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Magneto-optical conductivity of a topological nodal ring semimetal in a tilted magnetic field
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The frequency-dependent magneto-optical response of a topological nodal ring semimetal in a tilted magnetic
field is studied systematically. Because of its specific low-energy band structure, we find that the magneto-optical
response is affected qualitatively by both the strength and direction of the magnetic field. In the clean limit under
the magnetic field along the ring axis, the magneto-optical response is investigated analytically, and several
meaningful features are presented. For large ring radii, we find an unusual series of peaks in the transverse
optical conductivity. As the ring axis tilts away from the magnetic field, the optical transitions are broken by the
vertical projection of the magnetic field. For small ring radii, there is mixing of resonant peaks. The magneto-
optical conductivities are explained by optical transitions between the underlying Landau level structure. The
influence of chemical potential on the magneto-optical conductivities has been investigated correspondingly.
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I. INTRODUCTION

It is a remarkable advance in contemporary condensed-
matter physics that topological phases of matter have been
uncovered more than 80 years after the discovery of the band
theory of solids [1]. During the past decade topological ma-
terials have attracted tremendous attention both theoretically
and experimentally [1–3]. Following the extensive investiga-
tions of topological insulators with gapped bulk states, recent
attention has focused on gapless topological semimetals such
as Dirac or Weyl semimetals. In these systems there is a
one-to-one correspondence between the low-energy effective
theory of crystalline materials and the equations of high-
energy particles [4–6]. Recently, many three-dimensional
nodal semimetals whose low-energy effective behaviors have
no correspondence to the high-energy particle physics have
been predicted. As a new type of these “unconventional”
semimetals, topological nodal ring semimetals (TNRSMs)
have drawn much attention [7–12]. In TNRSMs, the conduc-
tion and valence bands cross at a closed ring nonaccidentally;
that is, a crossing cannot become a gapped anticrossing by
non-symmetry-breaking perturbations. It is found that nodal
rings are protected by inversion and time reversal symme-
tries [9,12,13], by mirror reflection symmetry [9,12,14,15],
and by nonsymmorphic symmetries [9,10,12–14].

The nodal ring band structure was proposed theoretically
in the investigation of Berry’s phase in metal physics [7].
The spiral nodal line band structure is formed in the bulk
when the number of atomic layers increases in topological
matter [8]. Since then, many schemes have been proposed
via first-principles calculation to realize TNRSMs [10,12].
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A number of physical properties related to their unusual
low-energy spectrum have been investigated, including mag-
netic susceptibility [16], quantum oscillations [17–22], Lan-
dau quantization [23–25], quantum anomalies [26], Lifshitz
transitions [27], and other transport properties [28–36]. Elec-
tronic correlations and superconductivity have also been
investigated [37–43]. Optical conductivities of clean and
dirty TNRSMs have been studied with both isotropic and
anisotropic models [44–46]. The effects of tilt and Dupin
cyclide Fermi surfaces on the optical conductivity have also
been explored numerically [47].

Optical conductivity can reveal important information on
the charge dynamics, which is not directly available in DC
measurements. Recent works on optical conductivity have
provided valuable information on quasicrystals as well as on
Dirac and Weyl semimetals [48–50]. The magneto-optical
conductivity of a magnetic field along the ring axis with a
chemical potential localized at the nodal loop plane displays
the signature of TNRSMs [51–53]. On the other hand, for a
magnetic field perpendicular to the ring axis, the spectrum
changes qualitatively and shows a nearly flat two-dimensional
Landau Level (LL) and dispersive LL structure [16,54].
Considering the intrinsically anisotropic nature of TNRSMs
and because magneto-optical measurements are an important
probing tool, it is expected that rich structures would be shown
in the LL spectrum and magneto-optical responses by tuning
the tilting angle between the magnetic field and the ring axis.

In this work, we investigate the magneto-optical conduc-
tivities of TNRSMs systematically. By the calculations of
both the LLs and magneto-optical responses, the qualitatively
different features and their dependence on the strength and
direction of the magnetic field relative to the ring axis are
shown. The influence of a finite chemical potential will be
determined. The characteristic features of the magneto-optical

2469-9950/2020/102(19)/195123(9) 195123-1 ©2020 American Physical Society

https://orcid.org/0000-0002-3511-189X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.195123&domain=pdf&date_stamp=2020-11-13
https://doi.org/10.1103/PhysRevB.102.195123


WENYE DUAN, ZHONGSHUI MA, AND CHAO ZHANG PHYSICAL REVIEW B 102, 195123 (2020)

conductivities are explained by the optical transitions between
the underlying LL structure.

