉

Pi jPkl . (3)

The second term in the above equation is a sum over all
elementary plaquettes i jkl . HJQ

s has full SU(2) symmetry
inherited from Pi j . Similarly if we define

P̃i j = Sx
i Sx

j + Sy
i Sy

j (4)

the easy-plane Hamiltonian, HJQ
ep can be written as [28]

HJQ
ep = J

∑
〈i j〉

P̃i j − Q
∑
〈i jkl〉

P̃i j P̃kl . (5)

P̃i j has a symmetry of U(1) × Z2, which corresponds to U(1)
rotations about the ẑ axis and the Z2 operation of a π rotation
about the x̂ axis.

We study the quantum phase transition from the magnetic
phase to the valence-bond solid (VBS) phase as g ≡ Q/J is
varied for a fixed λ. While in the easy-plane limit, i.e., λ = 0,
this transition has been found to be first order [28], it has
been argued to be continuous in the SU(2) symmetric limit,
λ = 1 [7,8,10,13]. In this work we interpolate between the
two limiting models with the aim of elucidating the evolution
of the nature of the quantum transition and in particular to
investigate whether the transition is continuous for any λ < 1.

III. NUMERICAL SIMULATIONS

The numerical results presented below have been obtained
using the stochastic series expansion (SSE) quantum Monte
Carlo method [35]. We use the directed loop algorithm [36] to
carry out global loop updates on our Monte Carlo configura-
tions (see Appendix A1).

Figure 1 shows a phase diagram obtained from numerical
simulations as a function of the coupling g = Q/J and the
anisotropy parameter λ. For a given λ, on increasing g we
find a quantum phase transition from the magnetic to the
VBS phase. Here, we work in units where

√
J2 + Q2 = 1

and at an inverse temperature β = L for an L × L lattice. All
data presented has been tested to be in the T = 0 limit as
demonstrated in Appendix A4.

A. Measurements

When λ < 1, the presence of a small amount of anisotropy
makes the spins preferentially align in the XY plane. There-
fore as we vary g in our simulations, we look for a phase
transition between the XY order (superfluid) and VBS phases.
We define the following quantities to detect magnetic order,

Sm2
⊥

(�k) =
∑

�r
ei�k.�r 〈Sx

�0Sx
�r + Sy

�0Sy
�r
〉

(6)

Sm2
‖
(�k) =

∑
�r

ei�k.�r 〈Sz
�0Sz

�r
〉
. (7)

The square of the superfluid order parameter is 〈m2
⊥〉 =

Sm2
⊥

(π, π ). The quantity 〈Sx
�0Sx

�r + Sy
�0Sy

�r 〉 is measured during the
loop update by keeping track of the distance between the head
and the tail of the loop when they are at the same time slice
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[37]. We also define a Néel order parameter square as 〈m2
‖〉 =

Sm2
‖
(π, π ). When λ = 1.0, Sx, Sy, and Sz are equivalent and

therefore 〈m2
⊥〉 and 〈m2

‖〉 are equal up to a normalization.
VBS order is one where each spin forms a singlet with its

neighbor and the pattern of singlets forms columnar order. We
construct the VBS order parameter square from the following
quantity,

Sφ2
x
(�k) =

∑
�r

ei�k.�r〈Qx(�0)Qx(�r)〉. (8)

Here Qx(�r) is a plaquette operator which equals the sum of all
the operators in the Hamiltonian acting on the plaquette at �r
as described in Appendix.

The spin stiffness ρs is defined as

ρs = ∂2E (φ)

∂φ2

∣∣∣∣
φ=0

. (9)

Here E(φ) is the energy of the system with a twist of φ in the
boundary condition in either the x or the y direction. In the
QMC, this quantity is related to the winding number of loops
in the direction that the twist has been added [38],

ρs = 〈W 2〉
β

, (10)

where β is the inverse temperature. ρs goes to a finite value in
the magnetically ordered phase but goes to 0 otherwise. The
quantity Lρs is expected to show a crossing for different val-
ues of L at the coupling at which magnetic order is destroyed.

