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Escape from black hole analogs in materials: Type-II Weyl semimetals and generic edge states
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Type-II Weyl semimetals are dictated by bulk excitations with tilted light cones, resembling the inside of
black holes. We obtain generic boundary conditions for surface boundaries of the type-II Weyl semimetals near
Weyl nodes, and show that for a certain boundary condition edge states can escape out of the “black hole” event
horizon. This means that for realization of the material “black hole” by the type-II Weyl semimetals, a careful
choice of the boundary condition is necessary.
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I. INTRODUCTION

Among various interplay between condensed-matter
physics and particle physics, recent advances in physics on
Weyl semimetals (see [1] for a recent review) are of particular
interest because of their uniqueness about relativistic nature of
quasiparticle excitations. Study of Weyl fermions in the Weyl
semimetals enlarges the common grounds of the two subjects,
not only through the anomaly and topological nature of Weyl
fermions leading to the bulk-edge correspondence [2–4], but
also with relativistic properties of Weyl fermions.

An intriguing picture of the latter was proposed by Volovik
and Zhang [5], concerning in particular type-II Weyl semimet-
als [6]. Type-II Weyl semimetals are defined by Weyl points
associated with overtilted Weyl cones, and Ref. [5] clarified
that they correspond to light cones allowing propagation only
in a certain direction, which in particle physics typically ap-
pears behind event horizons of black holes. An analog of
a wider region in the black hole geometry including both
sides of the horizon, can be reached by inhomogeneous Weyl
semimetals which have some surface of the transition between
types I and II [5,7–11].

In this paper, we combine theoretically the idea [5] of
equivalence between the type-II Weyl semimetals and black
holes, and the bulk-edge correspondence. We analyze most
generic edge dispersion of continuum type-II Weyl semimet-
als. The aim is to study whether the idea of identifying the
type-II Weyl semimetals with the inside of the black holes
is valid even with the presence of the edge modes. The
edge modes have quite different behaviors from the particle
propagation in vacuum. Despite the significance of the edge
modes in topological material, the edge modes appear as extra
degrees of freedom which do not resemble any propagating
modes around real black holes in analogous models of black
holes. In order to capture the analogous features to black
holes, effects of the edge modes should be distinguished
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from the bulk modes. In particular, an important question is
whether the edge modes can escape from the black hole. For
example, if the edge mode can escape, the information of the
bulk modes inside the horizon would also leak to the outside
through interactions with the edge modes. At the same time,
it may also provide an additional access to the information
inside the horizon. If the edge mode cannot escape, it gives
no additional outflow of the information. It is simply an un-
natural mode which does not alter the information structure
of the black hole analogs. Since more concrete approaches
to emulate the global structure of the black hole geometry
by inhomogeneous Weyl semimetals have been studied else-
where, we will focus on local behaviors of the edge modes
in a region which is identified with the inside of the black
holes. We follow the strategy developed in Ref. [12] on all
possible allowed boundary conditions in the continuum limit
to seek for a possibility of escaping out of the “black hole.”
We find that for a certain class of the boundary conditions of
the surface of the semimetal, edge modes can escape from the
black hole. This means that the identification needs a proper
choice of the boundary condition.

The organization of this paper is as follows. First, in Sec. II
we briefly review continuum type-II Weyl semimetals and
their relation to black holes. Then, in Sec. III we intro-
duce generic boundary condition analysis for type-II Weyl
semimetals with surfaces. In Sec. IV we explicitly calculate
the generic edge dispersion of type-II Weyl semimetals. In
Sec. V we provide a useful theorem that any edge dispersion
is tangential to and ending at bulk dispersion, for generic Weyl
semimetals. Then, finally, in Sec. VI we calculate space-time
light-cone structure for the edge modes and find that they
can escape from the black hole for a choice of the surface
boundary conditions. The final section is for a summary and
discussions.

II. TYPE-II WEYL SEMIMETALS AND BLACK HOLES

Let us briefly review the relation between the type-II
Weyl semimetals and light-cone structure [5,7]. We consider
a three-dimensional Weyl semimetal in the continuum limit,
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FIG. 1. Upper row: energy dispersion Ebulk as a function of p1 and p2 at the slice p3 = 0. For simplicity we choose α2 = α3 = 0, with
α1 = 0 (left, type I), α1 = −0.8 (middle, type I), α1 = −1.2 (right, type II), respectively. Lower row: Corresponding light cones. It is seen that
the type-II dispersion (right) has a large tilt of the light cone such that it allows only a propagation to the negative direction of x1.

whose Hamiltonian is given by

H = piσi + αi pi1, (1)

where the summation is made for i = 1, 2, 3 and σi are the
Pauli matrices. This Hamiltonian is general enough to cap-
ture the topological charge of the Weyl semimetal, chirality
= +1, after a proper redefinition of the momentum axis and
its normalization. The parameters αi (i = 1, 2, 3) are real con-
stants.1

The bulk dispersion which follows from (1) is

Ebulk = αi pi ±
√

(pi )2. (2)

For (αi )2 > 1, the bulk dispersion at E = 0 is not a single
point, but forms a set of flat surfaces in the momentum space,
which defines the type-II Weyl semimetals (see Fig. 1).

