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We employ the Hartree-Fock approximation to identify the magnetic ground state of the Hubbard model on
a frustrated square lattice. We investigate the phase diagram as a function of the Coulomb repulsion’s strength
U , and the ratio t ′/t between the nearest- and next-nearest-neighbor hoppings t and t ′. At half-filling and for a
sufficiently large U , an antiferromagnetic chiral spin density wave order with nonzero spin chirality emerges as
the ground state in a wide regime of the phase diagram near t ′/t = 1/

√
2, where the Fermi surface is well nested

for both (π, π ) and (π, 0)/(0, π ) wave vectors. This triple-Q chiral phase is sandwiched by a single-Q Néel
phase and a double-Q coplanar spin-vortex crystal phase, at smaller and larger t ′/t , respectively. The energy
spectrum in the chiral spin density wave phase consists of four pairs of degenerate bands. These give rise to two
pairs of Dirac cones with the same chirality at the point ( π

2 , π

2 ) of the Brillouin zone. We demonstrate that the
application of a diagonal strain induces a dxy-wave next-nearest-neighbor hopping which, in turn, opens gaps in
the two Dirac cones with opposite masses. As a result, four pairs of well-separated topologically nontrivial bands
emerge, and each pair of those contributes with a Chern number ±1. At half-filling, this leads to a zero total Chern
number and renders the topologically nontrivial properties observable only in the ac response regime. Instead,
we show that at 3

4 filling, the triple-Q chiral phase yields a Chern insulator exhibiting the quantum anomalous
Hall effect.

DOI: 10.1103/PhysRevB.102.195120

I. INTRODUCTION

The chiral spin density wave (χSDW) has attracted much
attention in condensed matter physics, as it is distinct for the
net spin chirality [1] χi jk = 〈Si · (S j × Sk )〉 �= 0 that it threads
through a triangular plaquette defined by three lattice sites
Ri, j,k . When itinerant electrons move under its influence, they
feel a spontaneous gauge flux that leads to the accumulation
of a nonzero Berry phase [2], which in turn gives rise to an
anomalous contribution to the Hall coefficient [3–9]. Remark-
ably, this already takes place in the absence of an external
magnetic field. Even more, when the bulk energy spectrum
is fully gapped, such an anomalous contribution takes quan-
tized values as a result of the nonzero total Chern number
[10–12] C of the occupied bands. In this manner, it opens
perspectives for a topologically nontrivial Chern insulator,
i.e., with C �= 0, which leads to the quantum anomalous Hall
effect [7–9] (QAHE). Aside from the QAHE, the breaking of
both parity and time-reversal symmetries in the χSDW phase
brings about a number of intriguing phenomena [13–15], such
as the occurrence of parity anomaly [16–20], anyon supercon-
ductivity [21], anomalous thermoelectricity [9], and the polar
Kerr effect [22,23], which constitute characteristic features of
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systems belonging to the anomalous Hall metal and insulator
classes [24–32].

Among the various candidates for a χSDW, the so-called
antiferromagnetic (AFM) χSDW with zero net magnetiza-
tion (

∑
i Si = 0) is particularly interesting since AFM spin

couplings and magnetic orders are ubiquitous in correlated
electronic systems. In fact, the AFM χSDW order has been
experimentally discovered in the NiS2 [33–36] and FeMn
[37–40] antiferromagnets on the frustrated face-centered-
cubic (fcc) lattice. Neutron scattering experiments [33–38]
observed a noncoplanar AFM order with a four-sublattice
structure and three magnetic ordering wave vectors. More-
over, it was inferred that the ordered spin moments on the four
sublattices form a tetrahedron in spin space. On the theoreti-
cal side, such noncoplanar and chiral magnetic orders have
been intensively explored in the context of the Kondo lattice
model [41–54], the Hubbard model [41,55–60], and Heisen-
berg spin models [55,59,61] on various two-dimensional and
three-dimensional lattice structures. Specifically, it has been
suggested that an AFM χSDW order can be stabilized on the
triangular [41–48,55,61–63], honeycomb [56–60,64], kagome
[49–51], pyrochlore [52], cubic [65], and fcc [6,54,66–68] lat-
tices. In these systems, the three ordering wave vectors of the
χSDW phase are equivalent by means of the point-group sym-
metry of the crystal. Moreover, these ordering vectors are half
of the fundamental reciprocal lattice vectors of the system. In-
terestingly, numerical calculations found that an AFM χSDW
can develop even in some decorated variants of the square
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lattice, e.g., the checkerboard [69] and square-to-triangular
lattices [53], which do not support three equivalent wave
vectors. While a microscopic theory for the AFM χSDW is
currently lacking, it is generally believed that both electron
correlation and geometric frustration play important roles in
its stabilization.

In this work, we explore the magnetic states and discuss the
possible realization of the AFM χSDW phase in the Hubbard
model on a frustrated square lattice, with the frustration intro-
duced by considering both the nearest-neighbor (NN) hopping
t and the next-nearest-neighbor (NNN) hopping t ′ in the ki-
netic energy part of the model. Motivated by the experimental
findings, we here consider that the ordering wave vectors
of the AFM χSDW are half of the fundamental reciprocal
lattice vectors. Therefore, our general investigation is focused
on magnetic states with ordering wave vectors Q1 = (π, 0),
Q2 = (0, π ), and Q3 = (π, π ) on the square lattice with the
above type of hopping-induced frustration.

At half-filling, we find that the desired triple-Q AFM
χSDW phase is the ground state in an extended regime of
the (U, t ′/t ) phase diagram. The resulting band dispersions
exhibit two twofold-degenerate Dirac cones possessing the
same chirality. These are located at the N = ( π

2 , π
2 ) point of

the Brillouin zone (BZ). Remarkably, in this case, the system
is an insulator despite the presence of the two Dirac points
where multiple band touchings occur. This is because the
Dirac points are split in energy and are found above and
below the Fermi level while, at the same time, the maximum
bandwidth of the reconstructed bands is smaller than this en-
ergy splitting. Given this spontaneously developed magnetic
ground state and the resulting band structure, we propose a
mechanism that gaps out the Dirac points, and thus renders
the system a Chern insulator. As we discuss in detail, this is
possible by considering the effect of strain along the diagonal
direction. The latter introduces a dxy-wave NNN hopping t̃ ,
which in turn gaps out the Dirac points by inducing mass
terms of opposite signs. As a result, each pair of degenerate
bands contributes with a Chern number of ±1, which implies
that the total Chern number at half-filling is zero and a QAHE
is unobservable. However, other electron filling fractions can
support the QAHE. We explicitly demonstrate that this is the
case for a 3

4 filling factor.
Before proceeding with our main analysis, we remark that

this work is restricted to the interplay of magnetic instabilities
generated by Fermi surface (FS) nestings only at wave vectors
Q1,2,3. While in this manner possible magnetic instabilities at
other wave vectors are neglected, we argue that our strategy is
still valid and worthwhile to pursue. First of all, our approach
is justified by the actual experimental observation of such
a triple-Q AFM order, and the fact that we here attempt a
qualitative exploration of the possible magnetic orders that
become accessible in such a setting. In the same spirit, the
tight-binding model employed here mainly serves the purpose
of investigating the desired triple-Q degeneracy and interplay,
and is not targeted to make a strong connection to the band
structure of a specific material. Even more, the results and
discussion presented in this work would not change qualita-
tively upon the modification of the tight-binding parameters
since one of our main goals is to highlight the magnetic phases
which become accessible upon such a coexistence. Finally,

restricting our study to these three wave vectors also appears
as the natural assumption when approaching the problem
using a strong-coupling model with an AFM superexchange
[70] coupling J , since the short-ranged nature of the coupling
favors ordering at these wave vectors.

