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We present and implement a parquet approximation within the dual-fermion formalism based on a partial
bosonization of the dual vertex function which substantially reduces the computational cost of the calculation.
The method relies on splitting the vertex exactly into single-boson exchange contributions and a residual
four-fermion vertex, which physically embody, respectively, long- and short-range spatial correlations. After
recasting the parquet equations in terms of the residual vertex, these are solved using the truncated-unity method
of Eckhardt et al. [Phys. Rev. B 101, 155104 (2020)], which allows for a rapid convergence with the number
of form factors in different regimes. While our numerical treatment of the parquet equations can be restricted to
only a few Matsubara frequencies, reminiscent of Astretsov et al. [Phys. Rev. B 101, 075109 (2020)], the one-
and two-particle spectral information is fully retained. In applications to the two-dimensional Hubbard model
the method agrees quantitatively with a stochastic summation of diagrams over a wide range of parameters.
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I. INTRODUCTION

The two-dimensional Hubbard model even with a single
band still poses a formidable challenge to theorists. Despite
an immense collective effort, which led to the development of
many novel methods, the model has not been solved exactly
and no approximate method works accurately in every regime.
Arguably, one of the most delicate, and at the same time
most interesting, parameter regimes is realized in the doped
Hubbard model at low temperatures and for intermediate-to-
strong coupling interactions, which is precisely the regime of
relevance for the low-energy modelization of the cuprate [1]
and, as recently suggested, of the nickelate superconductors
[2,3].

In this region there is no natural small parameter, and
perturbative approaches are bound to fail. Most of the features
of the cuprate phase diagram, like the pseudogap behav-
ior of spectral [4,5] and transport properties [6,7], d-wave
superconductivity [8–10], and a plethora of other exotic phe-
nomena such as unconventional density waves [11], stripe
order [12,13], phase separation [9,14,15], or a T -linear resis-
tivity [16,17], have been reported.

The impossibility to apply conventional small-parameter
expansion schemes makes it necessary to resort to nonper-
turbative approaches. In this regard, dynamical mean-field
theory (DMFT) [18], which approximates the self-energy with
a local version which can be computed from a self-consistent
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impurity model, has become a reference method. Standard
DMFT can not capture the momentum-dependent physics of
two-dimensional systems, calling for cluster extensions, like
the dynamical cluster approximation (DCA) [19] or the cel-
lular DMFT [20,21]. However, some relevant aspects of the
two-dimensional physics can not be captured by cluster meth-
ods, which are limited to fairly small clusters and therefore
include only short-ranged correlations. For instance, we refer
here to the description of unconventional charge-density and
spin-density waves, and pseudogap features [4,6] or, more in
general, to the treatment of long-range spatial correlations, a
typical hallmark [22–26] of strongly correlated physics in two
dimensions. A proper treatment of these phenomena intrin-
sically requires a fine resolution of the Brillouin zone, which
could be obtained in cluster DMFT only for very large clusters
beyond any practical implementation.

Diagrammatic extensions of DMFT [25] aim at including
spatial correlations beyond DMFT. Here it is important to
make the methods as cheap as possible from a computational
point of view, so that the number of lattice momenta can be
kept large.

In this framework, approaches based on the ladder approx-
imation [27,28] allow for a high resolution in momentum
space for the half-filled Hubbard model. In this regime, it is
known a priori that spin fluctuations are dominant, explaining
the accuracy of the corresponding ladder treatments. Away
from half-filling the situation becomes more complex, as the
physics turns out to be controlled by a delicate interplay
between bosonic fluctuations in different channels [29] even
if spin fluctuations still play a pivotal role in determining
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single-particle spectral properties [30], possibly with signif-
icant renormalization effects arising from other scattering
channels [31].

A very general way to describe this interplay is to take
parquet-type diagrams into account [32–42]. However, due to
the heavy numerical cost of the parquet equations, it appeared
so far impossible to achieve a spatial resolution comparable to
that of the ladder approximations.

Recent papers have reported improvements in this direc-
tion. First, Astretsov et al. [43] combined the dual-fermion
(DF) approach [44] with the renormalization group (RG),
treating parquet diagrams only for the two smallest Matsubara
frequencies (we refer to this as DP+RG). As a result, one can
work with large clusters, up to 32 × 32 sites in the mentioned
paper. Second, Eckhardt et al. [45] applied the truncated-unity
[46] form-factor expansion to the parquet equations (TUPS),
which corresponds to a truncated real-space representation
of the vertex function F (k, k′, q) with respect to its two
fermionic momentum arguments k and k′, where k = (k, ν)
denotes a momentum energy. This approximation corresponds
to the assumption of a short-ranged dependence of the vertex
F on the fermionic momenta. When this condition is satisfied,
the truncated unity allows for a very large lattice size and
retains the full spectral information encoded in the Matsubara
frequencies.

In this work, we contribute to the current progress by
addressing two specific problems which arise in the DP +
RG and TUPS methods. On the one hand, the RG treatment
neglects spectral information from higher Matsubara frequen-
cies and, hence, it is not straightforward to obtain the spectral
density (DOS) or susceptibilities. On the other hand, the con-
vergence of observables in TUPS with the number of form
factors can be slow in the regime of strong spatial correlations.

In this work we propose a scheme based on the parquet
approximation for dual fermions [43,44,47] which overcomes
the limitations of the two mentioned approaches. The method
exploits a partial bosonization [48–52] of the dual vertex
function, similar to the channel decomposition [53–56] used
in the context of the functional renormalization group (fRG,
[57]) or in the microscopic Fermi-liquid theory [58].

The partial bosonization is performed in terms of the
recently introduced exact single-boson exchange (SBE) de-
composition of the vertex function [59]. The single-boson
exchange corresponds to fluctuations which couple to the bare
interaction of the Hubbard model, and they completely char-
acterize the vertex at high frequencies [60]. If we write the full
vertex as the sum of the single-boson exchange terms and of
an irreducible term �Uirr, the latter is a residual four-fermion
vertex whose frequency and momentum structure is simplified
in two important ways. First, �Uirr decays for high energies
in all directions of the Matsubara frequency space [59]. This
is somewhat similar to the asymptotic behavior of the fully
two-particle irreducible (2PI) vertex in standard parquet ap-
proaches [37,60]. At the same time, �Uirr appears not to be
affected by the multiple strong-coupling divergences [31,61–
67] which otherwise make the numerical treatment of 2PI
vertices problematic. In this respect, we note that one of the
advantages of implementing parquet-based approximations in
the dual-fermion formalism is the possibility of avoiding, at
any stage of the procedure, to manipulate local 2PI vertex

FIG. 1. Schematic representation of the BEPS method. The Hub-
bard model is mapped to a collection of impurities embedded in a
self-consistent bath (blue circles), which account for local correla-
tions. Nonlocal correlations are added in a dual perturbation theory.
Interaction between dual fermions (arrows) is mediated by bosons
(wiggly lines) and a fermion-boson coupling (triangles). Left: Maki-
Thompson correction. Right: Aslamazov-Larkin correction.

functions,1 while fully retaining the whole nonperturbative
information that they encode [15,67].

Further, it should be also emphasized that, in general, �Uirr

is found to be significantly shorter ranged in space compared
to the full vertex function because many typical long-ranged
correlations (such as spin- and charge-density wave), corre-
spond to single-boson exchange.

In this work we exploit these properties by formulating
a truncated-unity parquet solver similar to Ref. [45] for the
residual four-fermion vertex �Uirr. Since this vertex describes
low-energy and short-ranged correlations, we achieve a
fast convergence of the parquet diagrams with respect to
Matsubara sums and in terms of the form-factor expansion,
making the converged solution of the parquet equations
much less computationally demanding compared to previous
calculation schemes.

Our exact reformulation of the dual parquet equations re-
quires the introduction of bosonic lines, which are given by
the screened interaction, and a fermion-boson coupling (the
Hedin vertex [68], see, e.g., [69–73]). In the dual-fermion
formalism the lattice quantities can be expressed as the sum of
local and nonlocal contributions [44]. In this spirit, we express
the fermion-boson coupling as the sum of the local impurity
quantity plus corrections:

�(k, q) = λimp(ν, ω) + �nonloc(k, q). (1)

Since the local approximation � ≈ λ corresponds to the
TRILEX approach [74], our method can also be seen as a
crossing-symmetric extension of TRILEX. An exact prescrip-
tion for the renormalization of the fermion-boson coupling
was recently presented in Ref. [75] for lattice fermions. In
this work we extend this concept to dual variables and show
how the parquet diagrams can be systematically expressed
in terms of boson exchange, such as the Maki-Thompson
(single-boson exchange) and the Aslamazov-Larkin (two-
boson exchange) vertex corrections, shown in Fig. 1. They

1For the 2PI vertices in selected channels, this was already dis-
cussed in Refs. [25,128,129]
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illustrate our targeted application of the truncated unity: The
strong momentum dependence of the Maki-Thompson dia-
gram is fully retained, whereas the more short-ranged spatial
dependence of the Aslamazov-Larkin diagram is captured by
a small number of form factors, making the method computa-
tionally feasible. In the following, we refer to this method as
a boson-exchange parquet solver (BEPS).

