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The channel-decomposed functional renormalization group (FRG) approach, most recently presented in the
variant of truncated-unity FRG (TUFRG), has so far been used for various two-dimensional model systems. Yet
for many interesting material systems the third spatial dimension is of clear relevance. Therefore, FRG schemes
working in three spatial dimensions (3D) are definitely on the wish list. Here we demonstrate that a 3D TUFRG
scheme can be set up in a straightforward extension of previous two-dimensional codes and gives physically
sensible results with affordable numerical effort, regarding both the qualitative and quantitative descriptions.
The computed phase diagram of the three-dimensional Hubbard model at half filling or perfect nesting shows
a phase transition to a (π, π, π )-ordered antiferromagnetic ground state for repulsive interactions at an energy
scale that compares well with other numerical approaches in the literature. Furthermore, the method allowed us
to detect a d-wave pairing and a concurring (π, π, 0) antiferromagnetic ground state in the hole-doped Hubbard
model.
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I. INTRODUCTION

Quantum materials with significant correlation effects aris-
ing from the interactions within the electron system are under
intense experimental and theoretical study, as they give rise
to a plethora of interesting phases like magnetic orderings
and unconventional superconductivity, with potential uses in
future technologies. One of the simplest lattice models leading
to correlation effects is the single-band Hubbard model, where
electrons interact via a repulsive coupling U with each other
only when they are located at the same lattice site. Despite its
simplicity, analytic solutions of this model for U �= 0 exist
only in single cases and limits like in the limit of one [1]
or infinite dimensions [2] for regular n-dimensional cubic
lattices.

The Hubbard model exhibits in the case of three spatial
dimensions and half-filling a transition to an antiferromag-
netic (AFM) ordered ground state for all interaction strengths
U at finite Néel temperatures TN. This TN depends on the
interaction strength U , as the transition is attributed to dif-
ferent effects: In the weak-interaction limit it is caused
by thermal spin-flip excitations across the Fermi surface,
which can be described reasonably well by the random-
phase approximation (RPA) extended by corrections due to
local quantum fluctuations [3–5]. In this weak-coupling case
the self-consistent perturbation theory allows us to derive
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an analytic TN (U ) curve [6]. In the strong-coupling case
the phase transition is caused by spin-spin interactions of
local moments. Thus, the Hubbard model converts to the
Heisenberg model with J = t2/U , and the Néel temperature
tends to the Heisenberg limit 3.83/U [7,8]. In this limit,
when the interaction reaches the order of the bandwidth, a
Mott-insulator transition can be detected above the magnetic
ordering temperature [9], maintaining an excitation gap for the
magnetically disordered phase at larger U .

As the TN(U ) curve grows from these limiting cases to-
wards intermediate coupling strength, it is expected to exhibit
a maximum in this region, which was shown to go along a
pseudogaplike behavior [10]. But as an analytic solution exists
only for U → 0, the exact form of TN(U ) has been targeted
by numerous methods [9,11–14]. Therefore, the Néel curve
TN(U ) of the three-dimensional half-filled Hubbard model can
be used as a reference for new methods.

In addition to this specific case, the three-dimensional Hub-
bard model has been extended and studied in different specific
aspects. With an additional next-nearest-neighbor hopping t ′,
the magnetic order is reduced due to magnetic frustration
[10]. An extension of the Hubbard model by nearest-neighbor
interactions leads to a rich phase diagram containing different
magnetic orders, charge and spin density waves, and super-
conductivity, depending on the strength of the interactions
[15,16]. The simplest way, doping the system away from
half-filling, showed that d-wave pairing can become dominant
[17]. This richness of phases occurring for sometimes already
small detunings away from perfect nesting makes it important
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to treat all contributions to correlation effects on the same
footing.