This paper is organized as follows: in Sec. II we describe
the low-energy effective model Hamiltonian of TNRSMs and
the energy spectra. In Sec. III, the magneto-optical conductiv-
ities are calculated using the Kubo formula, and the analytical
results in the limit of the ring axis parallel to the magnetic field

are discussed. The results are generalized to any tilting angles
between the ring axis and the magnetic field numerically in
Sec. IV. A summary of the results is given in Sec. V.

II. MODEL AND SPECTRUM

We start from a continuum model Hamiltonian of the
form [11,44,46,53]

H = vF τx ⊗ (σ · p) + b sin θτz ⊗ σx + b cos θτz ⊗ σz, (1)

where vF is the Fermi velocity, p = (px, py, pz ) is the momentum equal to h̄k [k = (kx, ky,kz )], θ is the tilting angle between
the ring axis and the z axis, b/h̄vF is the radius of the nodal ring, σ = (σx, σy, σz ) is the Pauli matrices for the true spin, and
(τx, τy, τz ) are the Pauli matrices for pseudospins corresponding to, e.g., sublattices or atom orbitals. The eigenvalues of the
Hamiltonian in Eq. (1) are found as

Eλs(k) = λ

√
h̄2v2

F

(
k2

x + k2
y + k2

z

) + b2 + λs2h̄vF b
√[

k2
y + (kx cos θ + kz sin θ )2

]
, (2)

where λ = ± for the conduction and valence bands and
s = ± refers to the two branches shown in Fig. 1(b) with
kz = 0 and θ = 0. The zero-energy contour becomes a circle
when kz cos θ − kx sin θ = 0 and k2

y + (kx cos θ + kz sin θ )2 =
(b/h̄vF )2. For a finite Fermi energy μ/b = 0.2, the toroidal
Fermi surface around the nodal ring is shown in Fig. 1(a).
Figure 1(b) shows the low-energy spectrum of a TNRSM at
kz = 0 for θ = 0 without a magnetic field. For the conduction
(valence) band, the s = + (−) branch is V shaped, and the
s = − (+) branch is W shaped along the plane cut across the
axis kx = ky = 0.

In the presence of a uniform external magnetic field along
the z direction B = B̄ez, the vector potential is given in
the Landau gauge by A = (0, B̄x, 0). Correspondingly, the
Hamiltonian (1) reads

H = vF τx ⊗ (σ · π) + b sin θτz ⊗ σx + b cos θτz ⊗ σz, (3)

where π = p + eA, −e is the electron charge (e > 0) and
we have ignored the effect of external Zeeman splitting. In
general [πi, π j] = −iεi jk h̄eB̄k , with i, j, k = (x, y, z). Corre-
spondingly, we have [πx, πy] = −ih̄eB̄, [πx, πz] = [πy, πz] =
0. For convenience, the energy En,λ,s(kz ) is scaled in units
of E0 = √

2h̄vF /l0, b0 = b/E0, and kz is in units of
√

2/l0,
with l0 =

√
h̄B/eB̄ and B̄ = B[T ]. We define the raising and

FIG. 1. (a) The toroidal energy surface of a TNRSM at Fermi
energy μ/b = 0.2. (b) The schematic low-energy spectrum of a
TNRSM for kz = 0 and θ = 0 without a magnetic field. Light pink
shows the s = + branch, and light blue shows the s = − branch.

lowering operators

a = l0√
2Bh̄

(πx − iπy) (4)

and

a† = l0√
2Bh̄

(πx + iπy), (5)

with [a, a†] = 1, a|n〉 = √
n|n − 1〉, and a†|n〉 = √

n + 1
|n + 1〉. The LL wave function is 〈r|n〉 = in(2nn!

√
π l0/√

B)−1/2e−(x−kyl2
0 /B)2/(2l2

0 /B)Hn[
√

B(x − kyl2
0 /B)/l0], where Hn

is the Hermite polynomial.
The eigenfunctions for the Hamiltonian (3) are found in the

form

|n, ky, kz〉 = eikyy+ikzz√
LyLz

⎛
⎜⎜⎜⎜⎝

∑
n1

cn1 |n1 − 1〉∑
n2

cn2 |n2〉∑
n3

cn3 |n3 − 1〉∑
n4

cn4 |n4〉

⎞
⎟⎟⎟⎟⎠. (6)

The coefficients in Eq. (6) are determined by the following set
of iterative equations:

b0 cos θc1,ni + b0 sin θc2,ni−1 + kzc3,ni + c4,ni

√
Bni = Ec1,ni ,

b0 sin θc1,ni+1 − b0 cos θc2,ni + c3,ni

√
Bni − kzc4,ni = Ec2,ni ,

kzc1,ni + c2,ni

√
Bni − b0 cos θc3,ni − b0 sin θc4,ni−1 = Ec3,ni ,

c1,ni

√
Bni − kzc2,ni − b0 sin θc3,ni+1 + b0 cos θc4,ni = Ec4,ni .