The paper is structured as follows. We introduce the BEPS
method in Sec. II. We benchmark the method at half-filling
against diagrammatic Monte Carlo in Sec. III, and we discuss
the doped case in Sec. IV. We conclude in Sec. V.

II. MODEL AND METHOD

A. Hubbard model

In the applications we consider the paramagnetic Hubbard
model on the square lattice

H = − t
∑
〈i j〉σ

c†
iσ c jσ + U

∑
i

ni↑ni↓, (2)

where t = 1 is the nearest-neighbor hopping which sets the
unit of energy. c, c† are the annihilation and creation oper-
ators, σ =↑,↓ the spin index. U is the Hubbard repulsion
between the densities nσ = c†

σ cσ . The spin label σ is sup-
pressed where unambiguous.

B. Anderson impurity model

Our method is based on an auxiliary Anderson impurity
model (AIM) with the imaginary-time action

SAIM = −
∑
νσ

c∗
νσ (ıν + μ − hν )cνσ + U

∑
ω

n↑ωn↓ω, (3)

where c∗, c are Grassmann numbers, ν and ω are fermionic
and bosonic Matsubara frequencies, respectively. Summations
over Matsubara frequencies ν, ω contain implicitly the factor
T = β−1, the temperature. In our scheme, the auxiliary AIM
is exploited to solve the lattice problem under investigation
within the dynamical mean-field theory (DMFT), which rep-
resents the starting point of our analysis.

The specific hybridization function hν of our AIM corre-
sponds, thus, to the self-consistent DMFT solution [18] for
the Hubbard model (2) where the local part of the lattice
Green’s function is adjusted to the local Green’s function
gσ (ν) = −〈cνσ c∗

νσ 〉 of the AIM, GDMFT
ii (ν) = g(ν).

We require several higher correlation functions of the AIM
(3), namely, the four-point function

g(4),α
νν ′ω = −1

2

∑
σi

sα
σ ′

1σ1
sα
σ ′

2σ2

〈
cνσ1

c∗
ν+ω,σ ′

1
cν ′+ω,σ2

c∗
ν ′σ ′

2

〉
,

where sα are the Pauli matrices and the label α = ch, sp de-
notes the charge and spin channel, respectively. This defines
the four-point vertex function f as

f α
νν ′ω = g(4),α

νν ′ω − βgνgν+ωδνν ′ + 2βgνgν ′δωδα,ch

gνgν+ωgν ′gν ′+ω

. (4)

Charge, spin, and singlet susceptibilities are given as

χα
ω = − 〈

ρα
−ωρα

ω

〉 + β〈n〉〈n〉δωδα,ch, (5)

χ s
ω = − 〈ρ−

−ωρ+
ω 〉, (6)

where ρch = n↑ + n↓ = n and ρsp = n↑ − n↓ in the first line
are the charge and spin densities whereas ρ+ = c∗

↑c∗
↓ and

ρ− = c↓c↑ describe the creation and annihilation of an elec-
tron pair. From the susceptibility we obtain the screened
interaction

wα
ω = U α + 1

2U αχα
ωU α, (7)

where U ch = U,U sp = −U,U s = 2U is the bare interaction
of the Hubbard model (2) in the respective channel. Finally,
we define the fermion-boson coupling of the impurity as2

λα
νω =

1
2

∑
σσ ′ sα

σ ′σ

〈
cνσ c∗

ν+ω,σ ′ρ
α
ω

〉 + βgν〈n〉δωδα,ch

gνgν+ωwα
ω/U α

(8)

for the particle-hole channels, α = ch, sp, and

λs
νω = 〈cν↑cω−ν,↓ρ+

ω 〉
gνgω−νws

ω/U s
(9)

for the singlet particle-particle channel α = s.
In the single-boson exchange (SBE) decomposition [59]

the full vertex f is split into three vertices ∇ which are re-
ducible with respect to the bare interaction U , and one residual
four-fermion vertex ϕUirr, irreducible with respect to U ,

f α
νν ′ω = ϕUirr,α

νν ′ω +∇ph,α

νν ′ω+∇ph,α

νν ′ω+∇pp,α
νν ′,ω+ν+ν ′ −2U α. (10)

Note that the bare interaction U α is subtracted twice as a
double-counting correction, which leads to the correct high-
frequency asymptotics of f .

The (U -reducible) vertices ∇ are given by the screened
interaction w and the fermion-boson coupling λ,

∇α
νν ′ω = λα

νωwα
ωλα

ν ′ω, (11)

where α = ch, sp, s. We discuss their meaning in more detail
in Sec. II D for the lattice Hubbard model (2).

The U -irreducible vertex ϕUirr represents, instead, a nat-
ural starting point for approximations [75] of more complex
many-electron problems on a lattice, as it is also the case in
this work. We obtain it through Eq. (10), after measuring the
vertices in Eqs. (4), (8), and (9) with a continuous-time quan-
tum Monte Carlo (CTQMC) solver [76–78] with improved
estimators [79]. These pieces are used to form the vertices ∇
which are subtracted from the full vertex f to obtain ϕUirr.

C. Dual fermions

In the dual-fermion formalism [44] the Hubbard model (2)
is mapped to the dual action3

S[d∗, d] = −
∑
kσ

G0,−1
k d∗

kσ dkσ + 1

4

∑
kk′q

∑
σi

f σ1σ2σ3σ4
νν ′ω

× d∗
kσ1

d∗
k′+q,σ2

dk′σ3 dk+q,σ4 . (12)

2The reducible vertex λred, without wα (ω)/U α in the denominator,
is discussed in Ref. [130].

3We use a different sign convention for the vertex function f than,
e.g., Ref. [9]. As a result, the vertex is given to first order as f ch/sp =
U ch/sp + O(U 2 ) = ±U + O(U 2 ).
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Σ = −1
4 F ch −3

4 F sp

= + Σ

FIG. 2. Top: dual self-energy. Arrows denote the dual Green’s
function G, large boxes represent the vertex function F , small boxes
the impurity vertex f . Bottom: Dyson equation, thin arrows represent
the bare dual Green’s function G0.

The Grassmann numbers d∗, d represent the dual fermions
and the bare propagator is the nonlocal DMFT Green’s func-
tion G0 = GDMFT − g. A common approximation is to neglect
higher than quartic interactions between the dual fermions; the
interaction is then given by the vertex f of the AIM defined
in Eq. (4). The bare propagator G0 is then dressed with a dual
self-energy

Gk = G0
k

1 − G0
k�k

. (13)

The self-energy reads in the general case as ([80], cf. Fig. 2)

�k =
∑

k′
Gk′ f ch

ν ′ν,ω=0 − 1

4

∑
k′q

Gk+q

× [
F ch

kk′qX 0
k′q f ch

ν ′νω + 3F sp
kk′qX 0

k′q f sp
ν ′νω

]
. (14)

Here, X 0
kq = GkGk+q denotes a bubble of dual Green’s func-

tions and F is the full vertex function of the dual fermions. It
has the leading term f , the impurity vertex, higher terms are
all one-particle irreducible diagrams built from f , and the dual
Green’s function G [43].

After a self-consistent solution for �k is obtained, we re-
cover the approximation for the self-energy of the Hubbard
model (2) as

�lat
k = �DMFT

ν + �k

1 + gν�k
, (15)

where �DMFT
ν and gν denote, respectively, the self-energy and

local Green’s function of the self-consistent DMFT solution
of the Hubbard model (2), obtained from the corresponding
auxiliary AIM (3).