The functional renormalization group (FRG) appears to
be a suitable method in this regard, as it treats all three
channels (spin, charge, and pairing) on the same footing.
Although the FRG is well established for investigations in
one- or two-dimensional correlated systems [18–20], it has
not been applied to lattice systems in three dimensions so
far due to numerical costs of the most often used N-patch
Brillouin zone discretization scheme. In recent years, how-
ever, channel-decomposition techniques in conjunction with
form-factor expansions have defined a new and powerful FRG
line of approach [21–27]. In contrast to the N-patch schemes,
a much higher momentum resolution can be reached in the
new schemes [26,28], and various other improvements like
a detailed frequency dependence of the interactions [29,30]
could be built in. Most notably, in a recent study, multiloop
corrections were incorporated and shown to converge for the
two-dimensional (2D) Hubbard model at perfect nesting [31].
Thus, the method can be understood to be quantitatively re-
liable, at least for simple situations. A neat way to derive
the FRG equations in this FRG approach is the insertion of
truncated resolutions of unity into the loop diagrams. This
allows us to cast the flow equations for the interaction vertex
in the form of matrix products which can be parallelized
efficiently. This technique is known as truncated-unity FRG
(TUFRG [26]) and will be employed in what follows. On the
level used here, the TUFRG can be viewed as a reformulation
of the singular mode FRG by Wang et al. [24,25].

The numerical cost of the TUFRG scales quadratically
in the number of Brillouin zone (BZ) points taken into ac-
count and quartically with the number of form factors kept.
If we now extend the scheme from two to three dimensions
while requesting the same momentum resolution of nkpt points
in each spatial direction, the total number of points in the
BZ increases from n2

kpt to n3
kpt, but this may still be toler-

able if we do not need ultrahigh precision. The number of
form factors, however, increases but remains comparable, thus
making a treatment of three-dimensional models by TUFRG
possible. In this paper we, therefore, apply it to the three-
dimensional Hubbard model while neglecting the self-energy
flow (which can be built in in subsequent works along the lines
of Refs. [31,32]). By this we reproduce the weak-coupling
part of the AFM phase diagram and find d-wave pairing
regimes in the doped three-dimensional Hubbard model.

This paper is organized as follows. In Sec. II we briefly in-
troduce the truncated-unity functional renormalization group
equations and describe their implementation as well as the
model in Sec. III. In Sec. IV A we discuss the phase diagram,
and in Sec. IV B we show the arising d-wave pairing when
doping the Hubbard model, before we conclude in Sec. V.

II. METHOD

The TUFRG, which we use here, is a recently developed
[26] efficient approximation of the FRG and, by now, a
well-established tool for the investigation of two-dimensional
correlated systems [19,31,32]. The basic idea of the one-
particle irreducible (1-PI) FRG is to introduce a dependence
on a scale parameter � to the noninteracting Green’s function.

Variation of � induces a flow of correlation and vertex func-
tions of the system. A typical choice is to implement the scale
parameter � as an infrared energy or frequency cutoff, such
that only modes with an absolute value of the band energy or
a Matsubara frequency larger than the cutoff are considered.
Below we actually apply a smoothed frequency cutoff func-
tion first employed by Husemann and Salmhofer [21]. In any
case, in the limit � → 0 the full system is obtained again.
An infinite set of differential flow equations for the effective,
�-dependent n-particle interactions can be derived by the �

derivative of the corresponding generating functional [19,33].
For the case of weak to intermediate interactions, it is usually
assumed that it is sufficient to neglect interactions of or-
der larger than n � 3, drastically simplifying the calculations
[33]. Note that recently, so-called multiloop extensions were
implemented in the FRG [31,34]. These allow one to reduce
the error from this truncation to such a degree that equivalence
to the parquet approximation is obtained, resulting in good
quantitative agreement [32].

In the general form, the flow equation for the two-particle
interaction contains contributions of the particle-particle (pp),
the crossed particle-hole (ph,cr), and the direct particle-hole
(ph,d) channels, which represent all possible topologically
nonequivalent combinations of two vertices connected by a
full Green’s function G� and a single scale propagator S� =
−G�( d

