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We show that the entire x-ray Thomson scattering (XRTS) spectrum, including both elastic and inelastic
features, can be calculated from first principles in the framework of quantum perturbation theories. Our derivation
shows that the elastic scattering feature in a warm dense regime is different from that of condensed matter at low
temperature. In addition to the contribution from spatial fluctuations of electronic density, which dominates
elastic scattering at low temperature, there is an extra contribution from partially occupied inner-shell states,
which is important in the warm dense regime. Calculated XRTS of isochorically heated beryllium agrees well
with previous experimental measurements, which may give this method a further edge on interpreting XRTS
spectra compared to empirical modeling methods.

DOI: 10.1103/PhysRevB.102.195127

I. INTRODUCTION

Warm dense matter (WDM) has attracted much attention
recently in the fields of inertial confinement fusion [1–5],
planetary physics [6], and laboratory astrophysics [7]. In or-
der to explore the unique physical properties of WDM, a
series of diagnostic techniques, e.g., the streaked optical py-
rometers [8,9], the x-ray absorption spectra [10–13], and, in
parallel, the x-ray Thomson scattering (XRTS) methods [14],
have been developed to detect temperature, density, and ion-
ization degree of WDM in laboratory. However, the challenge
to a highly accurate diagnosis of these parameters not only
lies in the experimental techniques, but also in the theoretical
modeling which is greatly limited by the inexplicitly re-
vealed physical properties in a warm dense regime. The XRTS
method is a typical example, whose parameter-prediction ca-
pability essentially relies on the spectrum matching between
experimental measurement and theoretical prediction.

Due to the completion of advanced facilities such as x-
ray free-electron lasers [15] and high-power lasers [16–18],
the experimental conditions of XRTS are much improved.
In 2009, it was first successfully used by Lee et al. for the
diagnostics in shock compression experiments [19]. In 2015,
with the x-ray free-electron lasers (XFELs) as probes, the
spectral resolution was much improved [20]. However, the
associated theoretical description is still under development.
The most commonly used model of XRTS was proposed by
Chihara for the first time [21,22] and then straightforwardly
applied to scattering experiments [23,24]. Its spectrum in-
tensity is directly related to the system’s electronic dynamic
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structure factor (DSF) [25,26]. The Chihara decomposition
has its advantages in perspicuous physical explanations of the
scattering mechanism and small computational costs as well,
but there are still issues that are not well resolved even with
additional corrections [14,27–31], e.g., the division of bound
and free electrons, the inhomogeneous background of ionic
potential, etc.

Recently, several works based on first-principles methods
have been reported to address different aspects of XRTS
modeling, concerning the ionic feature [32–34], the free-free
contribution [35–38], and the bound-free transitions [39].
Particularly, the time-dependent density functional theory
(TDDFT) was found to be very useful to predict the in-
elastic feature of XRTS spectra, which was first introduced
by Baczewski et al. in a real-time form [39] and then fol-
lowed by the implementation of a perturbation formula by Mo
et al. [35]. Compared with empirical methods, first-principles
approaches avoid the unnecessary division of free and bound
electrons, and include the majority of electron-electron and
electron-ion interactions in an inhomogeneous environment.
However, one may have noticed that current theoretical
models are actually based on formulas of condensed-matter
physics at low temperature. Whether they can be directly used
to describe the XRTS of WDM remains an open question. As
we shall illustrate below, some of the interesting features of
warm dense states may not have been revealed in previous
first-principles investigations [35,37,39–41].

In this work, we show that in the framework of quantum
perturbation theories, the entire XRTS spectra, including both
elastic and inelastic features, can be calculated from first prin-
ciples. Our formula shows that the elastic scattering feature
in a warm dense regime is different from that at low tem-
perature, where the condensed-matter physics formula holds.
In addition to the contribution from spatial fluctuations of
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electronic density, which dominates elastic scatterings at low
temperature, there is an extra contribution from partially occu-
pied inner-shell states, which is important in the warm dense
regime. The XRTS spectra of isochorically heated beryllium
(Be) thus calculated display remarkable agreement with ex-
perimental measurements [24], which may give this method a
further edge in interpreting XRTS spectra compared to empir-
ical modeling methods.

The rest of the article is organized as follows. All necessary
formulas are derived in Sec. II. In Sec. III, we concisely
describe the numerical details for carrying out the calculation.
Numerical results of elastic and inelastic features together
with a comparison with experimentally measured XRTS spec-
tra of isochorically heated Be are presented in Sec. IV.
Section V concludes the work with a short summary.