D. Strategy overview

In the following we develop an efficient method for the
summation of parquet diagrams. We begin to explain our
strategy by noting that recently an exact diagrammatic decom-
position was presented in Ref. [59], which separates diagrams
from the vertex function that correspond to single-boson ex-
change. For the vertex function of the dual fermions this
decomposition reads as (α = ch, sp)

Fα
kk′q =�Uirr,α

kk′q +�
ph,α

kk′q +�
ph,α

kk′q +�
pp,α
kk′,q+k+k′ −2U α. (16)

Here, the vertices � represent the single-boson exchange
of the dual fermions and �Uirr denotes a four-fermion “rest”
vertex, analogous to the impurity quantities ∇ and ϕUirr previ-
ously introduced in Eq. (10), respectively. Hereafter, we will

Λα Λα
W α

FIG. 3. A vertex correction corresponding to single-boson ex-
change. Triangles represent the fermion-boson coupling, the wiggly
line denotes the screened interaction.

adopt in general capital (small) letters for lattice (impurity)
quantities. The label “Uirr” indicates that �Uirr does not have
insertions of the bare interaction U [59]. The decomposition
shares a similarity with the traditional parquet decomposition
[31,37,75] because single-boson exchange occurs in the hori-
zontal (ph) and vertical (ph) particle-hole channels and in the
(singlet) particle-particle (pp) channel. The SBE vertices have
the structure shown in Fig. 3:

�ph,α (k, k′, q) = �α (k, q)W α (q)�α (k′, q), (17a)

�pp,s (k, k′, q) = �s (k, q)W s (q) �s (k′, q), (17b)

where W denotes the screened interaction of the dual fermions
and � is the (dual) fermion-boson coupling (see also Ap-
pendix A). We explain how the SBE decomposition (16)
can help to overcome two open problems that arise in the
DP + RG and TUPS methods [43,45]:

(i) The SBE vertices � control the asymptotics of the full
vertex F [60,75,81], hence, the decomposition (16) helps to
separate high- from low-energy scales. Consistent with this
observation, in this work, we formulate the parquet equations
for the four-fermion vertex �Uirr of the SBE decomposition
(16), restricting ourselves to a handful of Matsubara frequen-
cies, in the same spirit as the DP + RG ansatz of Astretsov
et al. [43]. However, since �Uirr decays with respect to all of
its frequency arguments, this can be done without a significant
loss of spectral information, whereas the DP + RG method
omits information from Matsubara frequencies |ν| > πT .

(ii) The boson W (q) encodes the physics of long-ranged
fluctuations, for example, the spin fluctuations of the Hubbard
model near half-filling [23,82]. This explains the possible
emergence of strong dependencies on the bosonic momentum
q in the full vertex F .

A procedure often used to simplify the treatment of the
momentum dependence of two-particle diagrams [46,54,83]
is to expand the full vertex in terms of form factors

Fα (�, �′, q) =
∑
kk′

ψ (�, k)Fα (k, k′, q)ψ (�′, k′), (18)

where ψ denotes a form factor and � = (�, ν) is an appro-
priate multi-index denoting form-factor index and Matsubara
frequency. Equation (18) is exact, but in the truncated-unity
approach only a few form factors are taken into account
which capture short-ranged real-space correlations [45,84].
Typically, one uses a specific number of form factors, N� =
1, 5, 9, 13, . . ., which correspond to truncation of the real-
space expansion after the zeroth (1, corresponding to the
local approximation), first (5), second (9), third (13) nearest
neighbors and so forth.

We note here that the truncation does not affect the mo-
mentum q and is therefore appropriate for the SBE vertex �ph
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of the horizontal particle-hole channel in Eq. (17a). However,
due to the crossing symmetry, bosonic fluctuations contribute
to F also in the vertical particle-hole channel (α = ch, sp),

�ph,α (k, k′, q) = − 1

2
�ph,ch(k, k + q, k′ − k)

− 3 − 4δα,sp

2
�ph,sp(k, k + q, k′ − k),

(19)

and a further boson arises from singlet fluctuations

�pp,α (k, k′, q) = 1 − 2δα,sp

2
�pp,s(k, k′, q). (20)

Equations (19) and (20) indicate that a problem can
arise from a straightforward application of the truncated-
unity approximation to the full vertex F because it implies
a (truncated-unity) cutoff also for bosonic fluctuations with
momenta k′ − k and q + k′ + k [cf. Eq. (16)], which may
be long ranged. Therefore, in our scheme, we exploit the
truncated-unity approximation only for the vertex �Uirr in
Eq. (16), retaining the full momentum dependence of the SBE
vertices �. Indeed, the momentum dependence of �Uirr is
short ranged, leading to a faster convergence of the form-
factor expansion, that is,

�Uirr(�, �′, q) ≈ 0, (21)

when � or �′ correspond to long distances in the real space.

E. Parquet expressions for the residual vertex

In Ref. [45] the TUPS was introduced to reduce the al-
gorithmic complexity of the parquet equations for the full
vertex function F . Here, our aim is to apply the TUPS to
the residual vertex �Uirr only. Hence, as anticipated in the
previous section, we need to recast the parquet equations
for F into a formally equivalent set of equations for �Uirr.
Starting from the traditional parquet equations [32–34,37] for
dual fermions [43,47], we derive in Appendix B the following
parquet expressions, which could be interpreted like a set of
parquet equations for the residual vertex:

�Uirr,ch
kk′q = ϕUirr,ch

νν ′ω + M ph,ch
kk′q − 1

2 M ph,ch
k,k+q,k′−k − 3

2 M ph,sp
k,k+q,k′−k

+ 1
2 M pp,s

kk′,k+k′+q + 3
2 M pp,t

kk′,k+k′+q, (22a)

�
Uirr,sp
kk′q = ϕ

Uirr,sp
νν ′ω + M ph,sp

kk′q − 1
2 M ph,ch

k,k+q,k′−k + 1
2 M ph,sp

k,k+q,k′−k

− 1
2 M pp,s

kk′,k+k′+q + 1
2 M pp,t

kk′,k+k′+q, (22b)

�Uirr,s
kk′q = ϕUirr,s

νν ′ω + M pp,s
kk′q + 1

2 M ph,ch
kk′,q−k′−k − 3

2 M ph,sp
kk′,q−k′−k

+ 1
2 M ph,ch

k,q−k′,k′−k − 3
2 M ph,sp

k,q−k′,k′−k, (22c)

�Uirr,t
kk′q = ϕUirr,t

νν ′ω + M pp,t
kk′q + 1

2 M ph,ch
kk′,q−k′−k + 1

2 M ph,sp
kk′,q−k′−k

− 1
2 M ph,ch

k,q−k′,k′−k − 1
2 M ph,sp

k,q−k′,k′−k . (22d)

Here, the labels ch, sp, s, t denote the charge, spin, sin-
glet, and triplet channels, respectively. On the right-hand side,
ϕUirr denotes the local analog to �Uirr computed from the
AIM (see Sec. II B). This vertex plays a similar role as the
fully irreducible vertex of the traditional parquet equations
(cf. Appendix B), which, in the parquet approximation, is

(a) (b)

(c)

FIG. 4. Multiboson exchange generated by the ladder equations
(23) and (24). Two-boson (Aslamazov-Larkin) exchange in particle-
hole (a) and particle-particle (b) channels arises from contribution
of SBE vertex � to the ladder kernel S in Eqs. (25a)–(25d).
(c) Higher multiboson exchange due to mixing of vertical and hori-
zontal particle-hole channels, origin is the feedback of MBE vertex
M on S. In this figure, flavor labels and prefactors are omitted.

given by the bare dual-fermion interaction f [cf. Eq. (12)].
It is important to remark that Eqs. (22a)–(22d) represent the
parquet expression for the residual vertex �Uirr. Hence, they
are fully equivalent to the parquet approximation for dual
fermions. In spite of its analytical equivalence to the usual
parquet expressions, the formulation used here differs from
the perspective of the numerical implementation. In fact, in
our BEPS method the starting point is represented by the
corresponding residual vertex ϕUirr of the AIM.

To further explicate the BEPS formalism, one should also
note that the vertex M on the right-hand side plays essentially
the role of the reducible vertex of the traditional parquet
formalism. The main difference is, however, that single-boson
exchange diagrams are excluded from M. Therefore, M can
be regarded as a vertex which describes the multiboson ex-
change (MBE, cf. Fig. 4) processes. To evaluate it in practice,
we require an analog to the Bethe-Salpeter equations (BSE),
which in the conventional formalism identifies the different
scattering channels through a separation of the two-particle
reducible processes in the corresponding sectors.