d�
G�

0 )G�. As the Hubbard model is SU(2) symmetric
and a spontaneous symmetry breaking is only allowed to be
approached but not to occur in the present paper, we employ
the SU(2)-symmetric form of the FRG equations as, e.g.,
in Ref. [19]. By this choice, it is sufficient to consider the
spin-independent vertex V . When the decomposition of the
full interaction into V is inserted and the inner spin summation
is performed, the pairing and crossing particle-hole channels
still consist of one diagram, while the direct particle-hole
channel consists of three contributions (see Fig. 1). Besides
exploiting the SU(2) symmetry, we further simplify the cal-
culations by neglecting self-energy corrections, such that our
main element of interest is the 1-PI interacting vertex V de-
pending on four momenta, frequencies, and orbitals or bands.
Exploiting energy and momentum conservation within the
vertex reduces the number of frequency and momentum ar-
guments by one. The numerical effort scales with the fourth
order in frequencies and momenta due to the external legs and
the internal loop summation, such that an investigation with
high resolution is limited by both memory and computing
time. This limitation can be overcome for the momentum
part by the TUFRG, which builds on earlier ideas of channel
decomposition and form-factor expansion [21,22] and rep-
resents a reformulation of the singular-mode FRG by Wang
et al. [24,25].

In the following we sketch the main elements of the
TUFRG. For more details, see Refs. [26,27,31]. In a first step,
the full flowing interaction vertex can be split into four parts,
corresponding to the initial interaction and the three channels.
We write

V �(k1, k2; k3)

= V0(k1, k2; k3) − ��,P(k1 + k2; k1, k3)

+ ��,C(k3 − k2; k1, k3) + ��,D(k1 − k3; k1, k4). (1)
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FIG. 1. Diagrammatic representation of the SU(2)-symmetric,
1-PI functional RG interaction at one-loop truncation, representing
the particle-particle (Tpp), crossing (Tph,c), and direct (Tph,d) particle-
hole contributions. The momenta are provided in the channels’
natural representation with three independent momenta, as provided
by Eq. (2).

Each channel ��,X with X = P, C, D has a characteristic main
total momentum or transfer

s ≡ k1 + k2 (pp),

t ≡ k1 − k4 (ph,cr),

u ≡ k1 − k3 (ph,d)

(2)

as the first argument. From general arguments and previous
calculations (see, e.g., Ref. [19] and references therein), a
strong dependence on s, t , or u is known to show up in the
full vertex if spontaneous symmetry breaking corresponding
to this channel is approached at low scales. For the FRG flow,
each ��,X’s � derivative is taken to be the corresponding
diagrams T X in Fig. 1, which also depend strongly on one
of the characteristic momenta s, t , and u. Besides the strong
dependence on s, t , or u, the channel couplings ��,X are found
to only weakly depend on their second and third arguments.
Thus, the weak dependencies can be described [26] by a small
number of slowly varying basis functions in the Brillouin
zone, called form factors. Therefore, in a second step, the
weak dependencies are projected to a form-factor basis { fi},
and we call the projections of the ��,X to this basis the
propagator of the X channel, denoted by P�

m,n(s), C�
m,n(u), and

D�
m,n(t ). By this procedure each channel propagator has its

own flow equation,

Ṗ�
m,n(s) = V �,P

m,i (s)χ�,pp
i, j (s)V �,P

j,n (s),

Ċ�
m,n(u) = V �,C

m,i (u)χ�,ph
i, j (u)V �,C

j,n (u),

Ḋ�
m,n(t ) = 2V �,D

m,i (t )χ�,ph
i, j (t )V �,D

j,n (t )

+V �,C
m,i (t )χ�,ph

i, j (t )V �,D
j,n (t )

+V �,D
m,i (t )χ�,ph

i, j (t )V �,C
j,n (t ), (3)

where i and j are form-factor indices to be summed over.
These equations are products of three matrices in the form-
factor basis, scaling linearly with the number of momenta.
The terms

χ
�,pp
i, j (s) =

∫
dq

(2π )3
f ∗
i (q) f j (q)L�

pp(q, s),

χ
�,ph
i, j (t|u) =

∫
dq

(2π )3
f ∗
i (q) f j (q)L�

ph(q, t|u)

(4)

are the projections of the particle-particle and particle-hole
propagators to the form-factor basis. The dual propagators in
the context of FRG are provided by

Lpp(q, s) = S�(q)G�(s − q) + S�(s − q)G�(q),

Lph(q, t ) = S�(q)G�(q − t ) + S�(q − t )G�(q),
(5)

in which G� is the scale-dependent Green’s function and S� is
the single-scale propagator S� = −G�(G�

0 )−1G�. The terms
V �,X

i, j are the projections of the full vertex to channel X, e.g.,

V �,P
i, j (s) =

∫
dq

(2π )3

∫
dq′

(2π )3
f ∗
i (q)V �(q,−q + s, q′) f j (q′).