II. THEORETICAL FORMULAS

Scattering of photons by a many-electron system is usually
described by the famous Kramers-Heisenberg formula, which
we find is an appropriate starting point to derive the theoret-
ical formulas of XRTS applied to WDM. Here, we focus on
the derivation of the elastic feature of XRTS and the single-
particle representation of the formulas used in conjugation
with the first-principles molecular dynamics (FPMD) method.
The atomic units together with kB = 1 will be used in the
formulas hereinafter.

A. Kramers-Heisenberg formula

We start from a nonrelativistic Hamiltonian,

Ĥ =
∑

j

1

2
[P j − A(r j, t )]2 +

∑
j< j′

V (|r j − r′
j |)

+
∑

j

φ(r j ) +
∑
kλ

ωk

[
â†

kλ
âkλ + 1

2

]
, (1)

consisting of electrons and quantized x-ray photons. Here,
r j is the position of the jth electron, P j = −i∂/∂r j is the
corresponding momentum operator of the electron, V is the
interaction between electrons, and φ is the Coulomb poten-
tial provided by ions in the system, which move much more
slowly than electrons and are therefore treated as static during
the scattering. X-ray photons are represented by their wave
vector k, polarization λ, and frequency ωk, together with the
creation and annihilation operators â†

kλ
and âkλ. A(r, t ) is the

vector potential of x-ray photons, which can be expressed as

a linear superposition of plane waves as

A(r, t ) =
∑
kλ

√
2π

V ωk
{εkλâkλ exp[i(k · r − ωkt )]

+ ε∗
kλâ†

kλ
exp[−i(k · r − ωkt )]}, (2)

where V is the normalization volume, and εkλ is the complex
polarization unit vector including a phase factor.

The interaction Ĥ′(t ) between x-ray photons and electrons
can be divided into

Ĥ′(t ) = Ĥ′
1(t ) + Ĥ′

2(t ), (3)

with

Ĥ′
1(t ) =

∑
j

1

2
|A(r j, t )|2,

Ĥ′
2(t ) = −

∑
j

1

2
[P j · A(r j, t ) + A(r j, t ) · P j]. (4)

We note that direct scattering of x-ray photons by ions is
neglected in the Hamiltonian since the scattering cross section
is inversely proportional to the square of the mass of scattering
particles, which makes the scattering amplitude of ions six
orders smaller than that of electrons [25]. Electronic spins,
which give rise to magnetic scatterings, are not considered
either because their effects are blurred by thermal fluctuations
under warm dense conditions.

In perturbation treatments, the initial state |I〉 and the final
state |F 〉 may be formally expressed as direct products of a
photonic state and an electronic state as |I〉 = | p̃1〉 ⊗ |α〉 and
|F 〉 = | p̃2〉 ⊗ |β〉, where | p̃1〉 and | p̃2〉 are many-body x-ray
photonic states, while |α〉 and |β〉 are many-body electronic
states. Here, |I〉 and |F 〉 are considered as exact states of the
total Hamiltonian Ĥ in Eq. (1). |α〉 and |β〉 are therefore, in
general, different from the energy states of the nonperturbed
electronic system without the incidence of x-ray photons [42].

Transition rate wI→F , accurate to the second order of
A(r, t ), can then be derived from Fermi’s golden rule as

wI→F = 2π

∣∣∣∣∣〈F |Ĥ′
1|I〉+

∑
N

〈F |Ĥ′
2|N〉〈N |Ĥ′

2|I〉
EI − EN

∣∣∣∣∣
2

δ(EI − EF ),

(5)

with |N〉 an intermediate state. For a given transition from the
(ω1, k1, ε1) state to the (ω2, k2, ε2) state, the transition rate can
be further expanded as

wI→F = 8π3N1(N2 + 1)

V 2ω1ω2

∣∣∣∣∣ε1 · ε∗
2〈β|

∑
j

ei(k1−k2 )·r j |α〉 +
∑

γ

∑
j j′

[ 〈β|e−ik2·r j ε∗
2 · P j |γ〉〈γ|eik1·r j′ ε1 · P j′ |α〉
Eα − Eγ + ω1

+ 〈β|eik1·r j ε1 · P j |γ〉〈γ|e−ik2·r j′ ε∗
2 · P j′ |α〉

Eα − Eγ − ω2

]∣∣∣∣∣
2

δ(Eα − Eβ + ω1 − ω2), (6)

where N1 and N2 are photon numbers associated with the
photon transition, and |γ〉 is an intermediate many-body elec-

tronic state similar to |α〉 and |β〉. The Kramers-Heisenberg
formula for the differential scattering cross section is then
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given by(
d2σ

d	2dω2

)
I→F

= wI→F × V ω2
2

8π3c3
×

(N1c

V

)−1

, (7)

where c is the light speed, (ω2
2V )/(8π3c3) is the density of the

final photon state, and N1c/V is the incident flux.