(7)
In order to obtain solutions, a cutoff number nc is necessary
to truncate the above iterative equations. The cutoff nc should
be large enough that the low-energy state’s properties are not
affected by the higher LLs. In our calculations, nc = 30. We
have numerically checked that this is sufficient in the energy
range considered here. As we showed in Ref. [53], the results
for b0/

√
B < 1 and b0/

√
B > 1 are qualitatively different. We

shall analyze both cases.
Figure 2 shows the spectra with various tilting angles θ for

b0 = 0.1 and 2.5. For b0 = 0.1, which satisfies b0/
√

B < 1
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FIG. 2. The spectra in magnetic fields with different tilting an-
gles, (a)–(c) b0 = 0.1 and (d)–(f) b0 = 2.5, with B = 1.

for B = 1, it is found that the band gap between the zeroth
LLs decreases from 2b0 when the ring axis is parallel to the
magnetic field to zero when the ring axis is perpendicular to
the magnetic field. The properties are shown in Figs. 2(a)–2(c)

For b0 = 2.5, which satisfies b0/
√

B > 1 for B = 1, it is
shown that with increasing θ , the band gap decreases, and
the nearly flat LLs appear. The feature of nearly flat LLs was
found in carbon nanotubes [55,56], and similar spectra were
also shown in other studies [16,25,54]. At some specific kz,
the energy bands resemble the spectrum of graphene in kx-ky

space. That is, these LLs correspond to the LLs in graphene
in this specified nearly flat region of kz. In this way, a strong
magnetic field perpendicular to the ring axis causes an effec-
tive reduction of the dimensionality of the system.

III. MAGNETO-OPTICAL CONDUCTIVITY IN THE
CLEAN LIMIT WITH θ = 0

From the Kubo formula, the optical conductivity is
given as

σi j (ω) =
∑
α,β

−ih̄[ fF (Eα ) − fF (Eβ )]〈α| ji|β〉〈β| j j |α〉√
LxLyLz(Eα − Eβ )(Eα − Eβ + h̄ω + i�)

,

(8)
where α, β = (n, λ, s, ky, kz ), i, j = (x, y, z), fF (Eα ) =
1/[e(Eα−μ)/T + 1] is the Fermi-Dirac distribution with the
chemical potential μ at temperature T , � represents the
impurity scattering rate (in this paper, we assume the same �

for all LLs for simplicity and ignore the exchange-correlation
effect), and the current operator ji is given by ji = evF τx ⊗ σi.

Let us first look at the case where the magnetic field is
parallel to the ring axis, i.e., θ = 0. The coefficients with
ni±1 vanish, and the iterative equations of coefficients with
index ni are closed in Eq. (7). The eigenstates of Eq. (3) can
be solved analytically. The eigenvalues of H |n, λ, s, ky, kz〉 =
E |n, λ, s, ky, kz〉 are

En,λ,s(kz ) = λ

√
k2

z + (
√

nB + λsb0)2, (9)
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FIG. 3. Plots of (a) Re(σxx ) and (b) Re(σzz ) as a function of the
frequency for several different tilting angles. Curve A represents the
analytical results in Sec. III. Other parameters are μ = 0, T = 0.01,
B = 1, and � = 0.01.

where λ = ±, s = ±, and n = 0, 1, 2, . . . ; for n = 0, there is
no harm in defining s ≡ λ for convenience. Eigenstates and
magneto-optical conductivities are presented in the Appendix.
The analytical results of optical conductivities Re(σxx ) and
Re(σzz ) are shown as the gray dash-dotted lines in Figs. 3
and 4.