Let us derive the light-cone structure of the propagation of
the excitation from the dispersion relation (2). It can be recast
to the form gμν pμ pν = 0 with the effective metric

gμν =

⎛
⎜⎜⎝

1 − α2
i α1 α2 α3

α1 −1 0 0
α2 0 −1 0
α3 0 0 −1

⎞
⎟⎟⎠

μν

(3)

with the standard identification p0 = −E (to make sure that
the wave function is written as exp[−iEt + ipixi]).

In the following we show in two ways that this is the metric
inside of a black hole. First, consider a Schwarzschild black
hole metric in Painlevé-Gullstrand coordinates

ds2 =
(

1− 2M

r

)
dt2 − 2

√
2M

r3
dt xidxi − (dxi )2, (4)

where r2 = (xi )2. The horizon is at r = 2M. This metric re-
produces (3) under the identification

αi = −
√

2M

r3
xi. (5)

1Since the Hamiltonian (1) is the low-energy approximation, in re-
ality there exist higher-order terms in momenta. However, inclusion
of those higher-order terms will spoil the space-time interpretation
presented here, as those are not effectively described by the emergent
metric in general.

So, the Weyl semimetal is a local description in the geometry
of the Schwarzschild black hole. It is only for phenomena in
the vicinity of a point defined by (5) because αi depends on
the position in the Schwarzschild metric, but is a constant
for the Weyl semimetal. The parameter αi is now related to
the radius in the Schwarzschild metric at the point which the
Weyl semimetal mimics, as (αi )2 = 2M/r. If it is identified
with a point inside the black hole, r < 2M, then (αi )2 > 1, so
it corresponds to the dispersion of the type-II Weyl semimetal.
An analog in a wider region with x dependent α can be
reached by inhomogeneous Weyl semimetals. We focus on a
region near the horizon r � 2M. We define xi = xi

0 + δxi and

take r0 =
√

(xi
0)2 � 2M. Then, (5) is expanded as

αi = −
√

2M

r0
ei + δαi(x), (6)

where ei = xi
0/r0 and the correction term δαi(x) is expressed

as2

δαi(x) = −
√

2M

r3
0

(
δxi − 3

2
eie jδx j

)
+ · · · . (7)

We can take the size of the region L, where −L < δxi < L, for
example, to be much smaller than the Schwarzschild radius
since the wavelength of the wave function should be much
shorter than the size of black holes. Then, the correction terms
with x dependence will be sufficiently small

δαi(x) ∼ L

2M
(8)

and, hence, can be resembled by inhomogeneous Weyl
semimetals. Although inhomogeneous Weyl semimetals have

2If the correction term δα is truncated at the linear order in δx, the
scalar curvature becomes R = 9M

r3
0

. However, it should be regarded

as negligible for r0 � 2M and L � r0, because it is much smaller
than the typical curvature of the system R � 9

2r2
0

� 1
L2 . Thus, it is

consistent with the Schwarzschild solution. The higher-order cor-
rection terms are much smaller than the linear-order correction, in
−L < δxi < L, for example, and the curvature is exactly zero by
taking them into consideration.
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small x dependence in αi(x), the wave function can be esti-
mated by using the WKB approximation, and δαi(x) gives
only higher-order corrections. In particular, we are mainly
interested in the direction of the propagation, which can be
read off only from the local structure of the geometry. For
that purpose, we can even focus on a much smaller region
around each points inside the Weyl semimetal. Thus, αi can
be approximated by a constant to study the direction at each
point, even in inhomogeneous Weyl semimetals which can
resemble both sides of the horizon.