B. Decomposition of dynamic structure factor

For the scattering of x-ray photons, the Kramers-
Heisenberg formula given by Eq. (7) can be much simplified.
First, the energies of x-ray photons are of the order of several-
thousand electron volts, so that the second term inside the
modulus in Eq. (6) can be neglected if one considers the
Raman-like process as a less significant feature. Second, un-
der x-ray scattering conditions, ω1 ≈ ω2, and N2 = 0 since
there are no scattered photons before the scattering happens.
With all these simplifications, the total scattering cross section
can be written in the form

d2σ

d	2dω2
= σThS(q, ω), (8)

where σTh is the classical Thomson scattering cross section
defined as σTh ≡ |ε1 · ε∗

2|2/c4, ω = ω1 − ω2 is the energy dif-
ference between the incident and scattered x-ray photons,
q = k1 − k2 is the momentum difference, and S(q, ω) is the
electronic DSF. It is obtained from the average of the cross
section for all pairs of transitions as

S(q, ω) =
〈∑

αβ

gα

∣∣∣∣∣〈β|
∑

j

eiq·r j |α〉
∣∣∣∣∣
2

δ(Eα − Eβ + ω)

〉
. (9)

The average process in Eq. (9) is explicitly split into two
steps with the help of the Born-Oppenheimer approximation.
The first step is the average of all initial and final many-body
electronic eigenstates |α〉 and |β〉 for a given ionic configura-
tion. The initial state |α〉 has a weight gα = Z−1 exp(−Eα/T )
in the average, if electrons are assumed in equilibrium with
each other at temperature T . Z is the partition function of the
electrons. The second step is the average of all possible ionic
configurations, represented by the outermost 〈·〉 in Eq. (9).
Note that electrons are not required in equilibrium with ions,
in general, for the application of Eq. (9), so that it can also
be applied to nonequilibrium situations, e.g., x-ray scatterings
in warm dense metal isochorically heated by femtosecond
free-electron lasers [15], where the motion of ions is neglected
and electrons are considered heated to a temperature of several
electron volts [43–45]. This process is subtly different from
the treatment of Vorberger and Chapman [46] in the coupling
between ions and electrons.

The many-body electronic states |α〉 and |β〉 can be further
approximated using noninteracting (Hartree-like) electron
approximation [47], where electrons are viewed as noninter-
acting particles in an effective potential. It yields a complete
set of orthonormal single-particle energy eigenstates, denoted
as |n〉 hereinafter, and the energy is εn accordingly. Using this
set of single-particle states, the operator in Eq. (9) can be
written in the form of creation operator ĉ†

n and annihilation

operator ĉn as∑
j

e−iq·r j =
∑
nm

〈n|e−iq·r|m〉ĉ†
nĉm, (10)

where

〈n|e−iq·r|m〉 =
∫

dre−iq·rϕ∗
n (r)ϕm(r), (11)

r is the coordinates of the particle, and ϕm(r) is the mth
single-particle wave function. The S(q, ω) of electrons is now
expressed as

S(q, ω) =
〈∑

αβ

∑
mnk j

gα〈α|ĉ†
nĉm|β〉〈β|ĉ†

j ĉk|α〉

× 〈n|e−iq·r|m〉〈 j|eiq·r|k〉δ(Eα − Eβ + ω)

〉
. (12)

The summation in Eq. (12) with respect to m and n can
be explicitly separated into a diagonal part S1(q, ω) and a
nondiagonal part S2(q, ω) according to whether m equals n.
For the diagonal part where m = n, ĉ†

nĉn is just the number
operator N̂n of the nth single-particle state, which is nonzero
only if |α〉 = |β〉. S1(q, ω) is then reduced to

S1(q, ω) =
〈∑

nk

∑
α

gα〈α|N̂n|α〉〈α|N̂k|α〉

× 〈n|e−iq·r|n〉〈k|eiq·r|k〉
〉
δ(ω). (13)

It can further be divided into two parts according to whether
or not n equals k. For the part where n = k, one has