To this end, we define an auxiliary vertex T , which rep-
resents boson-exchange processes of all orders in a given
channel. Similarly to the BSE in the conventional formalism,
it is given in terms of the ladder equations

T ph,α

kk′q = Sph,α

kk′q +
∑

k′′
Sph,α

kk′′q Gk′′Gk′′+qT ph,α

k′′k′q

= Sph,α

kk′q + M ph,α

kk′q (23)

for the particle-hole channels (α = ch, sp) and

T pp,δ
kk′q = Spp,δ

kk′q ∓ 1

2

∑
k′′

Spp,δ
kk′′qGk′′Gq−k′′T pp,δ

k′′k′q

= Spp,δ
kk′q + M pp,δ

kk′q (24)

for the particle-particle channels (δ = s, t), where S denotes
the respective ladder kernel. Note that the vertex T itself is not
of interest here and need not be evaluated. Instead, Eqs. (23)
and (24) serve to evaluate all ladder diagrams starting from
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the second order, that is, the vertex M. The ladder kernel is defined as follows:

Sph,ch
kk′q = �Uirr,ch

kk′q − M ph,ch
kk′q − 1

2�
ph,ch
k,k+q,k′−k − 3

2�
ph,sp
k,k+q,k′−k + 1

2�
pp,s
kk′,q+k+k′ − 2U ch, (25a)

Sph,sp
kk′q = �

Uirr,sp
kk′q − M ph,sp

kk′q − 1
2�

ph,ch
k,k+q,k′−k + 1

2�
ph,sp
k,k+q,k′−k − 1

2�
pp,s
kk′,q+k+k′ − 2U sp, (25b)

Spp,s
kk′q = �Uirr,s

kk′q − M pp,s
kk′q + 1

2�
ph,ch
kk′,q−k′−k − 3

2�
ph,sp
kk′,q−k′−k + 1

2�
ph,ch
k,q−k′,k′−k − 3

2�
ph,sp
k,q−k′,k′−k − U ch + 3U sp, (25c)

Spp,t
kk′q = �Uirr,t

kk′q − M pp,t
kk′q + 1

2�
ph,ch
kk′,q−k′−k + 1

2�
ph,sp
kk′,q−k′−k − 1

2�
ph,ch
k,q−k′,k′−k − 1

2�
ph,sp
k,q−k′,k′−k . (25d)

Here finally the SBE vertex �, which was introduced in
Sec. II D, enters the parquet equations. Further, by compari-
son with Eqs. (22a)–(22d) one sees that also the multiboson
exchange represented by M contributes to the kernel. Ladder
diagrams generated by � and M are shown in Fig. 4. Although
it may not be true in general, we observed in our numerical
applications that � yields the dominant contribution to the
kernel S. In these cases, S can be considered to mainly rep-
resent single-boson exchange, while the contribution of M,
that is, the feedback of the multiboson exchange on the ker-
nel, is required to retain the exact equivalence to the parquet
approximation for dual fermions (see Appendix B).

For given vertices ϕUirr, �, and Green’s function G the
vertices M and �Uirr in Eqs. (22a)–(25d) can be determined
self-consistently. One advantage of this calculation scheme is
that �Uirr and M decay at high frequencies. Combined with
the asymptotics of the dual propagator G ∝ 1

ν2 , this leads to a
rapid decay of Matsubara summations.4 It is not necessary to
take vertex asymptotics into account [60,85]. Furthermore, the
spatial dependence of the residual vertex �Uirr is short ranged
compared to the full vertex F , which we exploit in Sec. II G
for a truncated-unity approximation.

F. Diagrammatic building blocks

As in the traditional parquet formalism the Green’s func-
tion is dressed with a self-energy �, which can be calculated
using the Schwinger-Dyson Eq. (14) [where the full vertex is
given via Eq. (16)].

However, the parquet equations for the residual vertex
�Uirr in Sec. II E also require further prescriptions to calculate
the fermion-boson coupling � and the screened interaction W ,
which are used to form the SBE vertices � in Eqs. (17a) and
(17b). The fermion-boson coupling is a three-leg vertex which
does not contain insertions of the bare Hubbard interaction
U (see also Ref. [73]). We obtain it by removing the SBE
vertex �ph from the full vertex F and attaching two (dual)
Green’s functions. We begin with the charge and spin channels
(α = ch, sp)

�α
kq = λα

νω +
∑

k′
(Fα − �ph,α )kk′qGk′Gk′+qλ

α
ν ′ω. (26)

This equation highlights a peculiarity of bosonic correlation
functions in the dual-fermion approach (see Appendix A):
Whenever we form a bosonic end point of a dual-fermion

4A similar idea was used in Ref. [73] to improve the feasibility of
the DMFT susceptibility.

diagram using two Green’s functions, we also attach the im-
purity vertex λ. As a result, the leading contribution to �

is not simply 1, as for lattice fermions [75], but it is the
fermion-boson coupling λ of the impurity, which is defined
by all corresponding fully local diagrams of the auxiliary AIM
[86,87].

Next, we write the screened interaction as

W α (q) = wα (ω)

1 − wα (ω)�α (q)
, (27)

where wα (ω) is the screened interaction of the AIM defined
in Eq. (7) and � is the dual polarization function

�α (q) =
∑

k

λα
νωGkGk+q�

α
kq, (28)

which is shown as a diagram in Fig. 5. Again, to form the
second bosonic end point of the polarization, we attached the
vertex λ, this time from the left.

So far, we have discussed the particle-hole channels α =
ch, sp. However, the bare Hubbard interaction also couples to
a singlet particle-particle channel α = s. In this channel the
fermion-boson coupling takes the form5

�s
kq =−λs

νω + 1

2

∑
k′

(F s−�pp,s)kk′qGk′Gq−k′λs
ν ′ω, (29)

where F s is the singlet vertex function.6 The reducible vertex
�pp,s for this channel is defined in Eq. (17b), where the
corresponding screened interaction reads as

W s(q) = ws(ω)

1 − 1
2ws(ω)�s(q)

, (30)

and the polarization is given as (see also Fig. 5)

�s(q) =
∑

k

λs
νωGkGq−k�

s
kq. (31)

All quantities in this section are defined for dual fermions.
The prescription for the renormalization of the fermion-boson
coupling in Eqs. (26) and (29) is the dual-fermion analog to
the method introduced in Ref. [75] for lattice fermions.

5The minus sign for the impurity vertex λs in Eq. (29) is plausible
because Eq. (31) is quadratic in λs. The latter is given to leading order
by −1 [59], so Eq. (29) leads to an overall minus sign for the leading
order of �, as expected for the singlet channel [75].

6F s
kk′q = 1

2 F ch
kk′,q−k−k′ − 3

2 F sp
kk′,q−k−k′ .
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Πα = Λα Πs = Λs

= + Π

FIG. 5. Top: polarization for particle-hole (left, α = ch, sp) and
singlet particle-particle channel (right). Small triangles denote the
fermion-boson coupling λ of the AIM. Bottom: Dyson equation
for the screened interaction W (thick wiggly), thin lines denote the
screened interaction w of the AIM.

G. Truncated-unity approximation

The parquet expressions for the residual vertex �Uirr in
Sec. II E improve the feasibility of the parquet approxi-
mation for dual fermions. Nonetheless, similarly as in the
standard parquet implementations, the vertices quickly be-
come very large with increasing lattice size [41]. To mitigate
this problem, Ref. [45] introduced a truncated-unity par-
quet solver (TUPS), using a form-factor expansion of the
various vertex functions. In the same spirit, we can fur-
ther improve the feasibility by transforming the ladder Eqs.
(23) and (24) into the form-factor basis as in Eq. (18), for
example,

T ph,α

��′q = Sph,α

��′q +
∑
�1�2

Sph,α

��1q X 0
�1�2qT ph,α

�2�′q , (32)

where X 0
��′q is a dual particle-hole bubble in the form-factor

basis. The expansion is then truncated at a number N� of form
factors (see Sec. II D). In the (truncated) form-factor basis it
is feasible to solve the ladder Eq. (32) by inversion, which
may improve the convergence of the parquet solver compared
to previous implementations which build the ladder diagrams
iteratively [36,41].

On the other hand, we keep the full momentum dependence
of the fermion-boson coupling �(k, q). Therefore, to evaluate
Eqs. (26) and (29), we obtain the vertex M from the back
transformation

M(k, k′, q) =
∑
��′

ψ (�, k)M(�, �′, q)ψ (�′, k′). (33)

In the implementation only M(�, �′, q) is stored and Eq. (33)
is used when M(k, k′, q) is needed. The calculation of the
ladder kernel S in Eqs. (25a)–(25d) requires momentum shifts,
and Ref. [45] describes in detail how they can be handled
in the form-factor basis (see also Appendix D). Of course,
the momentum shifts imply a (truncated-unity) cutoff with
respect to all three momenta [45]. In our scheme, however, this
problem is alleviated because the truncation does not affect the
single-boson exchange �.

H. Calculation cycle

Figure 6 shows the calculation cycle of the BEPS
method.

Step 0: Initial guess. The calculation begins with the
solution of the AIM (3) to obtain the impurity correla-
tion functions. For an agnostic guess we set � = 0,� =
λ,�Uirr = ϕUirr, M = 0, the corresponding polarization � is
given via Eqs. (28) and (31). To start closer to the solution, or

input

4. update fermion-boson coupling

2. construct ladder kernel

5. update self-energy

1. update propagators

one- & two-particle 
correlation functions

output

G = G[Σ]

W = W [Π]

Δ = Δ[Λ, W ]

3. solve ladder equation 

M = M [S, G]
Π = Π[Λ, G]

initial guess

update impurity model

ΣDMFT, w, λ, ϕUirr

ΦUirr = ΦUirr[M ]

Λ = Λ[ΦUirr, Δ, G]

Σ = Σ[ΦUirr, Δ, G]

S = S[ΦUirr, M, Δ]

Σ, Π, Λ, M, ΦUirr

FIG. 6. Self-consistent cycle of the BEPS method. Highlighted
(in red) are the input and output as well as the external self-
consistency cycle to update the AIM.

near an instability, we can use the output of a previous BEPS
calculation.