In the clean limit � → 0, the real part of the optical con-
ductivity is given as

Re[σi j (ω)] =
∑
α,β

π [ fF (Eα ) − fF (Eβ )]√
LxLyLzω

× 〈α| ji|β〉〈β| j j |α〉δ(h̄ω + Eα − Eβ ). (10)

Both the energy conservation constrained by the δ function
and the nonvanishing matrix element of the electric current
in the above equation determine the selection rules and the
transition amplitude. Due to the anisotropic low-energy band
structure of the TNRSM, Re(σxx ) and Re(σzz ) show different
patterns of transition peaks. As the gray dash-dotted lines
show in Figs. 3 and 4, we find that the resonant peaks for
both Re(σxx ) and Re(σzz ) correspond to the LL transitions at
kz = 0. More LLs become involved in the transition process
as frequency increases. The density of state (DOS) exhibits
an onset frequency as an additional LL becomes available and
diverges at kz = 0. In Table I, we summarize the interband LL
transitions for θ = 0, μ = 0, and T = 0 in the clean limit as
kz → 0. The LLs are labeled by L(n,λ,s) at kz = 0. For kz �= 0,
although s = ± is still a good band index, the LLs are in
mixed states of s = + and s = − due to the strong coupling
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TABLE I. The interband LL transitions for θ = 0, μ = 0, and T = 0 in the clean limit at kz → 0.

Matrix element of
the electric current Peak

b0 Transitions Peak position of the order in kz strength

Re(σxx ) 0 < b0 <
√

nB L(n/n+1,−,−s) → L(n+1/n,+,s)

√
nB + √

(n + 1)B + 2sb0 k2
z weak

L(n/n+1,−,s) → L(n+1/n,+,s)

√
nB + √

(n + 1)B 1 strong√
nB � b0 � √

(n + 1)B L(n/n+1,−,−) → L(n+1/n,+,+)

√
nB + √

(n + 1)B + 2b0 k2
z weak

L(n/n+1,−,−/+) → L(n+1/n,+,−/+)

√
nB + √

(n + 1)B 1 strong
L(n/n+1,−,+/−) → L(n+1/n,+,+/−) 2b0 − √

nB + √
(n + 1)B k2

z weak
L(n/n+1,−,+) → L(n+1/n,+,−)

√
(n + 1)B − √

nB 1 strong√
(n + 1)B < b0 L(n/n+1,−,−s) → L(n+1/n,+,s) 2b0 + s[

√
nB + √

(n + 1)B] k2
z weak

L(n,−,s) → L(n+1,+,s) 2b0 + s[
√

(n + 1)B − √
nB] k2

z weak
L(n+1,−,s) → L(n,+,s) 2b0 + s[

√
nB − √

(n + 1)B] k2
z weak

Re(σzz ) 0 < b0 L(n,−,−s) → L(n,+,s) 2|√nB + sb0| 1 strong

between isospins σ and τ . This leads to a mixing of different
isospin components in the wave functions.

For
√

nB < b0, the ordering of LLs in the s = − (+)
branch of the conduction (valence) band is reversed, and
energy decreases with increasing n. As n increases fur-
ther and

√
nB > b0, the LLs resume normal ordering. On

the other hand, optical transitions involved in Re(σxx ) are
L(n/n+1,−,s′ ) → L(n+1/n,+,s). Therefore, Re(σxx ) show different
features at kz → 0 in three regions, as shown in Table I. We
will analyze the characteristics of Re(σxx ) by considering the
relative magnitude of b0 and

√
nB.
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FIG. 4. Plots of (a) Re(σxx ) and (b) Re(σzz ) as a function of the
frequency for several different tilting angles. Curve A represents the
analytical results in Sec. III. Other parameters are the same as in
Fig. 3.

In the case with 0 < b0 <
√

nB, all the LLs are normally
ordered. For s′ = s, the allowed transitions L(n/n+1,−,s) →
L(n+1/n,+,s) have the onset frequency at ω = √

(n + 1)B +√
nB, which is independent of b0 and s. Therefore, resonant

peaks exhibit the sharp onset shown in Fig. 3(a). As summa-
rized in Table I, the matrix elements of the electric current
are zeroth order in kz in the limit kz → 0. Besides these strong
peaks, there also exist weak peaks when s′ = −s, indicated by
the gray dash-dotted line in Fig. 3(a). The optical transitions
L(n/n+1,−,−s) → L(n+1/n,+,s) at kz = 0 give the onset frequency
at ω = √

(n + 1)B + √
nB + 2sb0. However, matrix elements

of the electric current vanish in the limit kz → 0. Therefore,
the divergence of the δ function in Eq. (10) is counterbalanced
by the vanishing matrix elements of the electric current at
kz = 0. As a result, the optical conductivity exhibits weak
peaks at ω = √

(n + 1)B + √
nB + 2sb0. In Fig. 3(a), only

the first weak peak is visible, and the weak peaks at higher
frequency are not resolved due to the background noise. Our
results are consistent with previous studies [51,52]. In the case
of the Weyl semimetal, only strong peaks are present [48,49].
These additional weak peaks could be regarded as a distinctive
feature of the TNRSM.