S′
1(q, ω) =

〈∑
n

fn|〈n|e−iq·r|n〉|2
〉
δ(ω), (14)

where fn = 1/exp[(εn − μ)/T ] + 1, and μ is the chemical
potential of the electron system. Equation (14) can be derived
if one notices that 〈α|N̂n|α〉2 = 〈α|N̂n|α〉, which equals one
if the nth single-particle state is occupied, and zero other-
wise. Averaging all possible many-body states |α〉 then gives∑

α gα〈α|N̂n|α〉 = fn.
The average

∑
α gα〈α|N̂n|α〉〈α|N̂k|α〉 for n 
= k is just fn fk ,

since the occupation of the nth and the kth single-particle
states in each |α〉 is independent. The n 
= k part in Eq. (13) is
then

S′′
1 (q, ω) =

〈 ∑
n 
=k

fn fk〈n|e−iq·r|n〉〈k|eiq·r|k〉
〉
δ(ω). (15)

It can be further rewritten as

S′′
1 (q, ω) =

〈
|ρ(q)|2 −

∑
n

f 2
n |〈n|e−iq·r|n〉|2

〉
δ(ω), (16)

where ρ(q) = ∑
n fn〈n|e−iq·r|n〉 = ∫

dre−iq·rρ(r), which is
just the Fourier transformation of the total electronic charge
density. Combining the two parts S′

1(q, ω) and S′′
1 (q, ω), one

arrives at an expression of S1(q, ω) as

S1(q, ω) = Sa
1 (q, ω) + Sb

1(q, ω), (17)
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with

Sa
1 (q, ω) = 〈|ρ(q)|2〉δ(ω), (18)

and

Sb
1(q, ω) =

〈 ∑
n

fn(1 − fn)|〈n|e−iq·r|n〉|2
〉
δ(ω). (19)

Now, we consider the nondiagonal part S2(q, ω), where
n 
= m. The nonzero terms have to satisfy the following two
conditions. First, n = k and m = j. Second, |α〉 = ĉ†

nĉm|β〉 =
ĉ†

k ĉ j |β〉, which further leads to Eβ − Eα = εn − εm or Eβ −
Eα = εk − ε j . Under these conditions, S2(q, ω) becomes

S2(q, ω) =
〈∑

n 
=m

∑
α

gα〈α|ĉ†
nĉmĉ†

mĉn|α〉

× 〈n|e−iq·r|m〉〈m|eiq·r|n〉δ(εn − εm + ω)

〉
. (20)

Since ĉ†
nĉmĉ†

mĉn = N̂n(1 − N̂m), the average∑
α gα〈α|ĉ†

nĉmĉ†
mĉn|α〉 gives a factor of fn(1 − fm). The

nondiagonal part reduces to

S2(q, ω) =
〈 ∑

n 
=m

fn(1 − fm)|〈n|e−iq·r|m〉|2δ(εn − εm + ω)

〉
.

(21)

C. S1(q, ω): Elastic scattering feature

In order to understand how S1(q, ω) varies with tem-
perature, we first examine the dependency of ρ(q) =∑

n fn〈n|e−iq·r|n〉 on the shape of single-particle wave func-
tion |n〉. Let us consider two extreme conditions: (1) The
inner core electrons, of which the spatial extension is much
smaller than the wavelength of the x ray. So, its probability
density can be approximately viewed as a δ function. Since
〈n|e−iq·r|n〉 is just the Fourier transformation of the probability
density, its value is approximately a constant close to one.
(2) The excited electrons of extremely high energy, of which
the wave function is approximately a plane wave [48,49]. The
value of 〈n|e−iq·r|n〉 is approximately zero for q 
= 0, suggest-
ing that highly excited electrons almost do not contribute to
Sa

1 (q, ω). Most of the signals of elastic scattering come from
more localized electrons of low energies. With the increase
of temperature, more and more electrons are excited to high-
energy states, which are less localized. So, the elastic signal
represented by Sa

1 (q, ω) will, in general, attenuate.
We then consider the average 〈·〉 of ionic configura-

tions. There are two different application scenarios. One is
the isochoric heating scenario, where the motion of ions
is ignored as the pulse width of the incident x ray of the
free-electron laser is of the order of tens of femtoseconds.
The average of ionic configurations is then taken away.
In particular, ρ(r) can always be expanded into a Fourier
series as ρ(r) = ∑

G ρG exp(ir · G)/	 for crystalline struc-
tures, where G is the inverse lattice vector and ρG is the
Fourier series calculated from ρG = ∫

	
drρ(r) exp(−ir · G).

Here, 	 is the volume of a primitive cell. So, if there are
Ncell primitive cells in the system, ρ(q) = ∫

dre−iq·rρ(r) gives
|ρ(q)|2 = N2

cell

∑
G |ρG|2 δ(q − G), which is the diffraction

peak observed in the x-ray scattering experiments using a
free-electron laser.