The presentation of our methods and results are unfolded in
the remaining five sections. Section II introduces the Hubbard
model considered throughout, and highlights the rich physics
emerging from it, thus supporting our motivation to study
this problem. This is achieved by exposing the FS nesting
properties of the band structure in the nonmagnetic phase and
the resulting behavior of the bare static spin susceptibility for
various parameter values. In Sec. III, we derive the respec-
tive mean-field Hamiltonian by treating the local Coulomb
interaction within the Hartree-Fock approximation. In addi-
tion, we present the possible magnetic ground states within
the restricted subspace of magnetic wave vectors. Section IV
contains our numerically obtained magnetic phase diagrams
in the (U, t ′/t ) parameter plane at half-filling, where we find
a wide regime where the AFM χSDW insulator is the ground
state. In Sec. V, we consider the situation of an electron filling
fraction of 3

4 , where a topologically nontrivial Chern insulator
featuring the QAHE is realized by introducing diagonal strain.
Section VI contains our conclusions.

II. HUBBARD MODEL AND BARE SPIN
SUSCEPTIBILITY ANALYSIS

We start with the Hubbard model on the square lattice,
described by the following Hamiltonian:

H = −
∑
i, j,α

ti jc
†
iαc jα + U

∑
i

n̂i↑n̂i↓, (1)

where c†
iα (ciα ) creates (annihilates) an electron with spin α =

(↑,↓) at lattice site i, and n̂iα = c†
iαciα is the corresponding

particle number operator. In the kinetic energy part, we con-
sider both the NN and NNN hoppings to introduce frustration.
Their combined presence leads to the following tight-binding
energy dispersion:

εk = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky, (2)

with the lattice constant set equal to unity and t ′ considered
to be positive throughout. Note that our sign choice for t ′
becomes irrelevant at half-filling due to an emergent particle-
hole symmetry.

The nesting properties of the FS resulting from εk play an
important role in understanding the structure of the long-range
magnetic order that develops due to the presence of Coulomb
repulsion of strength U , in the weak-strength limit. The emer-
gence of nesting at the three wave vectors of interest Q1,2,3 is
reflected in the behavior of the bare static spin susceptibility
χ0(Q1,2,3). Figure 1 depicts χ0(Q1,2,3) as a function of the t ′/t
or t/t ′ ratio at half-filling, where the NN (NNN) hopping t (t ′)
is set as the reference energy unit in the left (right) panel.

When we consider only the NN hopping t at half-filling,
i.e., t ′/t = 0, the corresponding FS is perfectly nested with
Q3. The presence of perfect nesting leads to a logarithmic
divergence in χ0(Q3), as shown in Fig. 1. Due to this diver-
gence, a collinear magnetic order with ordering wave vector
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FIG. 1. The static bare spin susceptibilities χ0(q) at the three
ordering wave vectors Q1 = (π, 0), Q2 = (0, π ), and Q3 = (π, π )
as functions of the ratio t ′/t or t/t ′. The energy unit is set to be
the NN (NNN) hopping t = 1 (t ′ = 1) in the left (right) panel. In
the left (right) panel we have included two insets, which depict the
Fermi surface topology appearing for t ′/t = 0 (t/t ′ = 0), as well as
the respective Néel (stripe) phase established. As the first inset of
the right panel shows, the original square lattice is divisible into two
enlarged square lattices which are illustrated by red and blue solid
lines. In this manner, the Q1 stripe can be viewed as two antialigned
Néel orders on the enlarged sublattices.

Q3 develops even for an arbitrarily small U , and stabilizes the
standard Néel phase.

In the inverse limit, where the NN hopping t is zero, i.e.,
t/t ′ = 0, the square lattice can be divided into two decoupled
unfrustrated square lattices with a lattice constant enlarged
by a factor of

√
2. The FSs for these two decoupled square

lattices are perfectly nested with the wave vectors (π, π ) in
the corresponding reduced Brillouin zones (RBZs). The latter
wave vectors correspond to Q1 and Q2 in the original BZ.
Consequently, two decoupled Néel AFM orders develop at
any nonzero U for both enlarged square lattices. Introducing a
small amount of NN hopping t couples the two Néel AFM
orders, and the resulting FS does not show perfect nesting
features any longer. As a result, a threshold strength of U
is now required for the emergence of a magnetic order with
ordering wave vector Q1 and/or Q2. More interestingly, since
the FS is now nested simultaneously by two wave vectors
which are equivalent by virtue of the tetragonal symmetry,
a number of double-Q magnetic orders become accessible
[71–82].

For the Q1,2 wave vectors discussed here, there exist two
possible double-Q phases [71], i.e., a collinear charge- and
spin-ordered density wave (CSDW) phase, and a coplanar so-
called spin-vortex crystal (SVC) phase where the moments on
neighboring sites are at right angles to each other. Evidences
for both of these phases have been recently experimentally
recorded in Fe-based materials [83–94]. The tetragonal sym-
metry of the nonmagnetic phase further implies that the Stoner
criteria for the single- and double-Q phases are satisfied si-
multaneously. Thus, from a Landau theory perspective, both
kinds of magnetic orders are degenerate at the quadratic level
of the free-energy expansion in terms of the magnetic or-
der parameter. All degeneracies are, however, lifted when
considering the fourth-order contributions to the free energy
[54,65,71,82].

When the frustration is strong, i.e., t ∼ t ′, the bare static
spin susceptibilities χ0(q) at Q1,2 and Q3 become comparable
as shown in Fig. 1. In particular, their values are exactly the
same at t ′/t = 1/

√
2 
 0.71 where a Lifshitz [95] transition

modifies the FS topology. This implies that the FS is simul-
taneously nested by the three wave vectors Q1,2,3, although
these three wave vectors are not equivalent by means of the
square lattice symmetry.