(6)

Due to the decomposition of the full vertex V � this requires
the projection of the other propagators and the initial interac-
tion to the corresponding channel. For example, projecting the
C channel to the P channel becomes

P̂[�C]m,n(s) =
∫

dq
(−2π )3

dq′

(2π )3
f ∗
m(q) fn(q′)

×
∑
i, j

fi(q) f ∗
j (q′)Ci, j (q + q′ − s),

(7)

where the back projection from the form factor to three-
momentum space was used for the C-channel propagator. To
conclude, in the TUFRG we have to solve the propagator flow
equations (3), which require a form-factor projection of the
two-propagator term (4) and the channel-to-channel projec-
tions like the one in (7), which scales linearly with the number
of momenta. For a further discussion of the formalism and
additional aspects like self-energies, frequency dependence,
multiloop extensions, and susceptibilities, see, e.g., Ref. [31].

III. MODEL AND IMPLEMENTATION DETAILS

In order to test the TUFRG in three spatial dimensions, we
investigate the isotropic one-band Hubbard model given by
the Hamiltonian

H = −t
∑

〈i, j〉,σ
c†

i,σ c j,σ + U
∑

i

ni↑ni,↓ (8)
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FIG. 2. The density of states (top) and the Fermi surfaces of
the 3D Hubbard model at μ = 0t (bottom left) and μ = −2t
(bottom right).

on a simple-cubic three-dimensional lattice. Here t de-
notes the hopping amplitude between nearest neighbors, and
c†

i,σ (ci,σ ) creates (annihilates) an electron with spin σ on site

i. U is the on-site Coulomb interaction, and ni,σ = c†
i,σ ci,σ is

the particle density on site i. The noninteracting dispersion of
the Hamiltonian given in (8) is

εk = −2t[cos(kx ) + cos(ky) + cos(kz )] − μ. (9)

The chemical potential μ is defined such that μ = 0 holds
for the half-filled system as self-energy corrections are not
considered in this work. The corresponding density of states
and Fermi surface for half-filling and for a smaller filling are
shown in Fig. 2. We will use t as the energy unit from now on.

Although Eq. (8) may be one of the simplest possible
interacting many-fermion Hamiltonians, it cannot be solved
analytically. The main questions here concern the properties
and energy scales of potentially ordered ground states. To ob-
tain this information we use the TUFRG presented in Sec. II,
given by Eqs. (3), (4), and (7) (with the other channels treated
analogously). We start the flow equations at a high-energy
cutoff of �0 = 30 with an initial interaction V0 = U for all
momentum combinations corresponding to the on-site Hub-
bard interaction. To obtain the pp- and ph-bubble terms χ

we neglect self-energy effects; that is, the internal lines are
bare Green’s functions G� = G�

0 and single-scale propagators
S� = d

d�
G�

0 .
In the FRG flow, we use a smooth frequency cutoff func-

tion [21] C�(ωn) = �2

�2+ω2
n

on the free Green’s function G0

whose derivative, therefore, is in the single-scale propagator
S�. As in many previous works, we use the static approx-
imation with frequency-independent vertices. Then, at T =
0, the bubble terms in Eqs. (4) become (before momentum

TABLE I. List of form factors fi(k) used for the calculations,
transforming according to irreducible representations of the cubic
group Oh. For the phase diagram calculation only the first seven cor-
responding to on site and nearest neighbor were used, while for the
doped system the full list including some second-nearest-neighbor
form factors was used.