In a melted system where ionic configuration is random,
〈|ρ(q)|2〉 is usually denoted as NiW (q), with Ni the number
of ions in the system. Sa

1 (q, ω) can be further written into the
form

Sa
1 (q, ω) = NiW (q)δ(ω) = Ni|N (q)|2Sii(q)δ(ω) (22)

formally, where Sii(q) is the static ionic structure factor
and N (q) is the electronic form factor. When the charge
distribution surrounding each ion is localized and nearly
the same, Eq. (22) can be derived as follows. Suppose the
charge distribution near an ion located at R is f (r − R),
which leads to ρ(r) = ∑

R f (r − R). It follows immediately
that ρ(q) = f (q)

∑
R e−iq·R, where f (q) is the Fourier trans-

formation of f (r). W (q) can then be obtained as W (q) =
| f (q)|2〈∑RR′ e−iq·(R−R′ )〉/Ni, where 〈∑RR′ e−iq·(R−R′ )〉/Ni is
just the definition of Sii(q), and f (q) = N (q) is the form factor
which one is familiar with in the x-ray diffraction experiments
of nonmetallic liquids or amorphous materials. However, in
WDM, N (q) cannot be determined a priori without the infor-
mation of Sii(q), as the contribution of nonlocal states cannot
be neglected.

The second part of S1(q, ω), i.e., Sb
1(q, ω) in Eq. (19),

has a minor contribution at very low temperature because
of the factor fn(1 − fn). Only those states near the chemi-
cal potential have significant contributions to this term and
can thus be neglected safely at low temperature. However,
according to the properties of 〈n|e−iq·r|n〉, this part has ob-
servable contributions at relatively high temperature when a
number of core electrons are partially excited. Its contribution
to elastic scattering increases with the atomic number of the
component elements of the system. We note that Sb

1(q, ω) is
a characteristic feature of WDM since its contribution also
decreases at very high temperature when most of the core
states are unoccupied.

In practice, the S1(q, ω) is calculated using the single-
particle states of the unperturbed electronic system, i.e., the
electronic system without incident x-ray photons, as a further
approximation. It can be easily shown that this approximation
only neglects higher-order corrections to S1(q, ω) and still has
a satisfactory accuracy.

So, from a theoretical point of view, we would like to stress
that the ionic feature Sii(q) can only be accurately determined
from Eq. (22) by measuring W (q) in experiments under the
following conditions: (1) The measured system is at relatively
low temperature so that Sb

1(q, ω) can be safely neglected. (2)
The electron distribution f (r) is localized around each ion
so that N (q) can be determined a priori either theoretically
or experimentally. Recently, there have been efforts to deter-
mine Sii(q) experimentally for warm dense plasmas or hot
dense plasmas [50,51]. However, the localization assumption
of electron distribution no longer holds in these cases. At
least part of the electrons are in spatially extended excited
states, and the portion of nonlocal electrons varies with the
temperature and density of the system. N (q) and Sii(q) are
thus correlated to each other. There is no way to accurately
determine N (q) without the information of Sii(q), or vice
versa, given Sb

1(q, ω) is already known somehow.
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The decomposition of W (q) in Eq. (22) is instead useful
in the numerical calculations. As we shall discuss in the fol-
lowing section, a direct calculation of W (q) from 〈|ρ(q)|2〉
converges quite slowly, while N (q) and Sii(q) can be calcu-
lated much faster separately.

D. S2(q, ω): Inelastic scattering feature

As has been shown by Schülke [25] and others through
the fluctuation-dissipation theorem [42], S2(q, ω) is propor-
tional to the imaginary part of the complex response function
χ (q, q′, ω), i.e.,

S2(q, ω) = −V

π

1

1 − e−ω/T
〈χ ′′(q, q′, ω)|q′=q〉, (23)

where χ (q, q′, ω) is

χ (q, q′, ω) = 1

V

∑
α 
=β

(gα − gβ )

× 〈α| ∑ j e−iq·r j |β〉〈β| ∑k eiq′ ·rk |α〉
Eα − Eβ + ω + iη

, (24)

χ ′′(q, q′, ω) is its imaginary part, and η is a positive infinites-
imal number. As a result, the difficulty in calculating S2(q, ω)
moves to χ (q, q′, ω), which can be obtained through the time-
dependent density functional theory (TDDFT) method.