In order to detect the ordered phase we make use of ratios
defined as

Rop = 1 − |Sop (k′
o)|

|Sop (ko)| . (11)

Here op = m2
⊥, m2

‖, φ
2; ko and k′

o are the ordering momentum
and momentum closest to the ordering momentum, respec-
tively. In the ordered phase Rop goes to 1 and in the disordered
phase it goes to 0 on increasing system size, therefore they
are expected to cross for different system sizes at the critical
point.

B. Numerical results

In this work, we focus on four values of the anisotropy
parameter, λ = 0.5, λ = 0.75, λ = 0.85, and λ = 0.95. We
have included a comparison with the symmetric case λ = 1
when appropriate.

1. Crossing analysis

Figures 2(a) and 2(b) show ratios Rm2
⊥

and Rφ2
x

(defined
above) crossing for different L for λ = 0.5. This indicates a
transition from the magnetic to VBS phase. Figure 2(c) shows
crossing of these ratios for the same L. As shown in Fig. 2(d),
the crossing analysis from Fig. 2(c) yields the transition point
to be at g∗

c = 12.111(3), which is close to the value at which
the couplings at the crossing points, gc(L), converge. This
extrapolation has been done only using small system sizes,
L � 64. We notice that smaller system sizes can be seen to
smoothly converge to g∗

c ≈ 12.1; bigger system sizes start
deviating from this trend. This is because of the double peaked
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FIG. 2. Quantum Monte Carlo results for the transition from
superfluid to the VBS phase for λ = 0.5: (a),(b) show the quantities
Rm2

⊥
and Rφ2

x
, respectively, defined by Eq. (11) cross for different

L at the transition point. The x̂ axis on these graphs is identical to
the one shown in (c). (c) The same data as shown in (a),(b) but here
together, suggesting an accurate estimate for the critical coupling can
be obtained from the crossing of Rm2

⊥
and Rφ2

x
for a given value of

L. (d) Values of coupling at the crossings of L and L/2 for Rm2
⊥

and Rφ2
x

are plotted vs 1/L. gc(L) from crossing analysis of Rm2
⊥

-

Rφ2
x

as suggested in (c) is shown to fit to a form gc(L) = g∗
c + C

Le

where g∗
c = 12.111(3). This fitting has been done for L � 64 since

larger sizes deviate from this fitting form. We demonstrate in Fig. 7
that this deviation arises due to the formation of double peaks in
the histograms for the Monte Carlo estimators, a classic sign of a
first-order transition.

structure that starts to develop in the order parameter esti-
mators, making it difficult to reliably extrapolate gc(L) using
bigger lattices. Figure 6 shows crossings of the quantity Lρs

for both λ = 0.5 and λ = 0.75, which also indicates transition
out of the magnetic phase. To investigate the nature of the
transition, we study the extrapolation of observables with
system size at the critical point. For a continuous transition,
all the observables described above (ρs, 〈m2〉, 〈φ2〉), should
go to zero at the critical point as L → ∞. Figures 3 and 4
shows values of 〈m2

⊥〉 and 〈φ2
x 〉 at the crossing points of Rm2

⊥
and Rφ2

x
at L extrapolated to the infinite system size limit

using two different fitting forms (as described in the caption).
The extrapolated values of 〈m2

⊥〉 and 〈φ2
x 〉 are clearly finite for

λ = 0.5, λ = 0.75, and λ = 0.85. Small positive extrapolated
values of these quantities using both the fit forms can also be
seen for λ = 0.95. Figure 5 shows how the order parameter
values at the transition point get progressively smaller on
increasing λ, indicating a weakening of the first-order nature.
They tend to approach zero as λ → 1. Therefore we can argue
that the first-order transition continuously evolves on varying
λ to a second order transition at λ = 1.0.