Name Momentum space representation

s const
extended s cos(kx ) + cos(ky ) + cos(kz )
dx2−y2 cos(kx ) − cos(ky )
dz2 − cos(kx ) − cos(ky ) + 2 cos(kz )
px sin(kx )
py sin(ky )
pz sin(kz )
s3 cos(kx ) cos(ky ) + cos(kx ) cos(kz ) + cos(ky ) cos(kz )
dxy sin(kx ) sin(ky )
dxz sin(kx ) sin(kz )
dyz sin(ky ) sin(kz )

summation)

L�
pp/ph(k, k′)

= d

d�

∫ ∞

−∞

dω

2π

ω2

ω2 + �2

1

iω − εk

ω′2

ω′2 + �2

1

∓iω′ − εk′
,

(10)

where the frequency integral can be solved analytically.
In Eqs. (4) and (7) we use form factors fi(q) corresponding

to the Oh symmetry group of the crystal lattice, representing
bonds up to the second-nearest neighbors, as shown in Table I.
As these form factors are sums of δ functions in real space,
the channel-to-channel projections like the one in Eq. (7) are
performed by transforming the right-hand side to real space,
resulting in a combinatorial problem of multiplying real-space
representations of the form factors, but without the need to
perform two integrations over momentum space. For the
calculations in Sec. IV A a regular momentum grid of 163

was used for the representation of the vertex, i.e., for the
first entries in �P/C/D, while the bubbles as in Eq. (4) were
evaluated on a 5603 momentum mesh which we observed to
give well-converged results over the full investigated range of
U . As an antiferromagnetic state is expected, we considered
only the on-site and nearest-neighbor form factors (the first
seven in Table I). The FRG flow starts at the initial scale
�0 = 30t , which is well above the bandwidth, with an initially
chosen Hubbard interaction U . Starting from this interaction,
the full vertex evolves during integration of the cutoff scale
and may become divergent. Therefore, the flow was stopped
when the largest value of a propagator exceeded the maximum
of Vmax = 50t . The leading component in �P/C/D is used to
identify the type of emergent order that is signaled by this
flow to strong coupling. The corresponding FRG scale is re-
ferred to as the critical scale �c. In BCS or spin-density-wave
mean-field theory, in the weak-coupling limit at a constant
density of states, the band gap equals the critical temperature
up to a prefactor of the order of unity. In analogy to this
observation, we expect the critical scale �c to correspond to
a critical temperature up to a factor of unity and therefore to
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FIG. 3. Phase diagram of the three-dimensional Hubbard model.
Presented is the critical scale �c for the TUFRG calculation in
comparison with the critical temperature for previous calculations.
For small interaction strengths the ordering energy scale obtained by
FRG compares well with that obtained by other methods.

be comparable with literature values for critical temperatures.
We point out that this stability analysis is not sensitive to
first-order transitions. This is a known deficit that can be fixed
with counterterm techniques [35]. However, admittedly, these
are beyond the current numerical possibilities for general 2D
and three-dimensional (3D) models.

IV. RESULTS

A. Results at half-filling

First, we run the 3D TUFRG for the half-filled, fully
nested Fermi surface for varying initial U . This results in
a flow to strong coupling with leading Antiferromagnetic
spin-density wave (AFM-SDW) correlations at a critical scale
�c(U ). This critical scale is shown in Fig. 3 in comparison
to the critical temperatures obtained by RPA [3,36], self-
consistent perturbation theory (SCPT) [6], dynamical mean
field theory (DMFT) [11], dynamical cluster approximation
(DCA) [12], quantum Monte Carlo (QMC) [9], determinantal
diagrammatic Monte Carlo (DDMC) [13], dynamical vertex
approximation (D
A) [14], and dual fermions (DF) [11]. Note
that the RPA values are taken to be the renormalized critical
temperatures according to Ref. [5], obtained by the Stoner
criterion with the bare particle-hole bubble and by dividing
the obtained TN by 3 as a cheap way to account for correc-
tions due to the local pairing channel [37]. In the limit of
weak interactions U → 0 the SCPT provides an analytical
exact expression for the Néel temperature as described in
Ref. [6]. Focusing on the shape of the �c(U ) curve, it can
be observed that our TUFRG results in D = 3 in general
compare reasonably well with the other methods at small
interactions U/t � 4 even though the FRG scheme here does
not take into account effects of the electronic self-energy and
frequency dependence of the effective interactions. Clearly,
the present FRG completely misses the plateau in Tc observed
with other methods for U/t ≈ 8–10. This failure is expected,
as self-energy effects and higher-order vertices are neglected
and, therefore, strong-coupling physics like pseudogap, Mott

