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Spinodal electronic phase separation during insulator-metal transitions
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Electronic phase transitions such as insulator-metal transitions are common in strongly correlated systems.
Here, using a combination of thermodynamic linear-stability analysis and phase-field simulations and employing
VO2 as a prototypical example, we predict that an insulator-metal transition driven by photoexcitation may
involve an intermediate, modulated charge density state with a temperature-dependent characteristic wavelength.
It is shown that such an intermediate two-phase electronic state is formed through a spinodal mechanism and
that its formation can be generic for insulator-metal transitions driven by fast stimuli. This transient electronic
phase separation is expected to stimulate future experimental and computational efforts.
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I. INTRODUCTION

Spinodal phase separation, which occurs when a homoge-
neous state becomes thermodynamically unstable with respect
to phase separation to two or more phases, is ubiquitous in
nature. For example, a homogeneous liquid separates into a
liquid-vapor two-phase mixture when it becomes mechani-
cally unstable, i.e., the isothermal compressibility becomes
negative [1]. A homogeneous binary solution decomposes into
two phases with different chemical compositions when its
chemical instability is reached or the second derivative of its
free energy with respect to the chemical composition becomes
negative [2]. Recently, it was shown that the ferroelastic do-
main structure formation at a constant strain often takes place
through the spinodal mechanism due to the thermodynamic
instability of the parent phase with respect to mechanical
strain [3]. Commercial porous glasses with interconnected
nanometer-scale pores, with a wide variety of applications
such as chromatography, reference electrodes, catalysis sup-
port, etc., are typically obtained through the spinodal phase
separation mechanism.

For complex materials, a homogeneous state at low temper-
atures is generally unstable with respect to the development
of different types of order such as charge/spin/lattice order
and phase separation, leading to competing ground states with
distinct electronic properties [4–7]. Some of these states may
coexist on microscopic and mesoscopic length scales, e.g., the
coexistence of metallic and insulating states responsible for
the colossal magnetoresistance [8,9]. Here, using vanadium
dioxide (VO2) as an example, we report the observation of an
intermediate electronic phase separation through a spinodal
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mechanism during the insulator-metal transition (IMT) driven
by ultrafast photoexcitation in our phase-field simulations,
and our analytical thermodynamic analysis demonstrates that
such an electronic phase separation results from the instability
of a transient homogeneous state against the development of
charge density modulations with a characteristic wavelength.

VO2 is perhaps the most studied material that undergoes an
IMT at a temperature Tc = 340 K under ambient pressure ac-
companied by a change in the lattice structure [10,11]. Below
Tc, VO2 is an insulator with a monoclinic structure, called the
M1 phase, while above Tc it is a metal with a rutile structure,
labeled the R phase [10–12]. To describe the coupled elec-
tronic and structural phase transition, we recently proposed
a thermodynamic description employing two sets of order
parameters: One is a multicomponent electronic order param-
eter characterizing the electronic transition, and the other is
a multicomponent structural order parameter describing the
structural transition, which are also coupled to the spatially
inhomogeneous distributions of charge carriers, namely the
free electrons and holes [13–15].

II. MINIMAL MESOSCOPIC MODEL OF IMT

Before we perform phase-field simulations to explore the
possible spinodal electronic phase separation in VO2 upon
photoexcitation, we start with a minimal mesoscopic model
to analyze and understand the possible emergence of transient
insulator-metal coexistence states of a crystal going through
a generic insulator-metal transition. Here, we utilize a single
spatially dependent order parameter field ξ (r, t ), where r =
(x, y, z) represents the spatial coordinate and t is the time, to
present a metallic state (ξ = 0), or an insulating state (ξ �= 0,
with ±ξ describing two energetically degenerate insulating
state or domain variants), or a mixture of metallic and insu-
lating regions within a crystal. The thermodynamics of such
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FIG. 1. (a) A schematic intrinsic bulk free-energy density fb as a function of order parameter ξ at different temperatures, and (b) a schematic
amplification factor R as a function of the wave number k. In (a), at high temperatures fb has a minimum at ξ = 0 corresponding to the metallic
phase, while at low temperatures it has two degenerate minima at nonzero ±ξ corresponding to two energetically degenerate states of the
insulating phase.

an inhomogeneous system can be described by the following
simplest possible free-energy functional,

F =
∫ [

f (T ; ξ, n, p) + κ

2
(∇ξ )2

]
d3r, (1)

where f is the local free energy density, T is temperature,
n(r, t ) and p(r, t ) are the free electron and hole density fields,
respectively, and κ is the gradient energy coefficient. The
system is assumed to be at partial equilibrium within local
degrees of freedom of ξ , n, and p, respectively, so that it has
well-defined local T and ξ as well as n and p that obey equi-
librium statistical distributions with their own quasichemical
potentials. Without loss of generality, we employ the follow-
ing simple model for f ,

f = fb(T ; ξ ) + kBT

{
n ln

n

Nc
+ p ln

p

Nv

+ 2ni

+
[

Eg(ξ )

2kBT
− 1

]
(n + p)

}
. (2)

Here, fb(T ; ξ ) is the intrinsic bulk free energy density [see
Fig. 1(a)], and the second term is the relative free energy
density of the free charge carriers under the Boltzmann
statistics approximation [14,15]. Nc and Nv are the effec-
tive electronic densities of states at the conduction and
valence band edges of the insulating state, respectively. ni =√

NcNv exp[−Eg(ξ )/2kBT ] is the intrinsic electron concentra-
tion in the insulating state.