The diversity of magnetic order scenarios revealed from
the above susceptibility analysis further supports our moti-
vation to study here the interplay between phases originating
from the FS nesting with the three wave vectors, and explore
the possible emergence of magnetic phases beyond the well-
discussed single-Q collinear stripe, and double-Q CSDW and
SVC orders [71–81]. Notably, when the magnetic moments
order at the three vectors simultaneously, the long-sought-
after AFM χSDW phase becomes accessible in the frustrated
regime of the present model, and opens perspectives for realiz-
ing a topologically nontrivial AFM Chern insulator exhibiting
the QAHE.

III. MEAN-FIELD THEORY

To study the ground-state properties of the Hubbard model,
the Coulomb repulsion term in Eq. (1) is treated within the
Hartree-Fock approximation which preserves the SU(2) spin-
rotational symmetry of the interaction. The resulting mean-
field Hamiltonian reads as

HHF = −
∑
i, j,α

ti jc
†
iαc jα + U

4

∑
i

(
2nin̂i − n2

i

)

− U

4

∑
i

(
2mi · m̂i − m2

i

)
, (3)

where σ = (σx, σy, σz ) defines the vector of the Pauli ma-
trices. In the above, ni and mi denote the mean fields of
the local particle density n̂i = ∑

α n̂iα and magnetic mo-
ment m̂i = ∑

αβ c†
iασαβciβ operators, respectively. These are

obtained from the statistical average of the corresponding
operators with respect to the single-particle mean-field Hamil-
tonian in Eq. (3), and are generally expressed as ni = n̄ +∑

η Ñη cos(Qη · ri + θη ) and mi = ∑
η M̃η cos(Qη · ri + θ ′

η ),

with Ñη (M̃η ) the charge (magnetic) order parameters with
ordering wave vector Qη and θη (θ ′

η ) the relative phases. n̄
is the average particle density per site which equals to 1 at
half-filling.

When the allowed ordering wave vectors Qη are limited
to (π , 0), (0, π ), and (π , π ), and the lattice symmetry is
tetragonal, the expressions simplify to

{ni, mi} = {n̄, 0} +
∑

η

{Nη, Mη} cos (Qη · ri ), (4)

with the order parameters Nη = Ñη cos θη and Mη =
M̃η cos θ ′

η. As a result, there exist four inequivalent lattice
sites in the ordered phase, which lead to a 2 × 2 en-
larged unit cell. On the four inequivalent sites, the local
particle density is ni = {n̄ + N1 + N2 + N3, n̄ − N1 + N2 −
N3, n̄ − N1 − N2 + N3, n̄ + N1 − N2 − N3}, and the local
magnetic moment reads as mi = {M1 + M2 + M3,−M1 +
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M2 − M3,−M1 − M2 + M3, M1 − M2 − M3}. It is impor-
tant to note that the energy contribution per site from the
charge order is U

∑
η N 2

η . Therefore, any type of charge order
is energetically costly and disfavored and, as a result, the
ground state of the Hubbard model is expected to be a state of
a uniform charge density with all Nη = 0. For the magnetic
order, the fourth-order expansion of the magnetic free energy,
which we discuss in Appendix A, shows that if multi-Q or-
dering takes place, the ordered moments of the different order
parameters develop in a pairwise parallel or perpendicular
fashion. This is because only such configurations minimize
the free energy.

When two or three magnetic order parameters have mo-
ments which are aligned in parallel, they give rise to local
moments that have different amplitudes |mi| on the four in-
equivalent sites. Thus, this induces some sort of charge order
and leads to a CSDW type of phase, which is not a likely
ground state of the Hubbard model in Eq. (1). This is due
to the unavoidable energy penalty for developing the charge
order. Note, however, that there exists numerical evidence for
the CSDW phase in extended Hubbard models with additional
interactions that not considered here [71–82], as well as ex-
perimental proof that this phase is realized in certain Fe-based
compounds [92]. The above corroborate that the ground state
of the Hubbard model in Eq. (1) should be a phase with uni-
form charge and ordered magnetic moments which, when they
arise, they align perpendicular to each other. In fact, this fea-
ture is confirmed by our unrestricted numerical calculations.
Hence, we hereinafter restrict our discussion to this kind of
state with uniform charge density and ordered moments on the
four sublattices. By virtue of the global SO(3) spin rotational
symmetry of the model, we further fix the directions of M1,
M2, and M3 to be along the x, y, and z spin axis, respectively.
Thus, without loss of generality, the ordered moments read
as M1 = (M1, 0, 0), M2 = (0, M2, 0), and M3 = (0, 0, M3),
and yield m1 = (M1, M2, M3), m2 = (−M1, M2,−M3), m3 =
(−M1,−M2, M3), and m4 = (M1,−M2,−M3).

The commensurate character of the magnetic wave vectors
allows us to more conveniently treat the problem in k (wave-
vector) space. Specifically, since k + 2Q1,2 = k and Q3 =
Q1 + Q2, we find Qη = −Qη and ±Q1 ± Q2 ± Q3 = 0. The
above relations hold modulo a shift by a reciprocal lattice
vector, and imply that the k-space mean-field Hamiltonian of
Eq. (3) becomes

HHF =
∑
k,α

εkc†
kαckα − U

2

∑
k,α,β,η

Mηc†
kασ

η

αβck+Qη,β

+ 1

4
NU

∑
η

M2
η . (5)

Interestingly, since the here-considered magnetic order pa-
rameters are invariant under a lattice translation combined
with a spin rotation [41], the Hamiltonian in Eq. (5) can be
split into the following two identical disjoint parts:

HHF =
∑

k∈RBZ

(�†
kĤk�k + �†

kĤk�k ), (6)

with the spinors �k = (ck↑, ck+Q1↓, ck+Q2↓, ck+Q3↑)ᵀ, �k =
(ck↓, ck+Q1↑, −ck+Q2↑, −ck+Q3↓)ᵀ, and the k-dependent 4 × 4

Hamiltonian matrix

Ĥk =

⎛
⎜⎜⎜⎝

εk − 1
2UM1

i
2UM2 − 1

2UM3

− 1
2UM1 εk+Q1

1
2UM3 − i

2UM2

− i
2UM2

1
2UM3 εk+Q2 − 1

2UM1

− 1
2UM3

i
2UM2 − 1

2UM1 εk+Q3

⎞
⎟⎟⎟⎠. (7)

As a result, the reconstructed band structure consists of four
pairs of degenerate bands. Note that the wave-vector summa-
tion in Eq. (6) is over the RBZ, which corresponds to one
quarter of the original BZ, due to the four-sublattice structure
of the direct lattice.