Another way to see a relation to the black hole is an
explicit construction of light cones. A null vector nμ satisfies
nμnνgμν = 0, which is

[1 − (αi )
2](n0)2 + 2n0niαi − (ni )2 = 0. (9)

Consider a radial null vector which should be the most ef-
ficient if one wants to escape from the black hole, namely,
ni ∝ αi, then we have (niαi )2 = (ni)2(α j )2. With this, we can
solve the null condition as

niαi

n0
= (αi )

2 ±
√

(αi )2, (10)

which is always positive for (αi )2 > 1. This means that the
light propagation is always in a certain direction. It passes
through the surfaces αixi = const, which correspond to r =
const surfaces in the Schwarzschild metric, only from one side
to the other but never goes back, which happens also inside a
“black hole.” See Fig. 1 for a pictorial view of the light-cone
structure.

Note that the event horizon of black holes is defined as
the boundary of the causal past of the future null infinity and
depends on the global structure of the geometry. Since the
type-II Weyl semimetal mimics only the local geometry of the
black hole, the interpretation depends on how it is embedded
in the global geometry of black holes. There could be some
other interpretation of the effective metric (3), depending on
the embedding. For example, (3) can be also viewed as a local
metric in an ergoregion of a Kerr geometry.

III. GENERIC BOUNDARY CONDITIONS
FOR TYPE-II WEYL SEMIMETALS

Following Ref. [12], here we obtain the most generic
boundary conditions for the type-II Weyl semimetals in the
continuum limit.3 For the type-II Weyl material, we introduce
a single flat boundary surface at x3 = 0, with a generic bound-
ary condition

Nψ (x3 = 0) = 0, (11)

where N is a constant complex 2 × 2 matrix. With the Hamil-
tonian (1), the Hermiticity condition for the system requires

ψ
†
1 (σ3 + α31)ψ2 = 0 (12)

for arbitrary wave functions ψ1 and ψ2 at the boundary. We
like to find the most generic N which leads to (12). First,

3See also Refs. [24–26] for 1D and 2D generic boundary condi-
tions.

noting det N = 0 from (11), we can write N as

N =
(

1 β

γ γβ

)
, (13)

up to the overall normalization of N [which is irrelevant to the
boundary condition (11)], so the solution of (11) is written as
ψi = (−β, 1)T fi with a scalar function fi. Then, the condition
(12) is recast to

|β|2 − 1 + α3(|β|2 + 1) = 0. (14)

So, we find that a consistent boundary condition exists only
when |α3| < 1 and |β| =

√
1−α3
1+α3

. In other words, the most
general boundary condition for Weyl semimetals with the
Hamiltonian (1) is(

1,

√
1 − α3

1 + α3
eiθ

)
ψ (x3 = 0) = 0 (15)

with a boundary condition parameter θ (0 � θ < 2π ).
Note that introduction of the boundary at x3 = 0 does not

allow |α3| > 1. This also implies that the vector α of type-
II Weyl semimetals cannot be normal to the boundary.4 Of
course, setting α3 = 0 brings us back to the generic boundary
condition studied in Ref. [12].

IV. EDGE DISPERSION OF TYPE-II WEYL SEMIMETALS

The edge state should exist as a result of the topological
protection since the bulk-edge correspondence [2–4] works
also for the type-II Weyl semimetals [6,13]. The edge state
is localized at the boundary because of the imaginary part of
the momentum normal to the boundary. (Note that without
any addition of a Hamiltonian at the boundary, just the bulk
Hamiltonian provides the edge states due to the existence of
the boundary.) Although the bulk mode satisfies the boundary
condition by taking an appropriate linear combination of the
incoming and outgoing modes at the boundary, such a linear
combination cannot be taken for the edge mode since only
one of these two modes corresponds to the edge mode and
the other is an unphysical non-normalizable mode. Thus, the
boundary condition gives an additional condition to the mo-
menta of the edge mode.

Let us solve the Hamiltonian eigenequation Hψ = Eedgeψ

for the edge states, by imposing the most generic boundary
condition (15). It is quite straightforward and we show only
the result here. The energy eigenvalue is

Eedge = α1 p1+ α2 p2−
√

1−α2
3 (p1 cos θ− p2 sin θ ). (16)

The edge-state wave function is

ψ =
(

−
√

1−α3
1+α3

eiθ

1

)
exp[ik3x3] (17)

4This bound was independently studied in Ref. [23]. The authors
would like to thank Zyuzin for bringing Ref. [23] to our attention.
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FIG. 2. Upper row: Energy dispersion Ebulk as a function of p1 and p2 at the slice p3 = Re[k3], and the edge dispersion Eedge given in (16)
with (19). We chose α2 = α3 = 0 with α1 = −1.2 (type II), and the boundary condition parameter sθ = 0, θ = π/2, θ = π , and θ = (3π/2)
(from left to right). The edge dispersion is always flat, and tangential to the bulk-edge dispersion. Lower row: Corresponding slices at E = 0.3,
shown in the (p1, p2) plane. Blue curved lines are for the bulk dispersion, and red half-lines are for the edge dispersion.