Step 1: Update propagators. The fermionic and bosonic
propagators G and W are updated using the Dyson equations
(13), (27), and (30).

Step 2: Construct ladder kernel. The kernel S is built from
Eqs. (25a)–(25d) [where the vertices � are given by Eqs. (17a)
and (17b)] and transformed to the form-factor basis (see
Appendix D).

Step 3: Solve ladder equations. MBE vertices M are ob-
tained via inversion of Eqs. (23) and (24).

Step 4: Update fermion-boson coupling. � is updated via
Eqs. (26) and (29). In these equations, the full vertex F is
given by the SBE decomposition in Eq. (16). The residual
vertex �Uirr is obtained from the MBE vertices M via the
parquet Eqs. (22a)–(22c) and back transformation to the mo-
mentum basis as in Eq. (33) (momentum shifts are treated as
in Appendix D).

Step 5: Update self-energies. The self-energy � and the
polarization � are calculated from Eqs. (14), (28), and (31),
respectively. In Eq. (14) the full vertex is given as described
in Step 4.7

Steps from 1 to 5 are iterated until convergence. Optionally,
the hybridization function hν of the AIM (3) is updated (outer
self-consistency) and the cycle is restarted from step 0 (this
work: h ≡ hDMFT).

I. Implementation notes

Our implementation of the BEPS method is a working
prototype based on the C++ libraries of the ladder dual-
fermion and -boson implementation of Hafermann and van
Loon [28,86], but the alterations to the code are substantial.

7In the calculation of the self-energy via Eq. (14) it is convenient to
bring all vertex components into their channel-native form [45].
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For the truncated-unity approximation we use an implemen-
tation of the form factors for the square lattice by Eckhardt
[89,90].

The numerical effort of Eqs. (26) and (29) is discussed
in Ref. [75], corresponding to ∝N2

ν N2
k NωNq floating point

operations. The most expensive step at each iteration is the
transformation of the ladder kernel S in Eqs. (25a)–(25d) to
the form-factor basis [cf. Eqs. (18) and (33)], which requires
∝N2

� N2
ν NωN2

k Nq floating point operations. We use a parallel
code where each process performs the transformation and
solves the ladder Eqs. (23) and (24) for one momentum energy
q = (q, ω), but the numerical effort still scales ∝N2

� N2
ν N2

k
for each process. In the applications we set the lattice size
to 8 × 8 and 16 × 16 sites, but a 32 × 32 lattice is feasible
[91]. To further increase the lattice size it is appealing to port
the implementation to GPUs [43]. The method is memory
efficient, indeed, the largest object stored during calculations
is the fermion-boson vertex �(k, q) of size NνNkNωNq, which
is in turn split into NkNν pieces, hence, each process handles
only a vector of length NqNω. Further, the numbers Nν and Nω

of Matsubara frequencies and the number N� of form factors
can be kept small compared to other schemes, as discussed in
Sec. II E.

Several symmetries are used to improve the performance:
The point-group symmetry [84] implies that �(k, q) is invari-
ant when we project the momentum k into the irreducible
Brillouin zone and apply the same symmetry operation
to q.8 Time-reversal and SU(2) symmetries [37,75] imply
S(�, �′, q) = S(�′, �, q) for the expensive ladder kernel and we
evaluate only a triangle of this matrix.

III. BENCHMARKS AT HALF-FILLING

We apply the BEPS method to the half-filled Hubbard
model (2) with nearest-neighbor hopping, interaction U/t =
2, 4, 8 and temperatures T/t = 0.5 and 0.2. The lattice size
corresponds to 8 × 8 sites at T/t = 0.5 and 16 × 16 sites at
T/t = 0.2. The Matsubara cutoff for Eqs. (26) and (29) is
Nν = Nω = 14. The ladder Eqs. (23) and (24) are evaluated
using Nν = 8 fermionic frequencies. Appendix E shows an
example for the frequency convergence of BEPS. We use
1 � N� � 13 form factors.

A. Lattice self-energy at weak coupling

We begin with a quantitative comparison of the lattice
self-energy (15) with results from the literature for weak
coupling U/t = 2 and temperature T/t = 0.2. Here, Ref. [45]
recently reported results from the parquet dynamical vertex
approximation (parquet D�A) and compared them to the
truncated-unity approximation (TUPS-D�A). As a numeri-
cally exact reference we use a determinant quantum Monte
Carlo (dQMC [92]) result of Ref. [88]. The top panel of Fig. 7
shows a good agreement of BEPS with both dQMC and D�A.

The bottom panel of Fig. 7 shows the convergence of BEPS
and TUPS-D�A with the number of form factors N�. As ex-

8In general, only one of the momenta k, q can be mapped to the
irreducible Brillouin zone, therefore, �(k, q) needs to be stored for
N irr

k Nq momenta.

-0.13

-0.12

-0.11

-0.1

0 2 4 6

-0.115

-0.11

-0.105

-0.1

FIG. 7. Self-energy at the antinodal point at U/t = 2 and T/t =
0.2. Top: BEPS self-energy and TUPS-D�A using 8 × 8 lattice and
N� = 9 form factors, respectively, compared to the dQMC data of
Ref. [88]. Circles represent the untruncated (N� = 64) parquet D�A
result. Bottom: convergence of BEPS and TUPS-D�A with the form
factors.

plained in the previous sections, the working hypothesis of the
BEPS method is that it is beneficial to use the truncated-unity
approximation only for the residual vertex �Uirr of the SBE
decomposition (16) because it should lead, per construction,
to a fast convergence with the number of form factors. In-
deed, in this regime BEPS essentially converges with only one
form factor, N� = 1. The slower convergence of TUPS-D�A
compared to BEPS is a consequence of the different use
of the truncated-unity approximation in these methods (see
Sec. II D).

B. Lattice self-energy at strong coupling

Reference [93] presented a stochastic sampling of dual
fermion diagrams (DiagMC@DF), with the usual truncation
of the effective three-particle interaction. Supplemental mate-
rial of the reference contains a comprehensive data set, also in
comparison with numerically exact diagrammatic determinant
Monte Carlo (DDMC [94]). This gives us the opportunity
to compare the BEPS method over a wide parameter range,
in fact, one of the techniques used in Ref. [93] is numeri-
cally exact for lattice fermions (DDMC), the other for dual
fermions with a quartic interaction potential (DiagMC@DF).
Therefore, the DiagMC@DF data correspond to the target
result, provided it is converged with respect to the perturbation
order. We show the results of Ref. [93] corresponding to
order O(6).

Figure 8 shows the imaginary part of the self-energy at the
antinodal and nodal points for U/t = 4 and T/t = 0.5. The
bottom panels show that the BEPS self-energy is again almost
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-0.7

-0.6

-0.5

-0.4

-0.3
0 4 8 12

-0.7

-0.6

-0.5

-0.4

-0.3
0 4 8 12

-0.62

-0.6

-0.66

-0.64

FIG. 8. Self-energy at the nodal (left) and antinodal (right) points
for U/t = 4 and T/t = 0.5. Triangles show the BEPS result for
various cutoffs N� of the truncated unity (top panels: N� = 13). Full
(dashed) black lines show DiagMC@DF (DDMC), crosses indi-
cate the ladder dual-fermion approximation. Bottom panels show a
closeup of ν = πT .

independent of the number of form factors 1 � N� � 13. As
expected, the BEPS results lie closer to DiagMC@DF than
the self-energy of the ladder dual-fermion approach (LDFA
[28]). Figure 9 shows real and imaginary parts of the self-
energy at the first Matsubara frequency along the �-X -M-�
path in the Brillouin zone. In case of the real part, there is a
good agreement between DDMC, DiagMC@DF, and BEPS,
whereas for the imaginary part the dual-fermion methods are
consistent with each other but show a small low-frequency
offset compared to DDMC. This can be reasonably ascribed to
the truncation of the dual-fermion interaction after the quartic
term [93].

We turn to the delicate regime U/t = 8 (see Figs. 10 and
11), where for T/t = 0.5 we find a slightly stronger depen-
dence of the BEPS result on the number of form factors. At
the node and antinode the results for different N� extrapolate

-0.7

-0.6

-0.5
-0.2

-0.1

0

0.1

0.2

FIG. 9. U/t = 4, T/t = 0.5. Real and imaginary parts of the
self-energy in the Brillouin zone at the first Matsubara frequency
ν = πT . BEPS self-energy shown for N� = 13.

-5.0

-4.0

-3.0

-2.0

-1.0

0 4 8 12

-5.0

-4.0

-3.0

-2.0

-1.0

0 4 8 12

-4.8

-4.6

-4.4

-5.0

-4.8

-4.6

FIG. 10. Self-energy at the nodal and antinodal points for U/t =
8 and T/t = 0.5. Labels as in Fig. 8.

accurately to DiagMC@DF (see bottom panels of Fig. 10).
Figure 11 shows that in some parts of the Brillouin zone
the BEPS result lies closer to DDMC than to DiagMC@DF,
however, the latter is not fully converged with respect to the
perturbation order [93].