To investigate the ground-state properties, we minimize the
energy by obtaining the magnetic order parameter associated
with each ordering wave vector Qη self-consistently at zero
temperature, via the relations

Mη = 1

N

∑
k,α,β

〈
c†

kασ
η

αβck+Qη,β

〉
, (8)

with N denoting the number of k points in the RBZ. When
a magnetic order at a single Q develops, it gives rise to
a collinear state which is termed as the Néel or the stripe
phase, depending on whether the ordering vector is Q3 or
Q1,2. The Q1,2 stripe phases are equivalent by means of the
fourfold-rotational symmetry of the energy dispersion. The
coplanar SVC magnetic phase carrying a vector chirality
χi j = 〈Si × S j〉 �= 0 is achieved when two magnetic orders
emerge at the same time. All coplanar phases obtained in this
work exhibit ordering at Q1 and Q2, and have moments of
equal amplitude which lie in the xy spin plane. When all three
magnetic orders coexist simultaneously, the AFM χSDW
phase is realized with the spin-chirality value χ = 1

2 M1M2M3

per unit cell. Note that the tetragonal point-group symmetry
enforces |M1| = |M2| in the χSDW phase.

In summary, aside from the paramagnetic (PM) metal
phase with all Mη = 0, which is obtained at small strengths
of Coulomb repulsion, the minimization of the energy leads
to four possible magnetic ground states: (a) the Néel phase
with (M1, M2, M3) = (0, 0, M ), (b) the stripe phase with
(M1, M2, M3) = (M, 0, 0) or, equivalently, (0, M, 0), (c) the
SVC phase with (M1, M2, M3) = (M, M, 0), and (d) the
χSDW with (M1, M2, M3) = (M, M, M ′).

Finally, we additionally note that, for our numerical sim-
ulations, we employ different initial conditions for solving
the self-consistency equations for a given choice of the set
of Hamiltonian parameters. When different ground states are
obtained for the different initial conditions, we compare the
state energies of the different configurations in order to infer
the true ground state.

IV. AFM χSDW AT HALF-FILLING

We first explore the magnetic orders of the frustrated
square lattice Hubbard model at half-filling with n̄ = 1. Note
that our study goes beyond the exploration of previous related
works [96–101], which did not consider the possibility of the
χSDW phase.
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′

FIG. 2. Phase diagram of the half-filled square lattice Hubbard
model with frustration. Solid and dashed lines denote, respectively,
phase boundaries of first-order and continuous transitions.

A. Phase diagram and phase transitions

The magnetic phase diagram at half-filling is presented
in Fig. 2 as a function of the Hubbard repulsion strength U
and the t ′/t ratio. Hereafter, we take the strength of the NN
hopping t as the energy unit. The possible ground states of the
phase diagram are spanned by the PM metal, single-Q Néel,
double-Q coplanar SVC phase, and triple-Q χSDW phases.
The boundaries between these phases are determined by com-
paring the state energies of different phases. The solid and
dashed lines denote, respectively, a first-order and a continu-
ous phase transition between two neighboring phases. When
U is not sufficiently strong to stabilize any long-range mag-
netic order, the ground state is a PM metal with all Mη = 0.

Magnetic ordering generally emerges only above a critical
Uc, and the precise structure of the magnetic order is governed
by the t ′/t ratio. At small t ′/t , the nesting at wave vector Q3 is
much stronger than that at Q1,2, and leads to the Néel phase.
Note that an infinitesimally weak U is capable of driving a
Néel phase at t ′/t = 0, due to the divergence of the spin sus-
ceptibility at Q3. As the t ′/t ratio increases, a higher critical
Uc is required. The situation is different at large t ′/t , where
the nesting is stronger at Q1,2. Our numerical calculations
reveal that the ground state is the double-Q coplanar SVC
phase which takes advantage of the nestings at both wave
vectors. The Q1 or Q2 stripe phases reside higher in energy.
The critical Uc decreases as t ′/t increases, and is expected
to reach zero in the limit of t ′/t → ∞ (i.e., t/t ′ = 0), where
the susceptibility χ0(Q1,2) diverges. Remarkably, in a signif-
icantly wide regime about t ′/t = 1/

√
2, where the nestings

at Q1,2 and Q3 are comparable in strength, the AFM χSDW
emerges as the ground state. All three ordered moments de-
velop simultaneously to lower the state energy, giving rise
to a nonzero spin chirality which opens perspectives for an
anomalous Hall response.

All magnetic ground states presented in Fig. 2 are insu-
lating and, as U decreases, they give their place to a PM
metal phase via first-order transitions. To investigate the phase
transitions between the different magnetic ground states, we

FIG. 3. (a) The ordered magnetic moments and (b) the state en-
ergy per site of the four distinct magnetic phases as a function of the
t ′/t ratio at half-filling when the strength of the Coulomb repulsion
is U = 6t .

consider U = 6t , and monitor the evolution of the four distinct
magnetic phases of interest as a function of the t ′/t ratio,
with a focus on the transitions. The results are summarized
in Fig. 3. The ordered magnetic moments for the four mag-
netic phases are plotted in Fig. 3(a), and their energies per
site are compared in Fig. 3(b). The amplitude of the ordered
moments in the four phases show only a weak dependence on
the frustration ratio t ′/t since U is quite strong in the regime
displayed in Fig. 3.

We find that the Néel phase is lower in energy than the
stripe and coplanar phases at small t ′/t . Note that although the
ordered moment has a slightly larger amplitude in the stripe
phase (see for instance M1 in the Q1-ordered stripe phase)

than in the coplanar phase (
√

M2
1 + M2

2 ), the stripe phase is
always higher in energy than the coplanar SVC phase, as the
latter utilizes both ordering wave vectors. As t ′/t increases,
the in-plane magnetic orders M1 and M2 become favored, and
emerge at t ′/t 
 0.69, where the out-of-plane magnetic order
M3 starts to decrease, thus reflecting the competition between
the FS nestings at wave vectors Q1,2 and Q3. A further in-
crease of t ′/t leads to the complete suppression of M3 at
t ′/t 
 0.78, and the ground state converges to the double-Q
coplanar SVC phase. The AFM χSDW phase is obtained in
the regime of 0.69 � t ′/t � 0.78, where all three magnetic
orders coexist. When approaching its phase boundaries, the
energy of the AFM χSDW gradually becomes equal to that of
the Néel and coplanar SVC phases, as shown in Fig. 3(b). The
transitions between the three magnetic phases in the phase di-
agram are therefore continuous, with the boundaries denoted
by the dashed lines in Fig. 2.
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FIG. 4. Band dispersions in the four magnetically-ordered
phases, (a) Néel, (b) stripe, (c) coplanar SVC, and (d) χSDW, along
the high-symmetry path in the RBZ at half-filling and (U, t ′) =
(6, 0.74)t , where the χSDW is the ground state and the other
three metastable states. 
 = (0, 0), Y = (0, π

2 ), X = ( π

2 , 0), and
N = ( π

2 , π

2 ). The blue and red lines denote, respectively, the band
dispersion with the dxy-wave NNN hopping t̃ = 0 and t̃ = 0.1t . The
numbers in (d) denote the Chern numbers of each pair of bands
with t̃ = 0.1t . Insets in (b) and (c) are enlargements of the band
dispersions near the N point.