with the complex momentum k3:

k3 ≡ α3(p1 cos θ − p2 sin θ ) − i(p1 sin θ + p2 cos θ )√
1 − α2

3

. (18)

The imaginary part of k3 shows the localization of the edge
state at the boundary. As the wave function decays expo-
nentially away from the boundary, the particle is localized
at the boundary. The wave function for x3 �= 0 describes the
penetration to the inside of the material due to the quantum
uncertainty. When the material exits in the region x3 � 0,
the normalizability condition for the wave function is β ≡
Im[k3] > 0, which is equivalent to

p1 sin θ + p2 cos θ < 0. (19)

There also exists the real part of k3, which would have been
absent if α3 = 0. It provides an oscillatory wave function
localized near the surface. When α3 = 0, the wave function is
oscillating only in the direction tangential to the boundary and
the phase does not change in the normal direction. However,
when α3 �= 0, there exists the oscillatory wave function in the
x3 direction, which implies that the direction of the constant
phase is no longer orthogonal to the boundary.

The edge dispersion is a straight line in the (p1, p2) plane
at the constant energy slice. We show some of the examples
of the edge and bulk dispersions in Fig. 2. Note that the
bulk dispersion is a two-dimensional surface but the edge
dispersion is a one-dimensional line in the three-dimensional
momentum space of (p1, p2, p3). Figure 2 shows the plots on
the slice at p3 = Re[k3] in the three-dimensional momentum
space, where the edge dispersion extends.

It should be emphasized that the edge dispersion does not
intersect with the bulk dispersion. The same Hamiltonian is
shared by both the bulk modes and the edge modes, and
both dispersion relations are given by the same expression
gμνkμkν = 0. The edge dispersion always lies outside the bulk
dispersion since the dispersion relation in terms of the metric
gμνkμkν = 0 simply gives gμν pμ pν = 0 for the bulk mode
while gμν pμ pν = β2 for the edge mode, but the edge and

bulk dispersions merge at the single merging point β = 0.
(The exception is the E = 0 slice at which the edge dispersion
could overlap with the bulk one, for some special values of θ .)

One interesting observation is that the edge dispersion is
always tangential to the bulk dispersion. The next section is
devoted for a proof that the edge dispersion is always tangen-
tial to the bulk dispersion at the merging point.

V. TANGENTIALITY THEOREM OF EDGE
AND BULK DISPERSIONS

In this section, we show that any edge dispersion is tan-
gential to the bulk dispersion at the merging point. The
statement was explicitly made by Haldane [14] for generic
Weyl semimetals and here we provide a proof of it. This theo-
rem is not only for the type-II Weyl semimetals, but applicable
to any bulk and edge state which satisfies the definitions that
we will provide below.

We first consider the generic bulk mode. It is a propagating
mode in the bulk of materials, and so the wave function of it
is given in terms of the momenta

ψ ∼ eipixi−iEt , (20)

where pi is the spatial momenta and E is the energy. For stable
states, the energy E has to be real. The momenta pi should also
be real for the normalizability of the state. Thus, we assume
that both pi and E are real.

The edge mode is a localized mode around the surface
boundary of the material. It satisfies the same equation of
motion but the momentum normal to the boundary has an
imaginary part

ψ ∼ eipixi−βz−iEt , (21)

where z is the normal direction to the boundary and β is the
imaginary part of the momentum in the direction. Thus, the
wave function is suppressed away from the boundary.

The surface boundary condition needs to be imposed on
the wave functions above at the boundary. For bulk modes,
it can be satisfied by taking an appropriate superposition of
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the incoming mode pz < 0 and the outgoing mode pz > 0.
On the other hand, for the edge modes, these two modes
would correspond to those with opposite signs of β. The linear
combination cannot be taken due to the normalizability con-
dition and, thus, the boundary condition gives an additional
constraint on the momenta. This structure is generic, and the
edge dispersion is subject to additional constraints in general.
The additional constraints, however, play no important role in
the proof.

The statement of the theorem which we prove is as follows.
Bulk and edge modes are tangential to each other at their
merging point, for any system which satisfies the following
conditions:

(i) Bulk mode is defined as the states whose momenta are
real.

(ii) For the edge mode, only one of the momenta has an
imaginary part.

(iii) The energy is given by a function of momenta. The
function is holomorphic and the form is shared for bulk and
edge modes.