The stiffness extracted from crossings of Lρs for L and
L/2 in Figs. 6(a) and 6(b) is plotted as a function of 1/L in
Fig. 6(c). ρs clearly extrapolates to a finite value for 1/L → 0
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FIG. 3. Finite-size scaling of the superfluid and VBS order
parameters at the critical point with extrapolations to the thermo-
dynamic limit for λ = 0.5, 0.75 and 1. Shown are 〈m2

⊥〉 and 〈φ2
x 〉 as

a function of L evaluated at the finite size pseudocritical coupling
gc(L). These couplings gc(L) are determined by estimating where
Rm2 and Rφ2 for the same value of L cross each other as described
in Fig. 2. Dashed lines show extrapolations of the finite size data.
Extrapolations have been carried out for two different fit forms,
(a) power law: C0 + C1

Le1 (left) and (b) polynomial: C0 + C1
L + C2

L2

(right). The value of χ 2 per degree of freedom for these fits is shown
in the table below the figure, indicating the reliability of the fits. The
biggest system size used for the fits is L = 128. We find that the
numerical values to which 〈m2

⊥〉c and 〈φ2
x 〉c extrapolate depend on the

fit form itself and are inconsistent with the stochastic errors (shown
in the legend). In both fit forms the extrapolated order parameters go
unambiguously to finite values for λ = 0.5 and λ = 0.75. For λ = 1
on the other hand they are consistent with a zero extrapolated value.
The 〈m2

⊥〉 data shows this effect much more clearly than in the 〈φ2
x 〉,

where it is nonetheless also evident.

for both λ = 0.5 and λ = 0.75. Fig. 10 shows the same anal-
ysis for λ = 0.85 and λ = 0.95. This points to a first-order
transition for λ = 0.5, 0.75, 0.85, and 0.95. For λ = 1, on the
other hand it is apparent from our data that is hard to argue
for a finite order parameter for 〈m2

⊥〉 and 〈φ2
x 〉 from the data

0.00

0.01

0.02

0.03

0.04

0.05

0.06

〈m
2 ⊥〉

c

λ =0.85

λ =0.95

0.000 0.025 0.050
1/L

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

〈φ
2 〉 c

0.000 0.025 0.050

χ2 per degree of freedom

λ
m2

Power law
m2

Polynomial
φ2

Power law
φ2

Polynomial

0.85 1.96 0.79 0.71 1.23
0.95 0.62 2.87 2.4 1.35

FIG. 4. This is the same kind of analysis as Fig. 3 but now for
λ = 0.85, 0.95. We have shown these two values of λ separately to
avoid overcrowding. The largest value of L used for this analysis is
L = 96. It can be inferred that both the order parameters extrapolate
to a finite value for λ = 0.85 in the thermodynamic limit using both
the fitting forms. For λ = 0.95 they clearly extrapolate to a finite
value in the power law fit. However, they extrapolate to a very small
positive value in the polynomial fit which is within four times the
error bar, therefore we are unable to draw a very reliable conclusion
here. Figure 5 shows the evolution of the extrapolated quantities from
Figs. 3 and 4 as a function of λ for λ = 0.5, 0.75, 0.85, 0.95, 1.0.

we have. A more thorough analysis of the λ = 1 is available
in Ref. [15]. We note that these extrapolations become hard
to do on very large system sizes because of ergodicity issues
that we discuss below and that we argue arise fundamentally
at first-order transitions.

2. Histograms

To further elucidate the nature of the transition we care-
fully study the histograms of observables near the critical
point. Figure 7 shows the probability distributions of the
QMC estimators for ρs, m2

⊥, and φ2
x at the transition for

λ = 0.5. There are clearly two peaks in the histograms of ρs

for L = 48, 64, 96, one at 0 and the other at a finite value.
This double peak feature is clearly noticeable in m2

⊥ and
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FIG. 5. 〈m2〉c and 〈φ2〉c as found from extrapolations in Figs. 3
and 4 using the power law and polynomial fitting forms plotted as a
function of λ. The error bars shown are stochastic errors; there are in
addition systematic errors associated with the extrapolating function
used. To estimate the systematic error we note that power law form
overestimates and the polynomial underestimates the extrapolated or-
der parameters; they thus provide a window for the order parameters
in the thermodynamic limit. For all λ < 1 both Néel and VBS order
parameters extracted from both fit forms are positive indicating that
both order parameters are finite at the transition: The transition is
hence of first order. The extrapolated order parameters can be seen
to approach zero as λ → 1 (this is smoother for 〈m2〉c given the
larger values compared to 〈φ2〉c). This indicates that the first-order
transition continuously evolves to a second order transition as λ

approaches 1. For λ = 1 we find that polynomial extrapolation gives
a negative value and the power law gives a positive value consistent
with the most extensive studies that find a continuous transition with
SU(2) symmetry [15].