B. Band dispersion and Dirac cones

The band dispersions are readily obtained by diagonalizing
the matrix Hamiltonian of Eq. (7). The spectrum of each mag-
netic phases has four pairs of twofold-degenerate bands, with
two of them above and the other two below the Fermi energy.
For a direct comparison of the band dispersions arising in
the four distinct magnetic phases, we consider the parameter
values (U, t ′) = (6, 0.74)t , and depict the resulting energy
dispersions in Fig. 4. For these parameter values, the AFM
χSDW constitutes the ground state, while the remaining three
can be viewed as metastable phases corresponding to local
minima of the free energy. To obtain the displayed band struc-
tures for the metastable phases, we use the self-consistently
obtained magnetic moments by restricting our evaluation to
the vicinity of the local minima. Remarkably, in the AFM
χSDW and coplanar SVC phases, we find two pairs of Dirac
cones at the k-space point N = ( π

2 , π
2 ) as shown in Figs. 4(c)

and 4(d).
The appearance of the Dirac cones in the coplanar SVC

and AFM χSDW phases is much more evident in a rotated
basis, with the unitary transformation matrix explicitly given
in Appendix B. In the rotated basis, the Hamiltonian Ĥk of
Eq. (7) becomes

H̃k =
(

H+ Hw

H†
w H−

)
, (9)

with the k-dependent 2 × 2 matrices H± and Hw correspond-
ingly given by

H± = ±(
0σ0 − 
′ cos θσz )

+ 
x sin θ sin ϕσx − 
y sin θ cos ϕσy, (10)

Hw = −
′ sin θσ0 − 
x(cos ϕ − i cos θ sin ϕ)σy

+ 
y(sin ϕ + i cos θ cos ϕ)σx. (11)

Here, 
0 = 1
2UM, 
x = 2t cos kx, 
y = 2t cos ky, 
′ =

4t ′ cos kx cos ky, and M, θ , ϕ are, respectively, the radial
distance, polar angle, and azimuthal angle in the spherical
coordinate of the magnetic moment on the first sublattice site
m1 = (M1, M2, M3). At the N point, where cos kx = cos ky =
0, 
x = 
y = 
′ = 0, the Hamiltonian matrix H̃k becomes
diagonal with two twofold-degenerate eigenvalues ±
0. We
expand the Hamiltonian around the N point and set k =
( π

2 , π
2 ) + p. At leading order in p, we find

H± = ±
0σ0 + 2t sin θ (sin ϕpxσx − cos ϕpyσy), (12)

Hw = −2t (cos ϕ − i cos θ sin ϕ)pxσy

+ 2t (sin ϕ + i cos θ cos ϕ)pyσx. (13)

Note that neither the diagonal nor the off-diagonal blocks
contain 
′, as this appears only at quadratic order in p.

In the AFM χSDW phase, where sin θ is nonzero and
ϕ = π

4 , the diagonal blocks H± give rise to two isotropic Dirac
cones at energies ±
0, with the same chirality, and velocity of
value

√
2t sin θ . Even more, the off-diagonal blocks Hw and

H†
w, are linear in p and vanish at the N point, thus preserving

the Dirac cones. In a similar fashion, the spectrum of the
coplanar SVC phase with θ = π

2 and ϕ = π
4 also exhibits two

Dirac cones at N, as shown in Fig. 4(c). In the single-Q stripe
phase, take Q1-ordered phase for example, θ = π

2 and ϕ = 0.
The diagonal blocks thus become H± = ±
0σ0 − 2t pyσy, that
does not lift the twofold degeneracy along the N-Y RBZ line,
where py = 0 (i.e., ky = π

2 ), and fails to generate Dirac cones
in the spectrum. Taking into account the off-diagonal blocks
Hw = −2t pxσy, the dispersions of the four pairs of bands in

the stripe phase are given by ±
√


2
0 + 4t2 p2

x ± 2t py, produc-
ing the spectrum shown in Fig. 4(b). In the Q3-ordered Néel
phase, θ = 0, and thus the diagonal and off-diagonal blocks
read as H± = ±
0σ0, Hw = 2teiϕ (pyσx + ipxσy), therefore

leading to the band dispersion ±
√


2
0 + 4t2(px ± py)2. The

bands are fourfold degenerate along both N-X and N-Y direc-
tions where either px or py equals zero, as shown in Fig. 4(a).

C. Strain-induced gap opening and band topology

To lift the additional degeneracy at the N point and thus gap
out the Dirac cones, we consider the presence of strain applied
in the diagonal direction, which breaks the fourfold-rotational
symmetry. This violation introduces a dxy-wave hopping t̃
on the NNN bonds. When t̃ = t ′ (t̃ = t ′ = t/2), the lattice
effectively becomes square to triangular [53] (triangular [41]),
and the spectrum becomes fully gapped in the AFM χSDW
phase. The dxy-wave NNN hopping modifies the tight-binding
dispersion εk in Eq. (2) since its effect is reflected in the
addition of the term 4t̃ sin kx sin ky. Consequently, the term

′ of Eqs. (10) and (11) acquires an extra contribution of
−4t̃ sin kx sin ky, which is of the order of 1 near the N point,
and is no longer negligible when the Hamiltonian is expanded
in terms of p. Indeed, the diagonal blocks H± of Eq. (12)
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and the off-diagonal blocks Hw of Eq. (13) receive, respec-
tively, the additional term ±4t̃ cos θσz and −4t̃ sin θσ0. As
a result, in the triple-Q chiral phase, where cos θ �= 0, two
mass terms with opposite masses ±4t̃ cos θ are introduced to
the two Dirac cones stemming from the diagonal blocks. The
Dirac cones are therefore gapped out, as shown in Fig. 4(d),
where the AFM χSDW phase is obtained self-consistently
in the presence of dxy-wave NNN hopping t̃ . On the other
hand, the diagonal blocks H± describing the Dirac cones are
unaltered in the double-Q coplanar SVC phase with θ = π

2 .
Specifically, despite the fact that the term −4t̃σ0 is added to
the off-diagonal blocks, it leads to a mere shift of the energies
of the two Dirac cones, from the initial ±
0 to the final

±
√


2
0 + 16t̃2 energies.

The full gap that is induced in the χSDW phase due to
addition of the dxy-wave NNN hopping generally gives rise to
a nonzero total Chern number C, and a concomitant QAHE at
zero temperature with Hall conductance:

σxy = −e2

h
C where C =

occupied∑
s

∫
d2k

2π
�sk. (14)

In the above, �sk = iεzi j〈∂ki usk|∂k j usk〉 (i, j = x, y) denotes
the Berry curvature [9] of the sth occupied quasiparticle
reconstructed band with eigenvector |usk〉. Note that we em-
ployed the Einstein summation convention, introduced the
totally antisymmetric symbol εzi j , and converted the summa-
tion to an integration by considering the continuum N → ∞
limit.