transition, or local moment formation cannot be captured.
Focusing on the quantitative comparison with renormalized
RPA, the exact SCPT, and the dual-fermion data at U/t � 4,
we can state the following. The FRG may have a lower critical
scale than the RPA because the FRG includes the suppression
of the magnetic channel by the full pairing channel and not
only the local contribution [5,37]. In addition there may be
competing effects from the direct particle-hole channel. While
the TUFRG curve starts to deviate from the RPA curve at U ≈
1t , it agrees well with the curve from SCPT up to U ≈ 2.5t .
The dual-fermion approach of Ref. [11] employs the ladder
approximation; that is, it is something like RPA with local
self-energy corrections and quite similar to single-site DMFT
at weak U [11]. As the self-energy effects can be expected to
be quite small at these U , it is no surprise that the critical
temperatures are closer to the RPA values for intermediate
U . We do not have a theory about why the DF and DMFT
values are significantly higher than the RPA values in the limit
U → 0, but one might speculate that the on-site-repulsion
screening in the particle-particle channel, which is captured
as well in these approaches on the level of the impurity prob-
lem, is, for weak U , not as effective as in the renormalized
RPA scheme on the extended lattice. For the interpretation
of the TUFRG ordering scales one should keep in mind that
neglecting dynamic and self-energy effects is known to lead
to slightly higher critical scales for the AFM-SDW instability,
at least for 2D systems [31]. So our TUFRG curve should
be considered an upper estimate when channel coupling is
included.

Beyond the question of the ordering energy scale, the
TUFRG contains information about the relative strength of
the individual interaction channels. In Fig. 4 we show the
full vertex in the C (spin) and P (pairing) channels, V C

i j and
V P

i j , respectively, for the different form factors i = j at the
critical scale along the high-symmetry axes at U = 1. The
contributions of combinations i �= j are always close to zero
and therefore are not further considered here. The C channel
exhibits a repulsive divergence for a momentum transfer of
R = (π, π, π ) in the (on-site) s-wave form factor, exceeding
the threshold Vmax. On the real-space lattice, the s-wave form
factor means that the spin operators which order and which
are built from bilinears in fermion operators are on site; that
is, creation and annihilation operators have the same site in-
dex. The momentum transfer in the C channel with the peak
at R = (π, π, π ) is characteristic of antiferromagnetic order,
such that a corresponding phase transition is expected to occur
at temperatures equal (up to factors of orders of unity) to the
energy scale. The contributions of all other form factors to
the C channel, shown in the inset of Fig. 4, are three orders of
magnitude smaller, varying along the high-symmetry lines ac-
cording to their momentum space shape. The P-channel vertex
in Fig. 4 shows a dip of the s-wave form factor contribution
at 
 which is still repulsive. This is the standard suppression
of repulsive interactions in this channel. Again, the (on-site)
s-wave form-factor contribution is three orders of magnitude
larger than those of the other form factors. Figure 5 shows
the P and C channels at the cutoff scale �c for the system
with a higher initial interaction of U = 4t . The characteristic
features, i.e., the peaks in the C channel at R and in the P
channel at 
, are the same as in the U = 1 case. However, due
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FIG. 4. Full vertex projected to the C channel (top) and P channel
(bottom) at the critical scale depending on main momentum transfer t
or s, respectively, moving along the high-symmetry lines for different
form factors with an initial interaction of U = 1 t .

to the larger initial interaction, there is a broader interaction
background of U ≈ 4t in the s-wave form factor. This drives
the interaction in the other form-factor representations, which
develop more pronounced features corresponding to their set
of form factors in most cases.