In the case with
√

nB � b0 � √
(n + 1)B, the zeroth to

nth LLs in the s = − (+) branch of the conduction (va-
lence) band are reverse ordered, and the (n + 1)th LLs
onwards are normally ordered. There is an additional strong
peak at

√
(n + 1)B − √

nB due to the allowed transition
L(n/n+1,−,+) → L(n+1/n,+,−) with s′ = −s = − because of the
finite matrix element of the electric current at kz = 0. Dif-
ferent from the case with 0 < b0 <

√
nB, strong peaks are

allowed for s′ = s. There is no such corresponding peak in
Dirac and Weyl semimetals.

In the last case,
√

(n + 1)B < b0, all LLs involved in the
transition are reverse ordered. The conductivity exhibits only
weak resonances owing to the vanishing current matrix ele-
ment. The weak resonance region between

√
(n + 1)B − √

nB
and

√
(n + 1)B + √

nB contains information on the difference
between the TNRSMs and the Dirac/Weyl semimetals. As the
gray dash-dotted line shows in Fig. 4(a), for

√
6 < b0 <

√
7,

the strong peak is located at
√

7 − √
6 ≈ 0.2 and is the only

strong peak in this frequency range.
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As shown above, the resonant frequency obeys a ω ∝ √
B

law in both the Dirac and Weyl semimetals. The additional
strong peak at

√
(n + 1)B − √

nB and the secondary peak
in the region between

√
(n + 1)B − √

nB and
√

(n + 1)B +√
nB can offer distinctive signatures of Re(σxx ) of TNRSMs.
For Re(σzz ), the allowed transitions are L(n,−,−s) →

L(n,+,s). Re(σzz ) shows an additional strong resonance due to
the n = 0 LL transition. This resonant frequency of ω = 2b0 is
independent of the applied magnetic field. At high frequency,
double-peak resonances occur at ω = 2|√nB + sb0| due to
the transition between n > 0 LLs. This property is consistent
with the previous analysis in Ref. [53].

IV. MAGNETO-OPTICAL CONDUCTIVITY IN A TILTED
MAGNETIC FIELD

Due to the anisotropic nature of the TNRSM, the tilting
angle between the ring axis and the magnetic field could have
a significant effect on the magneto-optical response. Here we
analyze the magneto-optical conductivities of TNRSMs as a
function of the frequency and tilting angles. We find that the
features in the magneto-optical conductivity can be explained
by the underlying LL structure.

A. The effect of b0

The numerical results of magneto-optical conductivities
Re(σxx ) and Re(σzz ) as a function of the frequency ω for
several different tilting angles for μ = 0 are shown in Figs. 3
and 4. Compared to the analytical results in the clean limit
� → 0 for θ = 0, it is found that the impurity scattering
suppresses the resonant peaks. When the magnetic field is
parallel to the ring axis, i.e., θ = 0, our results are in good
agreement with the analytical results in Refs. [51–53]. As θ

increases, the LL transitions for θ = 0 in Table I are broken
by the vertical projection of the magnetic field. Additional
features in magneto-optical conductivity can be observed.

In the case of b0 = 0.1, as θ changes from zero to π/2, the
spectrum at kz = 0 changes from λ|√nB + λsb0| to λ

√
nB.

The longitudinal and transverse conductivities at nonzero θ

show a mixture of Re(σxx ) and Re(σzz ) at θ = 0. The evolve-
ment of the LLs with θ and the mixture of the conductivities
induce the following features: for Re(σxx ), an additional
mixed peak emerges at low energy, and the sharp peak at
ω = 1 changes to a smooth absorption shoulder as θ increases.
The positions of the strong peaks at

√
nB + √

(n + 1)B are
not affected by θ because they are independent of the band
gap of the lowest LLs and the split gaps of the higher LLs.
The characteristic weak peak of Re(σxx ) [51,52] fades away,
as shown in Fig. 3(a). For Re(σzz ), the position of the lowest
resonant energy is no longer at 2b0 but shifts to zero. The char-
acteristic high LL double peaks at 2|√nB + λsb0| [53] merge
together at 2