We find that the strain-induced mass term has an opposite
sign on the two Dirac cones at the N point. This implies that
each pair of degenerate bands, from top to bottom, contributes
with a Chern number of {+1,−1,−1,+1}, as indicated in
Fig. 4(d). Although the dc Hall conductance is zero at half-
filling, as the two pairs of occupied bands have opposite Chern
numbers, the Chern bands shown in Fig. 4(d) still allow for an
anomalous Hall effect in the ac regime and the emergence of
anomalous optical dichroism [60] which becomes accessible
via interband transitions.

V. STRAIN-INDUCED CHERN INSULATOR AT 3
4 FILLING

In order to obtain an AFM Chern insulator which exhibits
the QAHE at zero temperature, it is required to modify the
occupation of the bands, so that only an odd number of these
are filled. We find that this becomes possible when doping
the system away from half-filling to 3

4 filling. We note that
the AFM χSDW phase does not emerge as a ground state of
the 3

4 -filled Hubbard model when only considering the NN
and NNN hoppings. However, adding a third NN hopping t ′′
stabilizes it. Therefore, in this section, we introduce a t ′′ and
fix it to the value t ′′ = 0.4t ′. The third NN hopping t ′′ modifies
the tight-binding dispersion εk by introducing an extra term
−
′′, with 
′′ = 2t ′′(cos 2kx + cos 2ky). Consequently, the
diagonal blocks H± receive an additional term of 
′′σ0 in the
rotated basis, which shifts the energies of the Dirac cones but
does not lift any degeneracy.

In Fig. 5 we present the (U, t ′/t ) phase diagram at 3
4 filling.

All phase boundaries correspond to critical lines of first-order

′

FIG. 5. Phase diagram of the frustrated square lattice Hubbard
model at 3

4 filling. Additional third NN hopping with t ′′ = 0.4t ′ is
introduced in the model to stabilize the AFM χSDW as a ground
state in the phase diagram.

transitions. The ground state is a PM metal at small U , while
upon its increase, a coplanar SVC phase is established. In
particular, the coplanar SVC phase directly succeeds the PM
phase in the window 0.6 < t ′/t < 0.95, while for t ′/t < 0.6
and t ′/t > 0.95, an intermediate stripe phase appears. The
triple-Q χSDW phase is stabilized in the upper-right corner
of the phase diagram, where t ′ ∼ t and U are significant.
Notably, due to the fourfold degeneracy at the N point, the
magnetic ordered phases are metallic at 3

4 filling. In particular,
the double-Q coplanar phase and the triple-Q χSDW phase
give rise to a Dirac semimetal. See also Fig. 6.

As put forward in the previous section, the Dirac cones
at the N point can be gapped out by applying strain along
the diagonal direction since this brings about a dxy-wave
NNN hopping. The band dispersion of the χSDW phase with
t̃ = 0.1t is shown in Fig. 6. Indeed, the Dirac cones are

FIG. 6. Band dispersion in the χSDW phase along a high-
symmetry path in the RBZ at 3

4 filling and (U, t ′) = (9, 0.84)t . The
blue and red lines denote the band dispersion with the dxy-wave
NNN hopping t̃ = 0 and 0.1t , respectively. The numbers in the figure
denote the Chern numbers of each pair of bands with t̃ = 0.1t .
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gapped out and all four pairs of bands are well separated from
each other. Each pair of bands, from top to bottom, contributes
with a Chern number {+1,−1,−1,+1}. Remarkably, since
only the lower three pairs of bands are occupied at 3

4 filling,
the total Chern number is −1, giving rise to a topologically
nontrivial Chern insulator which features a QAHE at zero
temperature.

VI. CONCLUSIONS

In this work, we investigate the magnetic orders and phase
transitions which arise in the square lattice Hubbard model
with frustration, where the allowed ordering wave vectors are
restricted to Q1 = (π, 0), Q2 = (0, π ), and Q3 = (π, π ). To
study the ground-state properties, the Hartree-Fock approxi-
mation is applied to the local Coulomb interaction. When the
strength of the interaction is sufficiently strong, the ground
state at half-filling is a Q3-ordered Néel phase at small t ′/t ,
and a double-Q coplanar SVC phase at large t ′/t . Interest-
ingly, an AFM χSDW phase is stabilized in a wide regime
of the phase diagram near t ′/t = 1/

√
2, where the nestings of

the Fermi surface at wave vectors Q1,2 and Q3 are comparable
in strength. Here, the three magnetic orders coexist to utilize
simultaneously the nestings at the three wave vectors, and give
rise to a noncoplanar magnetic phase with a nonzero spin chi-
rality. The phase transitions from the Néel to the χSDW and
from the χSDW to the coplanar SVC phase are continuous.

We find that the energy spectrum of the χSDW phase
contains two pairs of Dirac cones, which are located at the
Brillouin zone point N = ( π

2 , π
2 ) and possess the same chiral-

ity. We show that applying strain along the diagonal direction
introduces a dxy-wave next-nearest-neighbor hopping, which
in turn gaps out the two Dirac cones with opposite masses.
This gives rise to four pairs of well-separated topologically
nontrivial bands. Each pair of bands contributes with a Chern
number ±1, and the total Chern number is zero at half-filling.
Finally, we show that doping the system to a 3

4 filling with a
nonzero third-nearest-neighbor hopping stabilizes the χSDW
phase and leads to a topologically nontrivial Chern insulator
which features the quantum anomalous Hall effect.

Concluding this work, we wish to make a number of re-
marks regarding the validity of the Hartree-Fock mean-field
approximation, as well as the stability of the magnetic order
and the resulting Chern insulator state. First of all, we need to
stress that the χSDW phase was found here for interaction
strengths U/t larger than 4 or 7 depending on the filling
which, while they are certainly not weak, they still remain
sufficiently smaller than the value required to be reached for
transiting to a Mott insulator phase. Thus, having stayed safely
away from the Mott transition further justifies our assumption
of the presence of quasiparticles, as well as considering a
well-defined Fermi surface as our starting point. In fact, in the
parameter regime of interest, the ratio of the hopping strengths
satisfies t ′/t ∼ 1, thus implying a bandwidth of about 12t .
Hence, we expect the impact of the repulsive interaction to
be effectively much weaker than it would be for the standard
Hubbard model with t ′ = 0.

The validity of our Hartree-Fock approximation and the
correctness of this simple intuitive picture are further sup-
ported by a number of checks that we have carried out

using the SU(2) spin-rotation-invariant slave-boson method
[102–104]. Employing this method allows us to explore the
magnetic phase diagram in the strong-coupling limit. The cal-
culations presented in Appendix C show that the two methods
provide qualitatively similar results. This further backs the
validity of the weak-coupling approach employed here, and
further guarantees the stability of the topological phenomena
proposed in this work against quantum fluctuations. In fact,
even in their presence, the topological properties remain un-
altered, given that the gap in the bulk spectrum remains intact
and the bands preserve their topologically nontrivial character.