These results at half-filling can be understood as a first
sanity check for the 3D TUFRG scheme. The expected AFM-
SDW instability is reproduced, and quite a few details about
the wave-vector structure of the effective interaction can
be extracted. Regarding the numbers, the method’s quanti-
tative performance seems reasonable in the weak-coupling
region for U � bandwidth/3, even if self-energy effects and
frequency dependences of the vertices are neglected. This
is valuable information for more complicated cases, where
benchmarks are absent.

B. Results away from half-filling

The occurrence of unconventional pairing in the Hub-
bard model was subject to theoretical research already before
the advent of quasi-2D cuprate high-temperature supercon-
ductors. In the mid-1980s, Scalapino and collaborators [17]
investigated the doped 3D Hubbard model in spin-fluctuation
theory and determined the leading pairing instabilities. Be-
sides the AFM state close to half-filling they detected pairing
channels corresponding to nearest-neighbor pairs as well as
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FIG. 5. Full vertex projected to the C channel (top) and P channel
(bottom) at the critical scale depending on their main momentum
transfer moving along the high-symmetry lines for different form
factors with an initial interaction of U = 4 t .

pairing tendencies with some second-nearest-neighbor form
factors like dxy ∼ sin(kx ) sin(ky). Hence, we perform the cal-
culations away from half-filling by using the extended set
of form factors corresponding to on-site, nearest, and next-
nearest neighbors in Table I. For these calculations the vertex
was represented by a 143 momentum grid, while the propaga-
tor bubble was evaluated on a 4903 grid. If the system is hole
doped away from half-filling, the critical scale decreases, as
shown in Fig. 6. The momentum resolution, limited by com-
puting resources, prohibits statements of critical scales lower
than ≈10−5, such that the flow ended due to this criterion
and not by the divergence of the vertex for μ � −1.0t . In
Fig. 6, the μ region where the flow did not diverge within
the observable range is marked by a horizontal dashed line.
However, from the observation of the flows in these cases
educated guesses on the dominating orders at even lower
scales are still possible.

For μ � −0.5t we still observe a transition to an AFM
state with a contribution of the vertex similar to those in
the preceding section. As the doping moves the Fermi sur-
face away from perfect nesting, the AFM state becomes
incommensurate, and the critical scale for the runaway flow
decreases. In Fig. 7 (top row) we show a cut along the z = π

plane of the C channel in the leading on-site form factor for
both μ = 0t and μ = −0.4t . The plots clearly show that the
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FIG. 6. Tentative TUFRG phase diagram of the doped 3D
Hubbard model. Close to μ = 0.0t we observe AFM ordering
with (π, π, π ) ordering; around μ = −0.5t the ground state be-
comes dz2−r2 superconducting, and around μ = −1.3t we observe
predominant AFM tendencies, now with (π, π, 0) ordering (or
symmetry-related vectors). Below μ = −1.0t the flow does not di-
verge within a range down to �c = 8 × 10−6; hence, the plotted line
becomes flat. The resulting ordering tendencies are obtained from
investigations of the flow and vertex at the smallest �.

AFM nesting becomes incommensurate, as the peak splits and
moves slightly along (x, π, π ) and (π, y, π ) towards both M
points on this plane. This split to a different set of nestings
then causes the drop in critical scale.

For −1.0t � μ � −0.5t we observe a leading instability
in the pairing channel, with a critical scale of the order of
≈10−5. A transition between the AFM and d-wave states is
predicted from diagrammatic calculations [17] to happen at
μ = −0.8t , slightly below our values. Therefore, the inter-
channel couplings present in our calculations but not in the
previous spin-fluctuation theories seem to enlarge the d-wave
regime. In this parameter region the leading instability occurs
in the pairing channel with dz2−r2 form factors at 
, indicat-
ing a dz2−r2 -superconducting phase (see Fig. 8). Of course,
there are two more symmetry-related form factors with the
same pairing strength that can be obtained from rotating the
dz2−r2 function to point along the x or y axis. These will then
admix to the dz2−r2 function the other basis function of this
two-dimensional irreducible representation of Oh, customarily
chosen as having dx2−y2 symmetry. In Fig. 8 the basic feature
of a divergence of the vertex in this form-factor basis can be
seen, but with a much lower pairing strength. This disparity
occurs presumably because the corresponding gap function
would have longer nodal lines on the Fermi surface than
the dz2−r2 function. Regarding the C channel in this region,
there is still a subdominant incommensurate AFM ordering
tendency which continues the trend of peaks moving from R
towards M (see Fig. 7).