√
nB. There are additional mixed peaks at the

corresponding higher LL peak positions
√

nB + √
(n + 1)B

of Re(σxx ), as shown in Fig. 3(b).
In the case of b0 = 2.5, as θ increases, the reverse-ordered

low-energy LLs become nearly flat. The nearly flat LLs at
kz = 0 tend to λ

√
nB as θ approaches π/2. For Re(σxx ),

the additional strong peak at
√

(n + 1)B − √
nB due to the

transition between the reversed s = − branch disappears. On
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FIG. 5. Plots of (a) Re(σxx ), (b) Re(σ−), (c) Re(σ+), and
(d) Im(−σxy ) as a function of the frequency for several different
tilting angles for b0 = 0.1. Other parameters are μ = 0.2, T = 0.01,
B = 1, and � = 0.01.

the other hand, a series of asymmetric resonant peaks with
a sharp onset appears due to transitions between discrete
dispersive LLs. Furthermore, a series of asymmetric resonant
peaks with a slow onset and sharp falling edge appears due
to transitions between nearly flat LLs in the region between√

(n + 1)B − √
nB and

√
(n + 1)B + √

nB. The tilting angle
modifies the three-dimensional dispersive LL structure and
hence the magneto-optical conductivities. The amplitude of
the peak with a slow onset and fast decay increases because of
the enhanced DOS of the nearly flat LLs, and their locations
are dependent on the band gap of the nearly flat LLs. For
Re(σzz ), as shown in Fig. 4(b), when θ = π/2, only the reso-
nant peaks with a sharp onset remain. The mixing of Re(σxx )
and Re(σzz ) is not shown. The analysis here indicates the
dependence of the longitudinal and transverse conductivities
on θ is determined by the ratio of b0/

√
B.

B. The effect of finite chemical potential

The magneto-optical conductivity is sensitive to changing
the chemical potential. Due to the particle-hole symmetry, we
will consider only the μ > 0 case. In Figs. 5 and 6, the optical
conductivities with chemical potential μ = 0.2 are depicted.

As shown in Fig. 5(a), new resonant peaks appear at
a finite chemical potential for b0 = 0.1. For θ = 0, the
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FIG. 6. Plots of (a) Re(σxx ), (b) Re(σ−), (c) Re(σ+), and
(d) Im(−σxy ) as a function of the frequency for several different
tilting angles for b0 = 2.5. Other parameters are the same as in Fig. 5.

additional low-energy peak is induced by the intraband transi-
tion L(0,+,+) → L(1,+,−). Two broad peaks for 1 < ω < 1 +
2μ are due to the interband transitions L(1,−,s) → L(0,+,+).
The peaks in the high-frequency region ω � 1 + 2μ are un-
affected. Increasing θ to π/2, as the band gap of the lowest
LLs and the split gaps of the higher LLs decrease, the resonant
peaks merge to two shoulder peaks and an absorption edge at
a low frequency ω ≈ 2μ.

At μ = 0, because of the particle-hole symmetry Im(−σxy)
is zero in the whole frequency region. At a finite chemical
potential μ > 0, Im(−σxy) is finite due to the absence of the
particle-hole symmetry. The peak pattern has an origin similar
to that of Re(σxx ) in the frequency region 1 − 2μ < ω < 1 +
2μ. As θ increases, the strong peak and two weak peaks at
θ = 0 merge into one broad peak at θ = π/2.

So far we have investigated Re(σxx ) and Im(−σxy). In ex-
periments involving polarized light, such as the Faraday and
Kerr effects, the magnetic-optical response to the right- and
left-handed polarized light σ± = σxx ± iσxy is more relevant.
The absorptive part of σ± is Re(σ±) = Re(σxx ) ∓ Im(σxy),
shown in Figs. 5(b) and 5(c). Because of the cancellation of
Im(−σxy) and Re(σxx ), Re(σ−) shows smooth weak peaks in
the region 1 < ω < 1 + 2μ. On the other hand, because of the
superposition of Im(−σxy) and Re(σxx ), the peak magnitude
of Re(σ+) is enhanced, as shown in Fig. 5(c). This feature
resembles that of Weyl semimetals [48].

The influence of the finite chemical potential on the optical
conductivity for b0 = 2.5 is shown in Fig. 6. The spectral
weight of the strong intraband peak of Re(σxx ) at θ = 0 is
redistributed among the interband peaks and additional shoul-
ders as θ increases, as shown in Fig. 6(a).

The Hall conductivity Im(−σxy) at μ = 0.2 is shown in
Fig. 6(d). Distinct from b0 = 0.1, as θ increases, the strong
peak of Im(−σxy) increases due to the contribution from the
nearly flat LLs. The peak position is affected by θ because
of the increasing gap of the nearly flat LLs with increasing θ .
Re(σ+) and Re(σ−) for b0 = 2.5 show a μ dependence similar
to that for b0 = 0.1.