While providing a precise estimate of the degree of topo-
logical robustness in the presence of fluctuations is beyond the
scope of this work, we assert that these become irrelevant as
long as the modification of the order parameters they induce
is much smaller than the magnitudes of the order parameters
obtained at the mean-field level. Notably, going beyond mean-
field theory and properly incorporating fluctuations requires
accounting for the remaining spatial dimension of the mag-
netic system, which has been neglected here throughout, as
this is customary in the study of strongly anisotropic systems
with a quasi-two-dimensional (quasi-2D) behavior. In fact,
the stabilization of long-range magnetic order in this work
implicitly assumes the third dimension since this is crucial for
circumventing the Hohenberg-Mermin-Wagner theorem.
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APPENDIX A: LANDAU-TYPE ANALYSIS OF THE
MAGNETIC FREE ENERGY

To perform a Landau-type magnetic instability analysis
for the model under consideration, we obtain the free-energy
density up to quartic order in terms of the magnetic order
parameters M1,2,3 with ordering wave vector Q1,2,3, which
reads as

F = α
(
M2

1 + M2
2 + M2

3

) + β
(
M4

1 + M4
2 + M4

3

)
+ γ

(
M2

1M2
2 + M2

1M2
3 + M2

2M2
3

)
+ η

[
(M1 · M2)2 + (M1 · M3)2 + (M2 · M3)2

]
+ δαM2

3 + δβM4
3 + δγ M2

1M2
2 + δη(M1 · M2)2.

The anisotropic terms in the last line of the above expression
are present to account for the fact that Q3 is inequivalent to
Q1,2 given a square lattice symmetry. The Landau expansion
contains all symmetry-allowed terms, and therefore enables
the discussion of all possible magnetic instabilities, indepen-
dently of the underlying microscopic mechanism.

We proceed by parametrizing the magnetic order param-
eters by M1 = M sin θ cos ϕn̂1, M2 = M sin θ sin ϕn̂2, and
M3 = M cos θ n̂3, with M = (M2

1 + M2
2 + M2

3)1/2, and the
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angles θ ∈ [0, π ], ϕ ∈ [0, 2π ). The unit vectors along the
direction of M1,2,3 are denoted as n̂1,2,3, with the angle φi j

between n̂i and n̂ j given by cos φi j = n̂i · n̂ j . In terms of these
newly defined parameters, the Landau free energy becomes

F = (α + δα cos2 θ )M2

+ [β sin4 θ (cos4 ϕ + sin4 ϕ) + (β + δβ ) cos4 θ ]M4

+ 1

4
[(γ + δγ ) sin4 θ sin2 2ϕ + γ sin2 2θ ]M4

+ 1

4
[(η + δη) sin4 θ sin2 2ϕ cos2 φ12

+ η sin2 2θ (cos2 ϕ cos2 φ13 + sin2 ϕ cos2 φ23)]M4.

Minimizing the Landau free energy with respect to the angles
φ12, φ13, and φ23 yields the following three corresponding
equations of motion:

sin4 θ sin2(2ϕ) sin(2φ12) = 0,

sin2(2θ ) cos2 ϕ sin(2φ13) = 0,

sin2(2θ ) sin2 ϕ sin(2φ23) = 0.

The above equations are satisfied only when the φ angles are
multiples of π

2 . The latter implies that the ordered magnetic
moments, when developed, are pairwise parallel or perpen-
dicular to each other.

APPENDIX B: TRANSFORMATION OF THE
HAMILTONIAN

For generality, we consider here the case with the
third-NN hopping t ′′ and the strain-induced dxy-wave NN
hopping t̃ . The tight-binding dispersion entering the Hamil-
tonian matrix of Eq. (7) becomes εk = −
x − 
y − 
′ − 
′′,
with 
x = 2t cos kx, 
y = 2t cos ky, 
′ = 4t ′ cos kx cos ky −
4t̃ sin kx sin ky, and 
′′ = 2t ′′(cos 2kx + cos 2ky). Parametriz-
ing the magnetic order parameters by M1 = M sin θ cos ϕ,
M2 = M sin θ sin ϕ, and M3 = M cos θ , with M = (M2

1 +
M2

2 + M2
3 )1/2, the Hamiltonian matrix can be rewritten as

H = Ht + Hm with

Ht = −
xτ0 ⊗ σz − 
yτz ⊗ σ0 − 
′τz ⊗ σz − 
′′τ0 ⊗ σ0,

Hm = −
0 sin θ cos ϕτ0 ⊗ σx − 
0 sin θ sin ϕτy ⊗ σz

+
0 cos θτy ⊗ σy,

where 
0 = 1
2UM, and σ0,x,y,z, τ0,x,y,z are the 2 × 2 identity

matrices and Pauli matrices. Under a unitary transformation
of U = U1ei ϕ

2 τz⊗σz ei θ
2 τz⊗σyU2, with

U1 = 1

2

⎛
⎜⎝

1 −i −i −1
−i 1 −1 −i
i 1 −1 i
1 i i −1

⎞
⎟⎠, U2 = 1√

2

⎛
⎜⎝

0 0 1 −1
1 1 0 0
1 −1 0 0
0 0 1 1

⎞
⎟⎠

the magnetic Hamiltonian becomes diagonal, i.e., Hm =

0τz ⊗ σ0, and the kinetic Hamiltonian Ht becomes

Ht = 
x sin θ sin ϕτ0 ⊗ σx − 
y sin θ cos ϕτ0 ⊗ σy

−
′ cos θτz ⊗ σz − 
′ sin θτx ⊗ σ0

−
x cos θ sin ϕτy ⊗ σy − 
x cos ϕτx ⊗ σy

−
y cos θ cos ϕτy ⊗ σx + 
y sin ϕτx ⊗ σx − 
′′τ0 ⊗ σ0.

Sorting into 2 × 2 diagonal and off-diagonal blocks, the
Hamiltonian matrix in Eq. (7) reads as, in the rotated basis,

H̃ =
(

H+ Hw

H†
w H−

)
,

with the wave-vector dependent 2 × 2 blocks H± and Hw

given by, respectively,

H± = ±(
0σ0 − 
′ cos θσz ) − 
′′σ0

+
x sin θ sin ϕσx − 
y sin θ cos ϕσy,

Hw = −
′ sin θσ0 − 
x(cos ϕ − i cos θ sin ϕ)σy

+
y(sin ϕ + i cos θ cos ϕ)σx.

APPENDIX C: SLAVE-BOSON METHOD CALCULATIONS

In this Appendix we present additional calculations based
on the SU(2) spin-rotation-invariant slave-boson (SRISB)
method [102–104], that we carry out in order to test the
validity of the weak-coupling mean-field approach adopted
in the main text. Since the SRISB method has been already
discussed in the literature extensively, here, we only briefly
mention its essential ingredients. Instead, we focus on the
main assumptions considered to study the Hamiltonian in
Eq. (1), and discuss our findings.