(iv) The energy may not be real for arbitrary complex
values of momenta, but is real for bulk modes and edge modes.

Here, we provide a proof. According to the assumptions,
both the bulk and edge dispersions are given by subspaces of
the curve

E = F (ki ), (22)

where ki are momenta, which are complex in general. The
bulk dispersion is the subspace of the curve in which all the
momenta are real,

E = F (pi ), (23)

where pi are real momenta. The edge dispersion is given in
terms of the same function F as5

E = F (pi( �=z), pz + iβ ), (24)

but the momenta satisfy additional constraints which come
from the boundary condition. If the edge dispersion continues
to β = 0, it is merged into the bulk dispersion there.

Now, it is straightforward to show that the edge dispersion
is tangential to the bulk dispersion. The tangent space of the
bulk dispersion is given by

0 = dE =
∑

i

∂F

∂ pi
d pi. (25)

On the other hand, the tangent space of the edge dispersion is
expressed as

0 = dE =
∑
i( �=z)

∂F

∂ pi
d pi + ∂F

∂ pz
(d pz + idβ ). (26)

5It is because the same Hamiltonian is shared by both the bulk
and edge modes. In fact, the bulk dispersion relation (2) reduces to
the edge dispersion relation (16) when we substitute the complex
momentum k3 given in (18) of the edge mode to p3 of the bulk
relation (2).

The Hermiticity condition for the bulk mode implies that all
∂F
∂ pi

must be real since all real momenta pi are independent for
the bulk mode. Then, the real and imaginary parts of (26) give

0 = dE =
∑

i

∂F

∂ pi
d pi, (27)

0 = ∂F

∂ pz
, (28)

respectively. At the merging point β = 0, the first equation
agrees with the tangent space of the bulk dispersion there.
Therefore, the edge dispersion is tangent to the bulk disper-
sion at the merging point. The imaginary part (28) must be
satisfied on the merging point, for the energy of the edge mode
to be real.

Finally, we emphasize again that the above proof is valid
for any system, for example, a system on a discrete lattice,
as long as it satisfies the conditions (i)–(iv) above, though in
this paper we focus on the continuum limit in the type-II Weyl
semimetals. For the case of type-II Weyl semimetals, it can be
seen in Fig. 2 that the edge dispersion is tangential to the bulk
dispersion.

VI. ESCAPE FROM BLACK HOLES

Let us study the propagation direction of the edge state to
see whether it can escape from the black hole. The propa-
gating direction is given by the tangent vector to the world
line of the particle nμ ∝ dxμ

dτ
, where τ is a proper time on

the world line. The relation between the propagation direc-
tion nμ and the four-momentum pμ for the world line is
nμ = gμν pν . Here, the edge modes have the same effective
metric as the bulk modes have since the same condition
gμνkμkν = 0 is shared by both the bulk and edge dispersions.
However, this does not mean that the edge modes cannot
escape from the black hole. In general, edge modes have
dispersion relations which are quite different from the light
cone of massless particles in vacuum. Even in the case of
αi = 0, which should be identified with the case of the flat
space, this applies. The edge dispersion of our case can be
obtained by putting the edge modes for the flat space onto
the geometry with the effective metric which is the same as
that of the bulk modes. As the edge modes on the flat space
do not look like the particle propagation in vacuum, those on
the effective metric do not resemble any particle propagation
around (inside) the real black holes. Thus, the edge modes
possibly may be able to escape from the black hole, as we
will demonstrate explicitly below.

Substituting the edge dispersion (16) and p3 = Re[k3], we
find

n0 = 1√
1 − α2

3

(p1 cos θ − p2 sin θ ), (29)

n1 = −p1 + α1√
1 − α2

3

(p1 cos θ − p2 sin θ ), (30)

n2 = −p2 + α2√
1 − α2

3

(p1 cos θ − p2 sin θ ), (31)

n3 = 0. (32)
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FIG. 3. The surface we introduce (the red dashed line) is at x3 =
0. Since the horizon is perpendicular to the vector αi, any edge mode
propagating in the positive-x1 direction on the surface x3 = 0 can
escape the Schwarzschild black hole.

Note that automatically we obtained n3 = 0, which is con-
sistent with the fact that the edge mode is localized on the
boundary, since the condition n3 = 0 implies that it prop-
agates only along the boundary x3 = 0. Thus, the effective
metric to which the edge mode is subject is an induced metric
on x3 = 0. In fact, the same result is obtained by using the
induced metric hμν , namely, nμ = gμν pν = hμν pν for the edge
modes.