The screening effect of dense materials is dealt with by a
Dyson-like equation [52],

χ (q, q′, ω) = χ0(q, q′, ω)

+
∑
q′′q′′′

χ0(q, q′′, ω)K (q′′, q′′′, ω)χ (q′′′, q′, ω),

(25)

with χ0 is the bare density response function and K is the
many-body interaction kernel. Note that Eq. (25) is not the
most general form. We actually assume a linear response rela-
tion with respect to the frequency variable [53]. The advantage
of this transformation is that χ0(q, q′, ω) can be calculated
through the states of the unperturbed electronic system, which
mitigates the difficulty in determining the exact states |α〉 and
|β〉 when one calculates χ (q, q′, ω) directly from Eq. (24). Us-
ing the single-particle states |m′〉 and |n′〉 of the unperturbed
electronic system, χ0(q, q′, ω) can be expressed as

χ0(q, q′, ω) = 1

V

∑
n′ 
=m′

( fn′ − fm′ )
〈n′|e−iq·r|m′〉〈m′|eiq′ ·r|n′〉

ω − (εm′ − εn′ ) + iη
.

(26)

K (q, q′, ω) can be further split into Coulomb contribution
vc = 4π/|q|2 and vertex contribution fxc(q, q′, ω)
as K (q, q′, ω) = vc(q)δ(q − q′) + fxc(q, q′, ω). When
fxc(q, q′, ω) is set to be 0, χ (q, q′, ω) is then calculated
with the random-phase approximation. One can also take the
exchange-correlation correction to the electronic system into
consideration, and one of the simplest choices is the adiabatic
local density approximation [54] to fxc(q, q′, ω), where fxc is
considered to not depend on ω and the exchange-correlation
correction only relies on the local electronic density.

III. COMPUTATIONAL DETAILS

The scattering feature of warm dense Be is used as an
illustration for the method. The single-particle states of the un-
perturbed electronic system used in the calculation of DSF are
provided using the density functional theory (DFT) method,
and the finite-temperature FPMD is employed to generate
ionic configurations for the ionic average at temperature lower
than 9 eV. For higher temperatures, the extended FPMD
(ext-FPMD) method [48] is used instead to deal with the
difficulty of too many electronic states demanded by the tra-
ditional FPMD method at high temperature. The molecular
dynamics and DFT calculations are carried out using a revised
QUANTUM ESPRESSO package [55] with the ext-FPMD method
implemented.

In the FPMD or ext-FPMD simulations, 32 Be ions are
put into a cubic simulation box with ρ = 1.85 g/cm3. The
projector augmented-wave (PAW) method [56] is employed
to represent the ion-electron interaction with a plane-wave
cutoff energy of 40 Ry and a core cutoff radius rc= 1.4
Bohr. All four electrons (1s22s2) are treated as a valence,
and the Perdew-Burke-Ernzerhof (PBE) [57,58] version of the
exchange-correlation functional is used. 480 electronic bands
are explicitly included in the calculation, with the top 128 used
to determine the effective potential energy, a parameter used
in the ext-FPMD method. The Brillouin zone is sampled with
the � point, and the calculation is carried out in a canonical
(NVT) ensemble with ionic and electronic temperature kept
the same. The time step of the ionic motion ranges from 0.15
to 0.7 fs depending on the temperature of the system. After
the system reaches the equilibrium, ∼30 000 configurations
are saved for further calculations.

Instead of being directly calculated from Eq. (18), Sa
1 (q, ω)

and W (q) are calculated from Eq. (22) through Sii(q) and
N (q), which can be calculated separately with much fewer
computational costs. Sii(q) is calculated from the Fourier
transformation of the ionic pair distribution g(r) as

Sii(q) = 1 + ni

∫
[g(r) − 1] exp(iq · r)dr, (27)

where ni is the average number density of ions, and g(r)
can be directly extracted from ionic configurations obtained
in the molecular dynamics simulation. Following Plagemann
et al. [33], N (q) is determined through the ionic average as

N (q) =
〈

ρ(q)

ρ i(q)

〉
, (28)

where ρ(q) and ρ i(q) are spatial Fourier transformations of
the electronic and ionic densities separately. With this sepa-
ration, one can see that the accuracy of Sa