As it is customary in the SRISB approach, we express
the original fermionic creation operators as ciα ≡ ∑

β fiβziαβ ,
with fiα defining fermionic operators and ziαβ being functions
of the bosonic operators ei, pi0, pi = (pix, piy, piz ), and di. To
faithfully replace the original fermionic operators, the follow-
ing constraints are imposed per lattice site i:

d†
i di + e†

i ei +
∑

μ=0,x,y,z

p†
iμ piμ − 1 = 0, (C1)

∑
α=↑,↓

f †
iα fiα −

∑
μ=0,x,y,z

p†
iμ piμ − 2d†

i di = 0, (C2)

∑
α,β=↑,↓

f †
iασαβ fiβ − p†

i0 pi − p†
i pi0 − ip†

i × pi = 0. (C3)

The above constraints are enforced by introducing the La-
grange multipliers αi, βi,0, and βi, respectively. Within the
SRISB framework, the Hubbard interaction term takes the
quadratic form ∼d†

i di, while the electron hopping becomes
dependent on the various bosonic fields.

We proceed by mean-field decoupling the bosonic
fields using the spatiotemporally independent Ansätze:
ei �→ e ∈ R+, pi0 �→ p0 ∈ R+, di �→ d ∈ R+, βi0 �→ β0 ∈
R, αi �→ α ∈ R, pi0 �→ p0 ∈ R+, di �→ d ∈ R+, βi0 �→
β0 ∈ R, αi �→ α ∈ R, pi �→ pg, βi �→ βg, with p ∈ R+,
β ∈ R, and g = ( sin θ cos ϕ cos(Q1 · ri ), sin θ sin ϕ cos(Q2 ·
ri ), cos θ cos(Q3 · ri )).

Under these Ansätze, the matrix functions zi can be written
as zi = Z+σ0 + Z−

∑
μ=0,x,y,z pμσμ/|p|, where we introduced

Z± = (z+ ± z−)/2 with

z± = [p0(e + d ) ± p(e − d )]/
√

2√
[1 − |d|2 − (p0 ± p)2/2][1 − |e|2 − (p0 ∓ p)2/2]

.

(C4)

Given the above definitions, we choose a basis for the
f fermions which is analogous to the one defined in
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FIG. 7. SU(2) spin-rotation-invariant slave-boson mean-field
calculations at half-filling, when the strength of the Coulomb repul-
sion is U = 6t . (a) The magnetic moments in the various magnetic
states, and (b) the corresponding state energy per site as a function
of the t ′/t ratio. Note that, as in the main text, the magnetic moments
for states which do not constitute the ground state, are obtained
by restricting our evaluation to the vicinity of the respective local
minimum.

Eq. (6), i.e., �̃
†
k = ( fk↑, fk+Q1↓, fk+Q2↓, fk+Q3↑) and �̃

†
k =

( fk↓, fk+Q1↑,− fk+Q2↑,− fk+Q3↓). This choice allows decom-
posing the f -fermion Hamiltonian into two identical parts,
i.e., H f

SRISB = ∑
k∈RBZ(�̃

†
kĤ f

k �̃k + �̃
†
kĤ f

k �̃k ). We find that
Ĥ f

k = Ĥ ′
k + δĤk. The first term has an identical structure to

Ĥk in Eq. (6) but with renormalized coefficients and reads as

Ĥ ′
k = −(A1 − A2)
xτ0 ⊗ σz − (A1 + A2)
yτz ⊗ σ0

− B1

′τz ⊗ σz − B2


′′τ0 ⊗ σ0 − β sin θ cos ϕτ0 ⊗ σx

−β sin θ sin ϕτy ⊗ σz + β cos θτy ⊗ σy. (C5)

In contrast, the second term contains matrix elements non-
preexisting in Ĥk, i.e.,

δĤk = −C1
yτz ⊗ σx − C1

′′τ0 ⊗ σx + C2
xτ0 ⊗ σy

−C2

′τz ⊗ σy − C3


′τx ⊗ σx + C3

′′τy ⊗ σy

+C4
yτx ⊗ σy − C4
xτy ⊗ σx − C5
xτy ⊗ σ0

−C5

′′τy ⊗ σz + C6
yτx ⊗ σz − C6


′τx ⊗ σ0, (C6)

where we defined the parameters A1 = Z2
+ − Z2

− cos2 θ ,
A2 = Z2

− sin2 θ cos(2ϕ), B1 = Z2
+ + Z2

− cos(2θ ), B2 =
Z2

+ + Z2
−C1 = 2Z+Z− sin θ cos ϕ, C2 = Z2

− sin(2θ ) sin ϕ,
C3 = 2Z+Z− cos θ , C4 = Z2

− sin2 θ sin(2ϕ), C5 =
2Z+Z− sin θ sin ϕ, and C6 = Z2

− sin 2θ cos ϕ.

FIG. 8. SU(2) spin-rotation-invariant slave-boson mean-field
calculations at 3

4 filling, when the strength of the Coulomb repulsion
is U = 10t , and the ratio of t ′′/t ′ = 0.4. (a) The magnetic moments
in the various magnetic states, and (b) the corresponding state energy
per site. The inset in (b) shows the energy difference of the chiral and
SVC phases δE , obtained as a function of the t ′/t ratio. Note that,
as in the main text, the magnetic moments for states which do not
constitute the ground state, are obtained by restricting our evaluation
to the vicinity of the respective local minimum.

Taking into account the contribution of the f -fermion
Hamiltonian to the free energy, as well as the terms originating
from the constraints and the Hubbard interaction, we obtain
the intensive SRISB mean-field free energy:

F = −T

N

∑
k,s

ln
[
1 + e−(ε f

sk−μ0+β0 )/T
] + Ud2

+μ0n − 2βp0 p − β0
(
p2

0 + p2 + 2d2
)

+α(e2 + p2
0 + d2 − 1 + p2), (C7)

where the ε
f
sk denotes the eigenenergies of Ĥ f

k labeled by the
band index s. The ground state of the system is found by
minimizing the above free energy with respect to the set of
variables {μ0, e, p0, p, d, α, β0, β}.

The numerically obtained magnetic phase diagram for U =
6t upon varying the ratio t ′/t at half-filling is shown in Fig. 7.
Similar to the weak-coupling calculation of the main text, also
here, the system transits from the Néel phase to the chiral
magnetic phase, and finally to the coplanar SVC phase as
we increase t ′/t . However, here, the chiral SDW state occu-
pies a larger area of the phase diagram, i.e., 0.66 � t ′/t �
0.81, compared to the weak-coupling result, where we found
0.68 � t ′/t � 0.78.

Our numerical results for the 3
4 filling are shown in Fig. 8.

The system transits from the SVC to the chiral magnetic
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phase upon increasing t ′/t . The corresponding transition is
first order, thus agreeing with our main text result. Indeed,

as shown in the inset of Fig. 8(b), the SVC and chiral SDW
phases lead to the same free energy for 0.66 � t ′/t � 0.67.
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