The expression above applies to any α1 and α2. The type-II
Weyl semimetal has α2

1 + α2
2 > 1 − α2

3 . Without loss of gen-

erality, we can take α1 < −
√

1 − α2
3 and α2 = 0, by using the

rotation in the (x1, x2) plane. So let us concentrate on this case.
All the bulk modes propagate in the direction given by the
vector αi, as explained in Sec. II. For α1 < −

√
1 − α2

3 and
α2 = 0, bulk modes can move only in the direction toward
larger values of αixi, while the direction toward the horizon
is αidxi < 0. We are in the black hole. Now, consider the
edge mode living on the surface defined by x3 = 0. On the
surface, as dx3 = 0, the direction toward the horizon (for es-
caping from the black hole) is α1dx1 < 0, namely, the positive
direction of x1. See Fig. 3 for the space-time allocation of the
system in the black hole. So, if we can find an edge mode
which propagates in the positive direction of x1, that is dx1

dt =
n1/n0 > 0, it is traveling toward the horizon. Although we
cannot see the behavior at the horizon away from the system,
we extrapolate it assuming that similar condition continues to
the horizon, and we conclude that the edge mode can escape
from the black hole. In other words, for (p1, p2) satisfying
(19) and Eedge > 0 with (16), if there exists (p1, p2) giving
n1/n0 > 0, the edge mode can move toward the event horizon,
implying that it can escape from the black hole, eventually. As
we will see below, the answer depends on the parameter θ of
the boundary condition.

In order to see whether the edge mode can escape from the
black hole, it is convenient to rewrite n0 and n1 in terms of
energy Eedge;

n0 = Eedge − α1 p1

1 − α2
3

, (33)

n1 = α1

1 − α2
3

Eedge + 1 − α2
1 − α2

3

1 − α2
3

p1. (34)

FIG. 4. Edge dispersion (red line) on Eedge = const surface. The
parameters are taken as α1 = −1.2 and α2 = α3 = 0. The boundary
condition parameter θ is θ = 9

8 π , θ = π , θ = 7
8 π , θ = 3

4 π , θ = 1
2 π ,

θ = 0, θ = 3
2 π , and θ = 5

4 π , from upper left to lower right. The
shaded region (40) lies between the hyperboloid of the bulk disper-
sion (blue line).

Here, we consider only the edge modes with positive energy
Eedge > 0, and the other parameters satisfy α1 < −

√
1 − α2

3
and −1 < α3 < 1. The sign of n0 depends on given energy
Eedge and momentum p1 as

n0 > 0 for p1 > α−1
1 Eedge, (35)

n0 < 0 for p1 < α−1
1 Eedge, (36)

while the sign of n1 flips as

n1 > 0 for p1 < − α1

1 − α2
1 − α2

3

Eedge, (37)

n1 < 0 for p1 > − α1

1 − α2
1 − α2

3

Eedge, (38)

where both α−1
1 Eedge and − α1

1−α2
1−α2

3
Eedge are negative. From

the conditions Eedge > 0, α1 < −
√

1 − α2
3 , and −1 < α3 < 1,

it is straightforward to obtain the following relation;

− α1

1 − α2
1 − α2

3

Eedge < α−1
1 Eedge. (39)

Thus, there is always a range of momentum p1:

− α1

1 − α2
1 − α2

3

Eedge < p1 < α−1
1 Eedge, (40)

which shows n1/n0 > 0 or, equivalently, a possible edge mode
escaping away from the black hole.

However, note that it does not immediately mean that there
exists such an edge mode which can escape from the black
hole. This edge mode needs a value of p1 which is in the
range (40), that is, the edge dispersion needs to allow p1

to overlap with (40). This can be seen in Fig. 4: The edge
dispersions for various values of θ are shown pictorially in
Fig. 4, for the case of α1 = −1.2 and α2 = α3 = 0. If the edge
dispersion (colored in red) intersects with the range (40) (the
gray region), then that is the edge mode escaping away from
the black hole.

To obtain an analytic expression for the boundary condition
parameter θ to allow such an edge mode escaping away from
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FIG. 5. Space-time picture of the bulk (gray) and edge (red) modes. The horizontal directions are x1 and x2, while the vertical direction is
time. We chose α2 = α3 = 0 with α1 = −1.2 (type II), and the boundary condition parameters θ = 0, θ = π/2, θ = π , and θ = (3π/2) (from
left to right).

the black hole, we classify the edge dispersion by a class of
ranges of θ , as follows.