1 (q, ω) and W (q) at
low q is controlled by Sii(q), which has to be converged with a
large ensemble, while the accuracy at high q is determined by
N (q), which needs a superhard pseudopotential to accurately
compute the electronic density of core states. Sii(q) can then
be calculated from the FPMD or ext-FPMD method with a
relatively soft pseudopotential, but with a large ensemble of
∼30 000 configurations. From these configurations, one can
pick much fewer snapshots, e.g., 1000 as we use in the calcu-
lation, to recalculate ρ(q) with a superhard pseudopotential.
These calculations are performed using a norm-conserving
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FIG. 1. Elastic features of isochorically heated Be, including (a) ionic static structure factor Sii(q), (b) total electronic form factor N (q),
(c) W (q), and (d) Sb

1 (q) at T = 2.5, 12, 18, 25, and 53 eV. Numerical results of (a) Sii(q), (b) N (q), and (c) W (q) at T = 12 eV calculated by
Plagemann et al. [33] are also presented as a comparison.

pseudopotential [59], with a cutoff energy of 500 Ry and
rc = 0.4 Bohr. Sb

1(q), the static part of Sb
1(q, ω), is also cal-

culated in the same manner via Eq. (19). In the framework of
the ext-FPMD method [48], high-energy electrons are treated
as homogeneous plane waves, which have no contributions to
N (q) and Sb

1(q) except at q = 0. Moreover, all directions of
q are averaged, and Sii, N , W , and Sb

1 are thus presented as
functions of q = |q|.

χ (q, ω) and S2(q, ω) are calculated using the YAMBO

code [60,61]. The calculations of χ (q, ω) and S2(q, ω) are
carried out at the TDDFT level with the Kohn-Sham states
as the single-particle states in Eq. (26), which are recalculated
with the ionic configurations generated in previous FPMD or
ext-FPMD simulations. The effective ion-electron interaction
is represented by a normal-conserving pseudopotential [59]
with four valence electrons and an energy cutoff of 500 Ry to
ensure the accuracy, and 1500 energy bands are used to ensure
the convergence of the wave functions. A 2 × 2 × 2 shifted
k-point mesh is used to resolve the Brillouin zone.

The adiabatic local density approximation of fxc is adopted
in the calculation of χ (q, ω) following Refs. [35,62]. Finite-
temperature effects on exchange-correlation interactions and
fxc [63,64] are not considered due to its minor effects around
solid density [35,48,65]. The transferred momentum q is set
to be 4.27 Å−1, corresponding to a scattering angle of 125◦ at
x-ray energy 4750 eV used in the experiment [24]. A relatively
small η = 0.5 eV is adopted in Eq. (26) and the resolution
of ω is 0.5 eV. The final spectra of S2(q, ω) presented are
the average results of eight snapshots of the ionic configu-
rations uniformly selected from the saved equilibrium ionic
trajectories.

IV. RESULTS AND DISCUSSIONS

A. Elastic scattering features

With the FPMD and ext-FPMD methods, one can now cal-
culate elastic features of XRTS at a much higher temperature
than before. Figure 1 displays calculated Sii(q), N (q), W (q),
and Sb

1(q) of warm dense Be at temperatures reported in the
XRTS experiments [24,66,67]. Figure 1(a) shows that there
are no significant differences among Sii(q)’s at T > 10 eV,
which is a typical feature of a gaseous state. In contrast, Sii(q)
for T = 2.5 eV displays the typical structure of liquids with
a peak at q = 4 Å−1. These results agree well with previous
works [33,34,38,68].

N (q) is a parameter closely related to x-ray diffraction
experiments [69]. Figure 1(b) shows that at low temperatures,
the shape of N (q) is not sensitive to the variation of tempera-
ture, especially at large-q part, where N (q)’s almost coincide
with each other. At a higher temperature (T > 25 eV), how-
ever, temperature becomes a determinant factor. The value of
N (q) becomes much smaller as a result of thermal excitations
of inner-shell electrons. This temperature effect was not seri-
ously considered before in the theoretical modeling of XRTS
partly because the XRTS experiments were conducted in a
relatively low-temperature regime. With the advance of ex-
perimental techniques, especially the increase of laser power,
this effect becomes increasingly important.

It is also noticed that our calculated N (q) at T = 12 eV in
Fig. 1(b) displays significant differences from the one calcu-
lated by Plagemann et al. [33] (displayed as a solid curve with
hollow circles in the figure) at large q, which further leads to
a difference in W (q) in Fig. 1(c). We find that the differences
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come from different treatments of the core electrons. In previ-
ous calculations [33], the charge density of the core electrons
was directly provided by the PAW pseudopotential, which
sometimes is different from the real charge density of the core
electrons [70]. Instead, we use a superhard norm-conserving
pseudopotential, which reproduces the charge density of the
core electrons well.