V. SUMMARY AND DISCUSSION

In summary, we have performed a systematic study on
the magneto-optical conductivity of a TNRSM. The influ-
ence of both the strength and direction of the magnetic
field relative to the ring axis on the optical conductivities
was investigated. The magneto-optical response exhibits char-
acteristics related to the specific low-energy properties of
nodal rings. In the clean limit of the ring axis parallel to
the magnetic field with μ = 0, the interband LL transitions
are dependent on the relative magnitude of b0 to

√
B. In

the case
√

nB � b0 � √
(n + 1)B, we find that there is an

additional strong peak at
√

(n + 1)B − √
nB in Re(σxx ) due

to the reverse-ordered LL. Besides, there are only weak
peaks in the frequency region between

√
(n + 1)B − √

nB and√
(n + 1)B + √

nB. The distinctive weak peaks in Re(σxx )
in the case of 0 < b0 <

√
nB are too vague to resolve in

magneto-infrared spectroscopy experiments [51]. However,
this additional strong peak represents an observable signature
of TNRSMs in magneto-infrared spectroscopy experiments.

Increasing the tilting angle θ , for b0 = 0.1, the band gap
of the lowest LLs and the split of higher LLs decrease. There
is a mixing of Re(σxx ) and Re(σzz ) of θ = 0. For b0 = 2.5,
the magnetic field component perpendicular to the ring axis
causes an effective reduction in the dimensionality of the
system. Therefore, the band gap closes, and nearly flat LLs
appear around kz = 0. As a result, the optical transitions be-
tween the nearly flat LLs show strong peaks with a slow onset
and sharp decrease. On the other hand, the resonant peaks due
to dispersive LLs exhibit a sharp onset and a slow decrease.

In addition, at a finite chemical potential, the conductivities
for left- and right-hand circularly polarized light behave dif-
ferently. The origin of these distinctive features is explained
by the underlying LL structure.

Finally, we would like to make a remark on the effective
linear model used in our study. The effective linear model
is valid in an energy window of more than 200 meV, i.e.,
(−100 meV, 100 meV), as confirmed in Fig. 4 of Ref. [57]
and Table 7 of Ref. [12]. Considering the Fermi velocity is
of the order of 105 m s−1, it can be estimated that the fre-
quency regime discussed in this paper is less than ω < 4E0 ∼
14.4 meV. These transition energies are very low and well
within the valid regime of the linear energy dispersion. There-
fore, our results remain accurate in this frequency regime.
In addition, if we consider the model with anisotropic Fermi
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velocities corresponding to ellipsoidal nodal curves,

H = τx ⊗
( ∑

i=x,y,z

viσi pi

)
+ bτz ⊗ σz, (11)

the corresponding Hamiltonian in a magnetic field is

H = vF τx ⊗
( ∑

i=x,y,z

aiσiπi

)
+ bτz ⊗ σz, (12)

where vF = (vxvyvz )1/3 and ai = vi/vF . This anisotropic
model can be mapped to the isotropic model (i.e., the ring
model in our study) by rescaling the three axes p′

i = ai pi and
r′

i = ri/ai. The Hamiltonian becomes

H = vF τx ⊗ (σ · π′) + bτz ⊗ σz. (13)

Hence, the results presented in our work by the low-energy
effective model and in other studies of transport proper-
ties [16,44,46,51,54] can be directly applied. It should be
noted that there exists a different type of TNRSM which is
described by a two-band model H = h̄2

2m (k2
x + k2

y − b2)τx +
h̄vF kzτz [9,14,58]. In this nodal ring system, the region of
linear dispersion is narrow. Its magnetic-optical response has
not been reported yet.
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APPENDIX

The eigenstates are

|n, λ, s, ky, kz〉 =
eikyy+ikz z√

LyLz
cn√

k2
z + (

√
nB + λsb0 − λsEn,λ,s)2

⎛
⎜⎜⎜⎜⎝

λskz|n − 1〉
λs(

√
nB + λsb0 − λsEn,λ,s)|n〉

−(
√

nB + λsb0 − λsEn,λ,s)|n − 1〉
kz|n〉

⎞
⎟⎟⎟⎟⎠, (A1)

where

cn =
{

1 n = 0,

1√
2

n > 0.