C. Fermion-boson coupling

We analyze a key quantity of BEPS, the fermion-boson
coupling �(k, q) defined in Eq. (26):

�(k, q) = λ(ν, ω) + �nonloc(k, q). (34)

The hybridization of the AIM (3) corresponds to the DMFT
solution, which provides the local vertex λ in Eq. (8), and the
BEPS method adds nonlocal corrections. At half-filling λ is
real, �nonloc is in general complex. We set U/t = 2, T/t =
0.2 and examine the coupling �sp of fermions to spin fluc-

-5

-4

-3

-3

-2

-1

0

1

2

FIG. 11. U/t = 8, T/t = 0.5, labels as in Fig. 9. Notice that the
DiagMC@DF result of Ref. [93] (dashed blue) is not fully converged
in the expansion order.
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-0.1

-0.05

0

-10 -5 0 5 10

-0.1

-0.05

0.05

0

FIG. 12. Top: local fermion–spin-boson coupling λsp(ν, ω = 0)
(gray) for a DMFT calculation at half-filling, U/t = 2 and T/t =
0.2, corresponding to the BEPS self-energy in Fig. 7. Colored lines
show the vertex corrections which yield the frequency dependence
of λsp (see text). Bottom: nonlocal component at node and antinode
as a function of q.

tuations, this vertex plays a role in the spin-fermion model
[69,71].

We begin with the local component λsp(ν, ω = 0) drawn
in the top panel of Fig. 12, which is suppressed for small |ν|
compared to its noninteracting value 1. This effect is the result
of particle-particle (Kanamori) screening [71,95], which can
be seen explicitly by calculating the contribution of singlet
fluctuations to λsp;9 see green curve in the top panel of Fig. 12.
The singlet fluctuations are given by the impurity SBE vertex
∇pp in Eq. (10). The next largest vertex correction corre-
sponds to an enhancement of λsp due to (vertical) spin- and
charge-boson exchange (red), ∇ph, whereas the contribution
of the (local) residual vertex ϕUirr is small in the considered
regime (blue).10 As a result, DMFT provides a local Kanamori
screening of fermions from spin fluctuations as a starting point
for the BEPS calculation. One may note that our analysis of

9The particle-particle screening is given as [75] λKanamori
νω =

− 1
2

∑
ν′ (∇pp,s

νν′,ω+ν+ν′ − U s )gν′ gν′+ω.
10The horizontal SBE vertex ∇ph does not contribute to λsp, which

is (horizontally) irreducible with respect to the bare interaction [75].

-0.36

-0.32

-0.28

-0.24

-0.2

-0.48

-0.44

-0.4

-0.36

FIG. 13. U/t = 4, T/t = 0.5, n ≈ 0.76. Real and imaginary
parts of the self-energy in the Brillouin zone at the first Matsubara
frequency ν = πT .

λsp corresponds, quite literally, to a fluctuation diagnostic [30]
of the fermion-boson coupling.

Next, we examine the nonlocal corrections. The bottom
panel of Fig. 12 shows �nonloc,sp(k, ν = πT, q, ω = 0) where
k corresponds to the antinode or node and the bosonic mo-
mentum q runs along the high-symmetry path of the Brillouin
zone. Around q = (π, π ) the nonlocal component is negative,
corresponding to the screening of fermions from bosons with
this momentum, which is added to the Kanamori screening
from the impurity model discussed above. In the considered
regime �nonloc,sp does not exhibit appreciable differentiation
with respect to the fermionic momentum k; this occurs only
at low temperature, in the pseudogap regime [91].

IV. BENCHMARKS AWAY FROM HALF-FILLING

We depart from half-filling and show in Figs. 13 and 14
two benchmarks of BEPS against DiagMC@DF at interaction
U/t = 4 and temperatures T/t = 0.5 and 0.2, respectively.
The density is set to n ≈ 0.76. The Matsubara cutoff cor-
responds to the half-filled case (see Sec. III). In both
calculations the lattice size is 16 × 16 sites, results are shown
for N� = 5 form factors. Differences to calculations using
N� = 1 or 9 form factors are indiscernible (not shown), un-
derlining once again the rapid convergence of BEPS with the
form factors and the short-ranged property of the residual
vertex �Uirr, also away from half-filling. At T/t = 0.5 the
agreement of BEPS and DiagMC@DF is excellent. It is also
reasonable at the lower temperature T/t = 0.2, but the statis-
tical error of DiagMC@DF, its variation with the perturbation
order, and a difference in the densities11 preclude a statement
about the accuracy of BEPS for these parameters.

11In the doped case we fixed the filling of the DMFT calculation to
DiagMC@DF, n = 0.76. As a result, the density of the BEPS calcu-
lations is slightly off by ±0.008 and it would be desirable to fix the
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FIG. 14. U/t = 4, T/t = 0.2, n ≈ 0.76. Labels as in Fig. 13,
various expansion orders of DiagMC@DF are shown in blue.

Finally, we note a peculiarity of the BEPS method that
may somewhat impede its practicality in the short term. The
method requires the complete two-, three-, and four-point
information of the AIM (3), including the particle-particle
three-leg vertex λs of the singlet channel and the correspond-
ing susceptibility χ s, defined in Eqs. (9) and (6), respectively.
At half-filling we use a segment code [77,79] and obtain
the particle-particle quantities from the charge channel via
particle-hole symmetry [59], however, the doped case requires
their measurement in a suitable CTQMC implementation.
We are unaware of a segment code [76] that could handle
the pair operator c↑c↓ and we instead rely on the worm
sampling of the W2DYNAMICS solver [78,96,97], which has
however a larger statistical error than the segment code. A
better treatment of the particle-particle quantities is desirable,
for example, by using improved estimators [98], exact diago-
nalization [27,97,99], or the numerical renormalization group
(NRG [100,101]).

V. CONCLUSIONS

We have introduced and applied to the two-dimensional
Hubbard model a method for the summation of parquet dia-
grams for dual fermions [44] which substantially reduces the
computational cost and increases the feasibility with respect
to previous approaches. The method makes use of the fact
that the partial bosonization [52] of the dual vertex function,
formalized in terms of the recently introduced single-boson
exchange (SBE) decomposition [59], can be combined in a
fruitful way with the traditional parquet formalism [32,33].

chemical potential. This requires to couple our BEPS implementation
self-consistently to the w2DYNAMICS impurity solver, which we leave
for future work.

Namely, as shown in the Appendices of this paper, the parquet
approximation for dual fermions can be cast exactly into a set
of parquet expressions for the residual vertex defined after the
SBE decomposition explicitly treats single-boson exchange
diagrams.

This is a significant improvement because of useful prop-
erties of the residual vertex. In particular, it decays fast both in
terms of Matsubara frequencies ([37,59,60], cf. Appendix E)
and in terms of distances in the real space. The latter property
invites a truncated-unity approximation [45] at the level of the
residual vertex, whereas the full momentum dependence of
the single-boson exchange is retained. As a result, we find
across different parameter regimes that the electronic self-
energy converges rapidly with the number of form factors
taken into account, and significantly faster than in the TUPS
method introduced in Ref. [45]. As for the frequency domain,
we follow a similar philosophy of Ref. [43] by evaluating the
corresponding parquet expressions only for a small number
of Matsubara frequencies. Our approach, however, preserves
the essential spectral information of the underlying physical
systems.

In this work we have mostly focused on the description of
the approach and to a preliminary application for the Hubbard
model on up to 16 × 16 lattice sites. In fact, we can currently
reach a 32 × 32 lattice [91], and numerical aspects of the
implementation can be further improved.

To highlight that our method corresponds to a merger
of the SBE decomposition with TUPS, we coin it boson-
exchange parquet solver (BEPS). As it has been recently
shown [102], the versatility of the BEPS formalism allows
for its application also to parquet-based approaches, such as
the parquet approximation [34], the D�A [27], and/or the
QUADRILEX [103] formulated in terms of the original (i.e.,
nondual) fermionic variables. In this way, most of the numeri-
cal advantages described in this paper become available to all
the above-mentioned schemes. In this respect, let us note that
while the physical content of a given parquet-based approach
will not be excessively affected by the choice of formulating
it in terms of the original or of the dual degrees of freedom,
the latter procedure offers specific technical advantages, espe-
cially in the intermediate-to-strong coupling regime.

In fact, the dual-fermion formulation of parquet-based
schemes allows, per construction, to fully bypass the multi-
ple divergences of the (local) two-particle irreducible vertex,
whose occurrence is rather ubiquitous in the phase diagrams
of many-electron problems [31,61–66,104,105]. As a result,
the corresponding parquet decomposition [31,106] of the elec-
tronic self-energy as well as of physical response functions
remains well behaved at strong coupling, alleviating conver-
gence problems of the parquet solver in regimes relevant for
the experiment [43].