(i) For θ = 0, the edge dispersion is given by

Eedge = (
α1 −

√
1 − α2

3

)
p1. (41)

Since the momentum is fixed for given Eedge and satisfies 0 >

p1 > α−1
1 Eedge, the edge mode cannot escape from the black

hole.
(ii) For 0 < θ < cos−1 (α−1

1

√
1 − α2

3 ) < π , the edge dis-
persion has p2 > 0 at the merging point β = Imk3 = 0, and
the condition β > 0 gives the upper bound of p1 but no lower
bound. Since the edge dispersion is a straight line with p1 >

α−1
1 Eedge at the merging point, the edge dispersion extends

to the region (40). Thus, the edge mode can escape from the
black hole.

(iii) For θ = cos−1 (α−1
1

√
1 − α2

3 ) < π , the edge mode is
on the asymptote of the hyperboloid of the bulk mode. There
is no upper or lower bound on p1, and the edge dispersion
extends to the region (40). The edge mode can escape from
the black hole.

(iv) For cos−1 (α−1
1

√
1 − α2

3 ) < θ < π , the edge disper-
sion has p2 < 0 at the merging point β = Imk3 = 0, and the
condition β > 0 gives the lower bound of p1 but no up-
per bound. Since the edge dispersion is a straight line with
p1 < − α1

1−α2
1−α2

3
Eedge at the merging point, the edge dispersion

extends to the region (40). Thus, the edge mode can escape
from the black hole.

(v) For θ = π , the edge dispersion is given by

Eedge = (
α1 +

√
1 − α2

3

)
p1. (42)

Since the momentum is fixed for given Eedge and satisfies p1 <

− α1

1−α2
1−α2

3
Eedge, the edge mode cannot escape from the black

hole.
(vi) For π < θ < cos−1 (α−1

1

√
1 − α2

3 ), the edge disper-
sion has p2 > 0 at the merging point β = Imk3 = 0, and
the condition β > 0 gives the upper bound of p1. Since
the edge dispersion is a straight line with p1 < − α1

1−α2
1−α2

3
Eedge

at the merging point, which has maximum of p1, the edge
mode cannot escape from the black hole.

(vii) For θ = cos−1 (α−1
1

√
1 − α2

3 ) > π , no edge mode is
allowed near the Weyl point. The bulk dispersion is approxi-
mately given by a hyperboloid. The merging point of edge and

bulk modes is in p1 → ±∞, and the edge dispersion extends
outward from the merging point.

(viii) For cos−1 (α−1
1

√
1 − α2

3 ) < θ < 2π , the edge dis-
persion has p2 < 0 at the merging point β = Imk3 = 0, and
the condition β > 0 gives the lower bound of p1. Since the
edge dispersion is a straight line with p1 > α−1

1 Eedge at the
merging point, which has minimum of p1, the edge mode
cannot escape from the black hole.

In summary, in the convention α1 < −
√

1 − α2
3 and α2 =

0, the edge mode can escape away from the black hole, when
the boundary condition parameter θ satisfies

0 < θ < π . (43)

In Fig. 5, we plot the space-time structure of the bulk mode
and the edge mode, for various values of θ . It shows possible
directions (and velocities) in space for the modes to move
along. It confirms the result (43).

This (43) means that for a randomly chosen consistent
boundary condition θ , it may allow the edge modes propa-
gating out of the black hole defined by the bulk mode of the
type-II Weyl semimetals. Therefore, in building a black hole
analog by the type-II Weyl semimetals, one needs to carefully
choose the surface boundary conditions of the material, such
that the edge modes do not violate the causality produced by
the black hole.

Let us elaborate more on the reason for this conclusion.
The effective metric (3) is determined by the bulk excitations,
so the light-cone structure is fixed by it. The edge modes
generically propagate outside of the light cone, so edge modes
are tachyonic. The edge dispersion can be expressed in the
form

gμν pμ pν = −β2, (44)

where the effective metric is the same with that for the bulk
dispersion. Thus, the edge modes behave as tachyons whose
imaginary mass comes from the imaginary part of k3. Note
that the overall structure of the edge dispersion in the momen-
tum space does not take the standard form of tachyons since
the effective imaginary mass β also depends on momenta.
With a proper choice of the boundary condition, they can even
propagate in the direction opposite to the bulk tilted light cone.
Therefore, the edge modes can eventually go outside the black
hole horizon.
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VII. SUMMARY

In this paper, we have studied generic boundary conditions
and generic edge dispersions in type-II Weyl semimetals in
the continuum and the low-energy limits. Based on the bulk
dispersion argument [5] that type-II Weyl semimetals can be
regarded as the inside of a black hole, we have explored the
possibility of having an edge mode which can escape away
from the black hole horizon. We have found that the generic
boundary condition is parametrized by a single rotation pa-
rameter θ (0 � θ < 2π ) as (15), and for a part of the range
of the parameter (0 < θ < π for α2 = 0) there exists an edge
mode escaping away from the black hole.