φ2
x only for L = 96. The double peak gets more pronounced

with system size which indicates that the first-order behavior
survives in the thermodynamic limit. The time series data
shows switching between the two orders: One order parameter
is finite when the other goes to 0, thus one order is present
when the other is not. This is characteristic of a first-order
transition. This system exhibits clear first-order behavior only
for L > 64, therefore we conclude that this transition is a weak
first-order transition. The first-order nature of the transition is
even weaker for λ = 0.75; the double peak in the histograms
of stiffness appears for L > 96 as shown in Fig. 8. We find
no evidence of double peaked histograms for λ = 0.85 and
0.95 for the largest system sizes studied here. However, as
explained before, we do find other evidence of first-order
behavior in these two cases. There is also no evidence of
double peaked histograms for λ = 1.0 for the largest system
size we have studied. This is consistent with the numerical
findings in the past [7,8,10,13]. Therefore we conclude that
the transition is first order for λ = 0.5, 0.75, 0.85, and 0.95.
The first-order behavior gets progressively weaker as λ gets
closer to 1, eventually disappearing at λ = 1.

IV. CONCLUSIONS

We studied an interpolation of two previously known and
well studied models, the J-Q model [7] which hosts a con-
tinuous Néel-VBS transition and the easy-plane J-Q model
[28] which hosts a first-order superfluid-VBS transition. By
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FIG. 6. (a),(b) Crossings of Lρs for λ = 0.5 and λ = 0.75 in-
dicating a transition from a magnetic to nonmagnetic phase. The
black stars denote points where the curves of L and L/2 cross.
(c) ρs extracted at these crossing points is fit to a power law and
is shown to extrapolate to a finite value in the thermodynamic limit
for both λ = 0.5 and λ = 0.75 (the same analysis for λ = 0.85, 0.95
has been shown in Fig. 10). (d) The value of the coupling g at these
crossing points, gc(L), is shown to extrapolate to g∗

c = 12.11(2) and
g∗

c = 15.49(1).
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FIG. 7. Histograms (first row) and time series data for L = 96
(second row) of observables close to the critical point (g ≈ 12.1) for
λ = 0.5. Here m̃2

⊥ and φ̃2
x are, respectively, m2

⊥ and φ2
x normalized so

that the maximum value is 1.0. This data has been collected for less
than 5000 MC steps per bin. The histograms show double peaked
behavior and time series data shows switching between two orders.
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ρ
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FIG. 8. Histograms (left) and Monte Carlo histories (right) of ρs

for λ = 0.75 near the critical point g ≈ 15.4. The histogram data has
been collected for 1000 MC steps per bin. The double peak in the
histograms that is barely visible for L = 96 just starts to appear for
L = 128. Switching between the two values of ρs depicted in the time
series data also indicates first-order behavior.

studying the phase transition as a function of the parameter λ

that interpolates between the two limits, we found the phase
diagram shown in Fig. 1. Our main conclusion is that when-
ever the easy-plane anisotropy is present the transition is first
order. All signs of discontinuity vanish only at the symmetric
point λ = 1. This indicates that the easy-plane anisotropy is
a relevant perturbation at the SU(2) symmetric deconfined
critical point and results in a runaway flow to a first-order
transition.
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FIG. 9. Observables ρs, m2
⊥, and φ2

x plotted vs β can be seen
to saturate on increasing β. This data has been taken at g = 12 for
λ = 0.5 and g = 16 for λ = 0.75. These observables can be seen to
saturate before β = L.
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FIG. 10. This analysis is the same one shown in Fig, 6(c) for
λ = 0.85, 0.95. We have put these in a separate figure to avoid over-
crowding the former. Here too, the stiffness extracted at the transition
point goes to a finite value as L → ∞.
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APPENDIX A: DETAILS OF NUMERICAL SIMULATIONS
AND CHECKS

1. Lattice Hamiltonian

The Hamiltonian defined by Eq. (1) is sign problem free on
a bipartite lattice3 and therefore we use the SSE QMC algo-
rithm with directed loop updates to simulate it. The easy-plane
limit of this model (λ = 0) has no diagonal terms. Hence,
to make the model easier to simulate in this limit, we add
a constant to the Hamiltonian to generate diagonal matrix
elements [28]. The easy-plane part of the model defined in
Eq. (5) then becomes:

HJQ
ns = J

∑
〈i j〉

(P̃i j + 1i j ) − Q
∑
〈i jkl〉

P̃i j P̃kl . (A1)

To make the loop update more convenient we treat all bonds as
plaquettes by multiplying an identity to the adjacent bond, for,
e.g., the Pi j operator in Eq. (2) gets replaced in the following
way:

Pi j = 1

Nb
plaq

∑
kl

Pi j .1kl . (A2)

Here 1kl is an identity operator, the sum in this equation is
over all four site plaquettes i jkl such that kl is adjacent and
parallel to i j. Nb

plaq is the number of plaquettes each bond is a
part of, which is two in the square-lattice case. After making

3The following unitary transformation: Sx → −Sx and Sy → −Sy,
on one of the sublattices of the bipartition, yields all negative off-
diagonal elements for the Heisenberg exchange which is the sign
problem free condition.
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TABLE I. Comparison of ground state energy per unit site and
spin stiffness values from QMC (@ β = 4L) with ED for 4 × 4
square lattice.

λ Q
J eqmc eexact ρqmc

s ρexact
s

0.5 0.5 −0.99366(6) −0.99371 0.2737(1) 0.2738
0.5 1.0 −0.96744(6) −0.96746 0.2375(1) 0.2374
0.75 10.0 −0.80616(6) −0.80608 0.12102(7) 0.12090
0.75 18.0 −0.76614(6) −0.76613 0.11319(7) 0.11324

these substitutions the full Hamiltonian described by Eq. (1)
becomes:

H = λ

{
J

2

∑
i jkl

(Pi j .1kl + 1i j .Pkl ) + Q Pi j .Pkl )

}

+ (1 − λ)

{
J

2

∑
i jkl

(P̃i j .1kl + 1i j .P̃kl + 1i j .1kl ) + Q P̃i j .P̃kl

}

(A3)

2. Plaquette operator

The plaquette operator, Qx(�r) in Eq. (8) is the sum of all
operators in the Hamiltonian acting on the plaquette at �r. Let
�ri jkl be the position vector of the lower left site of the plaquette
i jkl

Qx(�ri jkl ) = J

2
{λ (Pi j .1kl + 1i j .Pkl )

+ (1 − λ) (P̃i j .1kl + 1i j .P̃kl + 1i j .1kl )}
+ Q {λ Pi j .Pkl + (1 − λ) P̃i j .P̃kl}. (A4)

TABLE II. Comparison of order parameter from QMC (@ β =
4L) with ED for 4 × 4 square lattice.

λ Q
J 〈m2

⊥〉qmc 〈m2
⊥〉exact 〈φ2

x 〉qmc 〈φ2
x 〉exact

0.5 0.5 0.43721(6) 0.43725 0.04416(2) 0.04414
0.5 1.0 0.39560(5) 0.39558 0.05884(3) 0.05887
0.5 15.0 0.26562(3) 0.26560 0.04643(2) 0.04642
0.75 10.0 0.27187(2) 0.27186 0.07704(3) 0.07703
0.75 18.0 0.26548(2) 0.26546 0.07317(2) 0.7318

3. QMC vs ED

Tables I and II show comparison of the ground-state
energy per unit site (e), spin stiffness (ρs) and square
of the order parameters, 〈m2

⊥〉 and 〈φ2
x 〉, gotten from

QMC and from exact diagonalization for λ = 0.5 and λ =
0.75 on 4 × 4 lattices. ρs, m2

⊥, and φ2
x are as defined

in Sec. III A.

4. Convergence to T = 0

Figure 9 shows the behavior of the observables we have
measured for L × L square lattices as a function of inverse
temperature β. The measurements have been done close to the
critical points (g = 12 for λ = 0.5 and g = 16 for λ = 0.75).
These quantities can be seen to saturate to the T = 0 value
on increasing the value of β. The β at which this saturation
occurs depends on the system size L. As we increase the
system size these values saturate to the value at β = L faster,
therefore we pick β = L for our simulations.
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