To study the leading order in the region of μ � −1.0t we
considered the change in the propagators P, C, and D as well
as the vertex at � = 10−5, where we ended the flow. For μ =
−1.2 the leading contribution to the flow and the signature in
the vertex still correspond to a dz2−r2 -superconductivity (SC)
phase. However, for even smaller μ the main contribution to
the flow comes from the C channel. The vertex for this scale
shows a peak close to M = (π, π, 0); that is, the system tends

FIG. 7. Cut in the z = π plane of the full vertex in the
C channel with the on-site form factor at U = 4t and μ =
0t, −0.4t, −0.6t, −1.0t, −1.4t, −1.8t from left to right and top to
bottom.

to an antiferromagnetic order with in-plane ordering vector.
Regarding the trend of increased doping for the AFM ordering
peak, it moved from R in the undoped region towards M for
μ ≈ −2t . Close to this chemical potential, the two incom-
mensurate peaks corresponding to, e.g., (π, π,±η), with η

being a small positive number, get close to each other and thus
strengthen the in-plane AFM tendency. This then destroys
the d-SC order which still causes signatures in the vertex.
As the Fermi surface of the 3D Hubbard model becomes
an inflated octahedron at μ = −2.0t (see Fig. 2) with edges
corresponding to a perfectly nested 2D square-lattice Fermi
surface, a leading AFM order at the M points can be expected.
Further investigations might also investigate the situation for
even larger doping with μ below −2.0t .

V. CONCLUSION

We have applied the truncated-unity functional renormal-
ization group to the three-dimensional Hubbard model. This
study serves as a demonstration that this method allows us
to investigate three-dimensional lattice-fermion models with
functional renormalization group methods. Here we basically
aimed to show that the scheme produces the correct physics
and that it may even be used for quantitative questions.

At half band filling and perfect nesting we observed the
well-known antiferromagnetic ground state of the 3D Hub-
bard model by analyzing the flow to strong coupling in the
TUFRG. By using the TUFRG critical scale as an estimate
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FIG. 8. Full TUFRG vertex projected to the C channel (top) and
P channel (bottom) at the critical scale depending on the main mo-
mentum transfer moving along the high-symmetry lines for different
form factors with an initial interaction of U = 4 t and chemical
potential μ = −0.6 t .

for the Néel ordering temperature TN we could reasonably
well reproduce the behavior of the TN(U ) computed by other
numerical techniques for weak coupling strengths U � 4t ,

although we used a set of form factors limited to nearest
neighbors. However, as expected, due to the approximations
involved, our approach does not reproduce the plateau of
TN at intermediate coupling strength and the crossover to a
decreasing ordering scale ∼1/U at larger U . Electron or hole
doping of the system leads to a significant decrease of the
critical scale as the Fermi surface does not provide perfect
nesting anymore. For μ < −0.5 the ground state becomes
dz2−r2 -wave superconducting, in good agreement with the pre-
dictions of Ref. [17]. For a doping towards μ ≈ −2t this
d-wave superconducting instability becomes suppressed by
a tendency towards in-plane antiferromagnetic ordering. Fur-
ther investigations of the doped 3D Hubbard model reducing
the approximations are under way.

Due to the numerical advantages of the TUFRG approach,
the inclusion of self-energy feedback, frequency dependence,
and, possibly, multiloop effects [31] is conceivable, po-
tentially even in three dimensions after some well-chosen
sacrifices. This will further increase the quantitative control of
the method. It may also be interesting to analyze in more detail
the critical behavior displayed by the TUFRG and to under-
stand to what extent nonfield behavior [14] can be reproduced
depending on the approximation level. Furthermore, exten-
sions to models with several orbitals should be feasible, with
some necessary compromises in the momentum resolution.
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