We also notice how the developments that we proposed
are intertwined with the functional renormalization group
methods (fRG). Two techniques often employed in the fRG
framework, namely, the partial bosonization [52,107] and the
truncated-unity approximation [45,46,84,88,108], are indeed
instrumental to construct BEPS. Vice versa, elements of our
method could be useful for the fRG, in particular, we find it
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plausible that a multiloop fRG for dual fermions in combina-
tion with partial bosonization could be cast into a calculation
scheme with properties similar to BEPS. Indeed, for lattice
fermions the multiloop fRG corresponds exactly to the sum-
mation of the parquet diagrams [109–112]. The groundwork
for a combination of the fRG with strong-coupling theories
like DMFT or dual fermions was laid in Refs. [113–115].

The methodological advancement provided by BEPS
appears promising for extending the applicability of state-
of-the-art parquet and fRG schemes to the most interesting
regime of intermediate-to-strong local and nonlocal correla-
tions. In particular, we note that the BEPS implementations
might considerably improve our nonperturbative description
of the interplay between competing fluctuations, such as
those originating from commensurate as well as incommen-
surate magnetic and charge instabilities, or diverse pairing
instabilities. In fact, while some of the these transitions
have been investigated in the past within the ladder ap-
proximation [3,9,116,117], only a parquet treatment with
sufficient momentum resolution might yield an equal-footing
description of all competing fluctuations at play. Rather
straightforward generalization of the procedure should also
allow for the description of more complex magnetic instabili-
ties, such as those toward a spin-spiral order. On a longer-term
perspective, BEPS might also provide a favorable frame-
work to include nonlocal correlations on top of DMFT in
magnetically/excitonic ordered phases [118–122], as well as
to treat multiorbital systems [123] beyond the ladder approxi-
mation [124–126].

At the same time, it is questionable whether parquet re-
summations of nonlocal correlations can at all capture the
resonating valence bond state or the spin-liquid phase. These
applications may require a cluster extension of BEPS to re-
cover the short-ranged singlet physics nonperturbatively, in
the spirit of the so-called multiscale approaches [127]. Fur-
ther, we expect that the convergence of the truncated-unity
approximation applied to the residual vertex �Uirr may be
slowed down when this vertex develops a strong momentum
dependence. In the applications of the BEPS method it is
therefore still important to carefully verify the convergence
of key observables with the number of form factors.
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APPENDIX A: SBE DECOMPOSITION FOR DUAL
FERMIONS

We explain how the SBE decomposition derived in
Ref. [59] can be formulated for dual fermions.

1. Irreducible generalized susceptibility

First, we define a dual generalized susceptibility as

X α
kk′q = X 0

kk′q +
∑
k1k2

X 0
kk1qFα

k1k2qX 0
k2k′q, (A1)

where F is the full vertex and X 0
kk′ = NβGkGk+qδkk′ is the

bubble of dual fermions, respectively. We denote as �̃ph the
two-particle self-energy, i.e., the vertex which is irreducible
with respect to horizontal particle-hole pairs. The generalized
susceptibility satisfies the ladder equation

X̂ = X̂ 0 + X̂ 0 ˆ̃�phX̂ , (A2)

where we adopted a matrix notation with respect to the indices
k, k′. Labels α, q are dropped.

The goal is to separate from X and F the diagrams that are
reducible with respect to the Hubbard interaction U , where
we begin with the horizontal particle-hole channel. For lattice
fermions these reducible contributions arise from the leading
term U of the two-particle self-energy [73]. However, the
dual two-particle self-energy �̃ph has many more U -reducible
contributions since its leading term is the full vertex f of the
AIM (3). The U -reducible contributions ∇ph of the horizontal
particle-hole channel can be separated off,

f α
νν ′ω = t ph,α

νν ′ω + ∇ph,α

νν ′ω. (A3)

Hence, we subtract the U -reducible diagrams from the two-
particle self-energy Sph

kk′q = �̃
ph
kk′q − ∇ph

νν ′ω, and define the
following ∇-irreducible generalized susceptibility

�̂ = X̂ 0 + X̂ 0Ŝph�̂. (A4)

The reducible and irreducible generalized susceptibilities are
related as follows:

X̂ = �̂ + �̂ ∇̂ph
X̂

⇔ Xkk′q = �kk′q +
∑
k1k2

�kk1q∇ph
ν1ν2ω

Xk2k′q, (A5)

where the summation over matrix elements was made explicit
in the second line. We can now make use of the fact that ∇ph

depends on ν and ν ′ separately, ∇ph
νν ′ω = λα

νωwα
ωλα

ν ′ω, where λ

is defined in Eq. (8):

Xkk′q =�kk′q +
(∑

k1

�kk1qλν1ω

)
wω

(∑
k2

λν2ωXk2k′q

)
. (A6)

This relation shows that if we take a trace
∑

k over two-
particle correlation functions for dual fermions, it is natural
to attach the impurity Hedin vertex λ first. We do this when
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we take the trace over k, k′ in Eq. (A6):

1

2
Xq ≡

∑
kk′

λνωXkk′qλν ′ω

=
∑
kk′

λνω�kk′qλν ′ω +
(∑

kk1

λνω�kk1qλν1ω

)

× wω

(∑
k2k′

λν2ωXk2k′qλν ′ω

)
. (A7)

We further define

�q ≡
∑
kk′

λνω�kk′qλν ′ω, (A8)

and hence arrive at the algebraic relation

X α
q = 2�α

q

1 − wα
ω�α

q

. (A9)

The quantities X and � naturally define the susceptibility and
polarization of the dual fermions.

2. SBE vertex

Now, we separate the U -reducible contributions from the
full vertex F . To this end, we define a vertex part for the
irreducible generalized susceptibility, similar to Eq. (A1):

�α
kk′q = X 0

kk′q +
∑
k1k2

X 0
kk1qT ph,α

k1k2q X 0
k2k′q. (A10)

We insert this relation and Eq. (A1) into Eq. (A6) and cancel
all bubbles X 0, leading to the relation

Fα
kk′q = T ph,α

kk′q + �α
kqw

α
ω�α,red

k′q , (A11)

where we defined the three-leg vertices � and �red as

X 0
kq�kq =

∑
k1

�kk1qλν1ω, (A12)

�red
k′qX 0

k′q =
∑

k2

λν2ωXk2k′q. (A13)

We like to eliminate �red in favor of � in Eq. (A11) and
from Eq. (A6) it follows indeed that �red

kq = �kq/(1 − wω�q),
hence,

Fα
kk′q = T ph,α

kk′q + �α
kqW α

q �α
k′q, (A14)

where we defined the dual screened interaction as

W α
q = wα

ω

1 − wα
ω�α

q

. (A15)

Finally, in Eq. (A14) we identify the SBE vertex of the
horizontal particle-hole channel, i.e., Eq. (17a),

�
ph,α

kk′q ≡ �α
kqW α

q �α
k′q. (A16)

Combining Eqs. (A12) and (A10) leads to

�α
kq = λα

νω +
∑

k′
T ph,α

kk′q Gk′Gk′+qλ
α
ν ′ω, (A17)

and using Eqs. (A14) and (A16) we arrive at Eq. (26) in the
main text.

The remaining task is to find the vertices �ph and �pp

of the vertical particle-hole and particle-particle channels,
respectively. The first follows from the crossing relation in
Eq. (19), the derivation of the latter proceeds along similar
steps as in the Appendix of Ref. [59], leading to Eq. (17b)
[and Eq. (20) in particle-hole notation]. Removing �ph, �ph,
and �pp from the full dual vertex function F , and taking care
of their double counting of the bare interaction [59], we call
the remainder �Uirr and arrive at the SBE decomposition in
Eq. (16).