For a realization of the black hole by the type-II Weyl
semimetals, since any material has its surface, we need a
special care about the choice of the boundary condition. Our
analysis shows that θ needs to be in the range π � θ � 2π

not to violate the black hole causal structure. A safe way
is to choose, for example, θ = 3π/2 which amounts to the
boundary condition

(
1,−i

√
1 − α3

1 + α3

)
ψ (x3 = 0) = 0 (45)

for the Hamiltonian (1) and the spatial coordinate x3 � 0
for the material with the surface at x3 = 0. Since the edge
modes are absent in the real black holes, the type-II Weyl
semimetals always have extra modes which do not resemble
any particles around the black hole. The condition above is
chosen such that the extra modes do not take the information
from inside to outside. It might be possible in some cases that
another condition may be useful to distinguish the edge modes
from the others. The boundary condition should be tuned on
demand.

In this paper we have dealt only with the continuum limit of
the type-II Weyl semimetals because it has enabled us to study
the most generic boundary conditions, which are necessary
for checking the possibility of escaping from the black hole.
The physical realization of the specific value of θ depends on
discrete lattice models of the type-II Weyl semimetal. Once
the bulk discrete model is obtained, one takes the contin-
uum limit and extracts the value of θ from the numerically
observed edge-mode dispersion (16), then one can check
whether the edge mode is escaping out of the black hole or
not.

Note that our study here based on the local structure of the
geometry does not entirely certify that our condition lets the
edge mode escape out of the horizon since the event horizon
is defined by the global structure of the geometry. As seen
in Fig. 3, the black hole horizon is located away from the
point at which we study the direction of the propagation of
the edge mode. The condition we study in this paper is the one
for edge modes to propagate toward the horizon in the spatial
slice. If one wants to describe whether the edge mode can
pass the horizon or not, one needs more detailed analyses of

how one joins the type-II Weyl semimetal with a type-I Weyl
semimetal at the horizon, meaning a spatially dependent αi(x).
Approaches to introduce spatially dependent αi(x) by using
inhomogeneous Weyl semimetals are studied elsewhere [5,7–
11]. It is straightforward to introduce the spatial dependence
by introducing small inhomogeneity, which would simply
give spatial dependence in αi(x) at the lowest-order approx-
imation. More precise analyses on the spatial dependence is
beyond the scope of this paper.

The identification of the Weyl semimetals with the black
hole can be extended to topological “insulators.” It is known
that regarding one of the momenta of Weyl semimetals to be a
nonzero constant reduces the system to a topological insulator.
The type-I Weyl semimetal with pi = m is a two-dimensional
topological insulator of class A, and we can consider the same
dimensional reduction from the type-II Weyl semimetal to a
topological “insulator,” which is not insulating due to the tilted
light cone. Our analysis is valid even with putting p2 = m. So,
black hole validity can be checked in the same manner, with
the boundary condition parameter θ .

The important part of the analyses in this paper is the most
generic boundary conditions in the continuum limit. The idea
of the method was used [15] to find a topological charge of the
edge state, which results in the discovery of states localized at
corners [16,17] (which were recently called corner states or
hinge states in higher-order topological insulators [18,19]). It
would be interesting to explore the edge-mode contributions
to the black hole interpretation of various deformed topolog-
ical insulators, as well as type-III and -IV Weyl semimetals
[20]. With these deformations of the Weyl semimetal Hamil-
tonians, D-brane interpretation of the bands [21] may not
persist, that is also an interesting issue.

Although the propagation of the bulk modes mimics that in
a black hole geometry, whether the Hawking radiation ema-
nating from the event horizon (which is the boundary between
type-I and -II semimetals [22]) exists or not is rather a subtle
question, as the Hawking radiation originates in the change of
the quantum vacua in black hole formation. It is challenging to
construct a theoretical framework of Weyl semimetals accom-
panying a Hawking temperature and possible experimental
set-ups.6

Introducing a surface boundary to the type-II Weyl
semimetals in turn means slicing a black hole, which sounds
impossible in general relativity. Black holes in brane world
scenario would be the closest example in particle physics,
and we hope our condensed-matter analyses may inspire also
particle physics in the future.
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