The combination of Sii(q) and N (q) gives the final result
of W (q). As shown in Fig. 1(c), W (q) itself displays some
ionic features only at very low temperatures. For example,
there is a bump around q = 4 Å−1 for T = 2.5 eV, which
corresponds to the peak of Sii(q) in Fig. 1(a), as a typical
feature of liquids. With the increase of ionic temperature, the
ionic feature disappears as a result of the structureless Sii(q)
of the gaseous state. In the figure, the W (q)’s of T = 12 and
18 eV are typical cases for this condition. It is also displayed
that excitations of the core electrons greatly reduce W (q) at
high temperature, which means that it will be more difficult to
detect ionic features when electrons are heated to a very high
temperature.

Contributions of Sb
1(q) are displayed in Fig. 1(d). Note that

to compare with W (q), Sb
1(q) is divided by the number of ions

Ni. At low temperatures (T < 15 eV), the value of Sb
1(q) is less

than 3% of W (q), as a result of fairly small contributions of
fn(1 − fn) in Eq. (19). With a further increase of temperature,
Sb

1(q) rises rapidly since a number of inner-shell electrons are
thermally excited to nearly free-moving high-energy states.
Figure 1(d) shows that at T = 53 eV, the value of Sb

1(q) can
reach about 1/3 of W (q), which suggests that W (q) itself is
not enough for the description of elastic scattering features.
It should be noted that for hot dense plasmas where inner-
shell states are almost empty, the value of Sb

1(q) will decrease
according to Eq. (19). However, its relative contribution to
W (q) will maintain on almost the same order since W (q) also
decreases with temperature increasing.

B. Comparison with experimental measurements

Combining elastic and inelastic features together, one can
thus obtain the entire S(q, ω). A calculated S(q, ω) of iso-
chorically heated Be is displayed in Fig. 2(a), together with
the experimental XRTS spectrum at q = 4.27 Å−1. The cal-
culation is performed at T = 25 eV with all four electrons.
The temperature agrees well with the radiation-hydrodynamic
prediction of Glenzer et al. [24] and gives the best fit to the
measured spectrum. The instrument function is represented
by Voigt-type (Gaussian-Lorentzian mixed) peaks [71] with
a total width of ∼80 eV, which convolutes with the S(q, ω)
to get the final spectrum. Note that there are two peaks in the
light source. Our calculations show that S1(q)/Ni is 2.58. The
overall agreement of the spectrum with experimental mea-
surements is impressive, as shown in Fig. 2(a), considering
there are very few movable parameters in the calculation. The
temperature dependency of the XRTS spectra is illustrated by
the calculation of T = 53 eV, where the temperature is taken
from a previous calculation based on Chihara’s model [24].
Deviations from the T = 25 eV spectrum (and also the exper-
imental measurement) are observed on the shoulders of the
main peak, where inelastic scattering features are located. Ad-
ditionally, our calculations show that calculated XRTS curves

un
its

FIG. 2. Calculated S(q, ω) of Be at transferred momentum q =
4.27 Å−1 compared with measured spectra [24]. (a) S(q, ω) calcu-
lated at T = 25 and 53 eV. The best fit to the measured spectrum of
heated Be is at T = 25 eV. (b) The calculated S(q, ω) for crystalline
Be at room temperature and T = 2.5 eV. Both fit well with the
experimental results of cold Be. The elastic contributions convolved
with instrument functions are also displayed as orange dashed lines.

having a temperature difference of less than 5 eV will be
within the fluctuation range of the measured spectra, and thus
hardly distinguished in warm dense experiments.

Also displayed in Fig. 2(b) are XRTS spectra of cold Be
calculated using the same parameters as an example of our
method. It shows that the calculation at T = 300 K agrees
well with the experimental data taken from Glenzer et al. [24],
which is as expected. In addition, the calculated XRTS spec-
trum at T = 2.5 eV almost coincides with the one at T =
300 K, which gives a further estimate of how sensitive the
calculated XRTS spectra are under similar thermal conditions
in response to the variation of temperature.

V. SUMMARY

In summary, we propose a scheme for predicting the
entire XRTS spectrum of WDM based on first-principles
methods. A quantum description of XRTS with decomposed
expressions of electronic DSF for inhomogeneous systems
is presented. The DFT-based FPMD (or ext-FPMD) and the
perturbation approach of TDDFT are introduced to address
the elastic and inelastic parts separately. This method is then
applied to XRTS experiments of isochorically heated Be. Re-
markable agreements between calculations and experimental
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measurements are observed, which implies that this method
may bring substantial improvements to the XRTS diagnostics
over empirical modeling methods in the future.
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