By the Kubo formula, we obtain the following conductivities in the clean limit � → 0:

Re[σxx(ω)] =
√

2Be2

hl0

∑
n,λ,λ′,s,s′

c2
nc2

n+1

ω̃

{
[ fF (En+1,λ,s) − fF (En,λ′,s′ )]

∣∣∣∣En,λ′,s′En+1,λ,s

kz,n,λ,λ′,s,s′ ω̃

∣∣∣∣
×

[
λsk2

z,n,λ,λ′,s,s′ − λ′s′(
√

(n + 1)B + λsb0 − λsEn+1,λ,s)(
√

nB + λ′s′b0 − λ′s′En,λ′,s′ )
]2[

k2
z,n,λ,λ′,s,s′ + (

√
nB + λ′s′b0 − λ′s′En,λ′,s′ )2

][
k2

z,n,λ,λ′,s,s′ + (
√

(n + 1)B + λsb0 − λsEn+1,λ,s)2
]

+ [ fF (En,λ,s) − fF (En+1,λ′,s′ )]

∣∣∣∣En+1,λ′,s′En,λ,s

kz,n,λ′,λ,s′,sω̃

∣∣∣∣
× [λ′s′k2

z,n,λ′,λ,s′,s − λs(
√

nB + λsb0 − λsEn,λ,s)(
√

(n + 1)B + λ′s′b0 − λ′s′En+1,λ′,s′ )]2[
k2

z,n,λ′,λ,s′,s + (
√

(n + 1)B + λ′s′b0 − λ′s′En+1,λ′,s′ )2
][

k2
z,n,λ′,λ,s′,s + (

√
nB + λsb0 − λsEn,λ,s)2

]
}

, (A2)

Im[σxy(ω)] =
√

2Be2

hl0

∑
n,λ,λ′,s,s′

c2
nc2

n+1

ω̃

{
[ fF (En+1,λ,s) − fF (En,λ′,s′ )]

∣∣∣∣En,λ′,s′En+1,λ,s

kz,n,λ,λ′,s,s′ ω̃

∣∣∣∣
×

[
λsk2

z,n,λ,λ′,s,s′ − λ′s′(
√

(n + 1)B + λsb0 − λsEn+1,λ,s)(
√

nB + λ′s′b0 − λ′s′En,λ′,s′ )
]2[

k2
z,n,λ,λ′,s,s′ + (

√
nB + λ′s′b0 − λ′s′En,λ′,s′ )2

][
k2

z,n,λ,λ′,s,s′ + (
√

(n + 1)B + λsb0 − λsEn+1,λ,s)2
]

− [ fF (En,λ,s) − fF (En+1,λ′,s′ )]

∣∣∣∣En+1,λ′,s′En,λ,s

kz,n,λ′,λ,s′,sω̃

∣∣∣∣
×

[
λ′s′k2

z,n,λ′,λ,s′,s − λs(
√

nB + λsb0 − λsEn,λ,s)(
√

(n + 1)B + λ′s′b0 − λ′s′En+1,λ′,s′ )
]2[

k2
z,n,λ′,λ,s′,s + (

√
(n + 1)B + λ′s′b0 − λ′s′En+1,λ′,s′ )2

][
k2

z,n,λ′,λ,s′,s + (
√

nB + λsb0 − λsEn,λ,s)2
]
}

, (A3)
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where ω̃ = ω/E0

kz,n,λ,λ′,s,s′ =
√(

8b2
0 − 4ω̃2

)
nB + (ω̃2 − 1)

(
ω̃2 − 1 − 4b2

0 − λs4b0
√

(1 + n)B
) − λ′s′4b0

√
nB(1 + ω̃2 + λs2b0

√
(1 + n)B)

2ω̃

and

Re[σzz(ω)] =2
√

2Be2

hl0

∑
n,λ,λ′,s,s′

c4
n

fF (En,λ,s) − fF (En,λ′,s′ )

ω̃

∣∣∣∣kz,n,λ,λ′,s,s′En,λ,sEn,λ′,s′

ω̃

∣∣∣∣(λsλ′s′ + 1)

× [λs(
√

nB + λsb0 − λsEn,λ,s) + λ′s′(
√

nB + λ′s′b0 − λ′s′En′,λ′,s′ )]2[
k2

z,n,λ,λ′,s,s′ + (
√

nB + λ′s′b0 − λ′s′En,λ′,s′ )2
][

k2
z,n,λ,λ′,s,s′ + (

√
nB + λsb0 − λsEn,λ,s)2

] , (A4)

where for λ′ = −λ and s′ = −s, kz,n,λ,λ′,s,s′ = 1
2

√
ω̃2 − 4(b0 + λs

√
nB)

2
.
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