APPENDIX B: RELATION TO PARQUET FORMALISM

We relate the SBE decomposition to the parquet formalism.
The traditional parquet equation for the full vertex reads in
particle-hole notation as

Fα
kk′q = �̃firr,α

kk′q + �̃
ph,α

kk′q − 1

2
�̃

ph,ch
k,k+q,k′−k

− 3 − 4δα,sp

2
�̃

ph,sp
k,k+q,k′−k + 1 − 2δα,sp

2
�̃

pp,s
kk′,k+k′+q

+ 3 − 2δα,sp

2
�̃

pp,t
kk′,k+k′+q. (B1)

Here, �̃firr is the fully irreducible vertex in the sense of the tra-
ditional parquet formalism [37], which implies it is irreducible
with respect to insertions of particle-hole and particle-particle
pairs. The vertices �̃ph(pp) are reducible in this sense (either
in a particle-hole or particle-particle channel). All quantities
which are reducible or irreducible in the sense of the tradi-
tional parquet formalism are marked with a tilde. In particular,
�̃firr, �̃ should not be confused with the vertex �Uirr, which
is (fully) irreducible with respect to the bare interaction U
[59,75]. A closed set of equations is obtained in combination
with the Bethe-Salpeter equations

Fα
kk′q = �̃

ph,α

kk′q + �̃
ph,α

kk′q , α = ch, sp (B2)

F δ
kk′q = �̃

pp,δ
kk′q + �̃

pp,δ
kk′q , δ = s, t (B3)

where �̃ is irreducible with respect to particle-hole or particle-
particle pairs. In the SBE decomposition the vertex is split
according to Eq. (A14):

Fα
kk′q = T ph,α

kk′q + �
ph,α

kk′q , (B4)

F δ
kk′q = T pp,δ

kk′q + �
pp,δ
kk′q . (B5)

The vertices T are irreducible with respect to the bare inter-
action in a particular channel (and therefore �pp,t = 0 for the
triplet channel), they obey the following Bethe-Salpeter–type
equations [cf. Eq. (A4)]:

T ph,α

kk′q = Sph,α

kk′q + M ph,α

kk′q , (B6)

T pp,δ
kk′q = Spp,δ

kk′q + M pp,δ
kk′q , (B7)
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where the vertices S and M are defined as12

Sph,α

kk′q = �̃
ph,α

kk′q − ∇ph,α

νν ′ω, (B8)

Spp,δ
kk′q = �̃

pp,δ
kk′q − ∇pp,δ

νν ′ω, (B9)

M ph,α

kk′q =
∑

k′′
Sph,α

kk′′q Gk′′Gk′′+qT ph,α

k′′k′q , (B10)

M pp,δ
kk′q = ∓ 1

2

∑
k′′

Spp,δ
kk′′qGk′′Gq−k′′T pp,δ

k′′k′q. (B11)

We now express the reducible vertices �̃ of the traditional
parquet formalism in terms of the new vertices M. Combining
the previous equations we arrive at

�̃
ph,α

kk′q =�
ph,α

kk′q − ∇ph,α

νν ′ω + M ph,α

kk′q , (B12)

�̃
pp,δ
kk′q = �

pp,δ
kk′q − ∇pp,δ

νν ′ω + M pp,δ
kk′q , (B13)

which leads to M pp,t = �̃pp,t for the triplet channel.

APPENDIX C: PARQUET APPROXIMATION

We reformulate the parquet approximation for dual
fermions in terms of parquet expressions for the residual
vertex �Uirr. The parquet approximation for dual fermions
corresponds to

�̃firr
kk′q ≈ fνν ′ω, (C1)

that is, the fully irreducible vertex of the traditional parquet
formalism is given by the full vertex of the impurity model.
We insert this approximation and Eqs. (B12) and (B13) into
the parquet Eq. (B1) and compare with the SBE decomposi-
tion (16):

Fα
kk′q = �Uirr,α

kk′q + �
ph,α

kk′q

− 1

2
�

ph,ch
k,k+q,k′−k − 3 − 4δα,sp

2
�

ph,sp
k,k+q,k′−k

+ 1 − 2δα,sp

2
�

pp,s
kk′,k+k′+q − 2U α = Eq. (B1). (C2)

Using also the corresponding SBE decomposition for the im-
purity vertex f in Eq. (10), all vertices ∇,� and the bare
interaction U cancel out, and we arrive at the following par-
quet expression:

�Uirr,α
kk′q = ϕUirr,α

νν ′ω + M ph,α

kk′q

− 1

2
M ph,ch

k,k+q,k′−k − 3 − 4δα,sp

2
M ph,sp

k,k+q,k′−k

+ 1 − 2δα,sp

2
M pp,s

kk′,k+k′+q + 3 − 2δα,sp

2
M pp,t

kk′,k+k′+q.

(C3)

This corresponds to an exact reformulation of the parquet ap-
proximation for dual fermions. For the evaluation we further
need the ladder kernel S. We use Eqs. (B4)–(B7) and (C2) to

12Regarding prefactor ∓ 1
2 of pp channel, see Ref. [37].

express the particle-hole kernel Sph in Eq. (B8) as

Sph,α

kk′q = �Uirr,α
kk′q − M ph,α

kk′q

− 1

2
�

ph,ch
k,k+q,k′−k − 3 − 4δα,sp

2
�

ph,sp
k,k+q,k′−k

+ 1 − 2δα,sp

2
�

pp,s
kk′,k+k′+q − 2U α. (C4)

Similar steps lead to Eqs. (25c) and (25d) for the particle-
particle channels.

APPENDIX D: LADDER KERNEL IN FORM-FACTOR
BASIS

We show in an exemplary way the calculation of the dif-
ferent components of the ladder kernel in Eqs. (25a)–(25d) in
the form-factor basis. For the particle-hole kernel (we drop
frequency and flavor labels),

Sph(�1, �2, q) =
∑
kk′

ψ (�1, k)Sph(k, k′, q)ψ (�2, k′). (D1)

We use the truncated unity to avoid the full momentum depen-
dence of four-point vertices. For example, following Ref. [45],
the contribution of the MBE vertex M ph on the right-hand side
of Eq. (25a) can be brought into the form∑

kk′
ψ (�1, k)M ph(k, k + q, k′ − k)ψ (�2, k′)

=
∑
kq′

ψ (�1, k)M ph(S[k],S[k + q],S[q′])ψ (�2, k + q′)

=
∑
kq′

∑
�3�4

ψ (�1, k)ψ (�3,S[k])M ph(�3, �4,S[q′])

× ψ (�4,S[k + q])ψ (�2, k + q′)

=
∑

q′

∑
�3�4

�S (�1, �2, �3, �4, q′, q)M ph(�3, �4,S[q′]).

(D2)

From the first to the second line we performed a shift q′ =
k′ − k and introduced a symmetry operation S of the point
group, which is chosen to project the momentum q′ into the
irreducible Brillouin zone (the same operation therefore needs
to be applied to the other two momentum arguments of M ph,
see Ref. [84]). In the third line, M ph was transformed into the
form-factor basis. In the fourth line, the four form factors were
collected in the quantity

�S (�1, �2, �3, �4, q′, q) =
∑

k

ψ (�1, k)ψ (�2, k + q′)

× ψ (�3, S[k])ψ (�4, S[k + q]).
(D3)

In practice, this quantity is calculated once at the beginning of
the calculation, keeping only a number N� of form factors. The
symmetry operation S allows to perform the summation over
q′ in Eq. (D2) only over the irreducible Brillouin zone rather
than the full one. The other components M of the ladder kernel
S are handled analogously. In this way, we avoid the storage
of the MBE vertex M(k, k′, q) of size N2

k N irr
q and store only
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M(�, �′, q) which has the size N2
� N irr

q , where N irr
q ≈ Nq/8 is

the size of the irreducible Brillouin zone (see Ref. [84] for
further information). On the other hand, the full momentum
dependence of the SBE vertex �(k, k′, q) can be stored effi-
ciently since it is parametrized by the fermion-boson coupling
�(k, q) and the screened interaction W (q) (cf. Sec. II D).
Hence, at each iteration we calculate the contribution of � to
S explicitly, performing the k, k′ summations in Eq. (D1).13

APPENDIX E: FREQUENCY CONVERGENCE

Figure 15 shows the convergence of the BEPS self-energy
with the Matsubara cutoff Nν = Nω for a calculation at half-
filling U/t = 2, T/t = 0.2. The lattice size is set to only
8 × 8, leading to a finite-size effect, and we use only one

13In principle, we could avoid the transformation of � in Eq. (D1)
and instead transform �(k, q) to the form-factor basis with respect
to k, obtain �ph(�, �′, q) = �(�, q)W (q)�(�′, q), and then follow
the steps in Eq. (D2) to treat the momentum shifts of � in the
ladder kernel S given by Eqs. (25a)–(25d). One may thus avoid k
dependence of � altogether, but the performance gain is limited and
the procedure introduces a further truncation error which worsens the
convergence with respect to the form-factor cutoff N�. We therefore
use the truncated unity only to treat the momentum shifts of the
vertex M.

-0.04

-0.02

0

0.02

0.04

-0.12

-0.1

-0.08

-0.06

FIG. 15. Self-energy at half-filling, U/t = 2, T/t = 0.2 for dif-
ferent values of the Matsubara cutoff.

form factor, which is, however, not relevant for the frequency
convergence. In the case that a Matsubara label exceeds the
cutoff, the respective quantity is set to a default value, namely,
G → G0, � → 0, � → 1, W α → U α , �Uirr → 0, M → 0
(fermionic Matsubara indices of four-point vertices like �Uirr

and M run from −Nν/2 to Nν/2 − 1). Only the quantities
�DMFT and gν are defined on a larger Matsubara grid (64
frequencies in practice).
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