In Eq. (2), Eg is the electron energy gap, which depends on
the order parameter ξ , that is, there is a finite gap in the insu-
lating state ξ �= 0, and the gap is closed in the metallic state
ξ = 0. Since Eg is a scalar invariant degenerate with respect
to ±ξ insulating states, the lowest-order, symmetry-allowed
expansion for Eg is Eg = γ ξ 2, where γ is a positive constant.

A. Linear-stability analysis

To analyze the temporal and spatial evolution of the charge
carriers, we assume that the charge neutrality n = p is satis-
fied everywhere, and the possible carrier recombination can
be ignored regarding the short timescale of the process of
concern. We also assume that the IMT takes place much faster
than the diffusion process of the free charge carriers, i.e., ξ is
at equilibrium for a given distribution of n at any moment.
In one dimension, the equilibrium of ξ at a given spatial

distribution of n is achieved by minimizing the functional F
with respect to ξ ,

∂ fb

∂ξ
− κ

∂2ξ

∂x2
+ 2γ ξ (n − ni ) = 0. (3)

The diffusion equation for n is

∂n

∂t
= ∂

∂x

(
Mn

e

∂

∂x

δF

δn

)

= M

e

{
γ

[
ξ
∂ξ

∂x

∂n

∂x
+ n

(
∂ξ

∂x

)2

+ nξ
∂2ξ

∂x2

]
+ kBT

∂2n

∂x2

}
,

(4)

where M is the mobility of the free electrons, and e is the
(positive) elementary charge, and δF/δn represents the varia-
tional derivative of F with respect to n, i.e., the quasichemical
potential of the free electrons.

We can write n as a function of ξ from Eq. (3) and then
substitute it into Eq. (4) to obtain a differential equation of ξ

only. We now examine the stability of a homogeneous state,
described by a uniform ξ , against infinitesimal fluctuations in
ξ , i.e., we consider a solution with a uniform value ξ̄ plus an
infinitesimal modulation with a wave number k,

ξ = ξ̄ + Ak (t ) exp(ikx), (5)

where Ak (t ) is an infinitesimal amplitude. Introducing an
infinitesimal modulation in ξ also produces an infinitesimal
modulation in the electron (hole) density. Substituting Eq. (5)
into Eqs. (3) and (4) gives, to the first order of Ak (t ),

dAk (t )

dt
= R(k)Ak (t ), (6)

and its solution is simply Ak (t ) = exp[R(k)t], where R(k) is
the amplification factor,

R(k) = −M

e

h1k2 + h2k4

h3 + h4k2
. (7)

Here,

h1 = kBT

γ

∂2 fb

∂ξ 2

∣∣∣∣
ξ̄

+
(

ξ̄ − kBT

γ ξ̄

)
∂ fb

∂ξ

∣∣∣∣
ξ̄

, (8a)

h2 = kBT κ

γ
, (8b)
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FIG. 2. (a) and (b) show the temporal evolution of ξ and n, respectively, during electronic phase separation during an IMT. The legend in
(a) lists the times in units of e/MkBT0N2/3

c . The inset in (a) is the Fourier transform of ξ at t = 1.8 × 105e/MkBT0N2/3
c (λ is the wavelength).

h3 = 2γ ξ̄ 2n̄i

kBT
+ 1

γ

(
∂2 fb

∂ξ 2

∣∣∣∣
ξ̄

− 1

ξ̄

∂ fb

∂ξ

∣∣∣∣
ξ̄

)
, (8c)

h4 = κ

γ
, (8d)

where n̄i = √
NcNv exp(−γ ξ̄ 2/2kBT ).

For small k, we can expand R(k) to the fourth order of k,

R(k) ≈ −M

e

(
h1

h3
k2 + h2h3 − h1h4

h2
3

k4

)
. (9)

If h1/h3 > 0 and h2h3 − h1h4 > 0, R(k) in Eq. (9) is always
negative, implying that the initial homogeneous state is stable.
The equilibrium case (∂ fb/∂ξ )|ξ̄ = 0, (∂2 fb/∂ξ 2)|ξ̄ > 0 is in-
deed in the stable regime. On the other hand, for h1/h3 < 0
and h2h3 − h1h4 > 0, or equivalently,

1

ξ̄

∂ fb

∂ξ

∣∣∣∣
ξ̄

− 2γ 2ξ̄ 2n̄i

kBT
<

∂2 fb

∂ξ 2

∣∣∣∣
ξ̄

<

(
1 − γ ξ̄ 2

kBT

)
1

ξ̄

∂ fb

∂ξ

∣∣∣∣
ξ̄

,

(10)

R(k) in Eq. (9) as a function of k is shown in Fig. 1(b). A ξ̄

satisfying inequalities (10) describes a nonequilibrium state.
As it can be seen, the system is unstable for a range of k, i.e.,
those k yielding R(k) > 0,

|k| <

√
−h1h3

h2h3 − h1h4
, k �= 0. (11)

R(k) has two positive maxima at ±k0, with k0 =√−h1h3/2(h2h3 − h1h4). Since Ak (t ) grows exponentially
with time with R(k), the dominant Ak’s are those at and around
k = ±k0, leading to a modulation of ξ with a characteristic
wavelength

λ0 = 2π

k0
= 2π

√
2(h2h3 − h1h4)

−h1h3
. (12)

Therefore, for a ξ̄ satisfying inequalities (10), the initial
nonequilibrium homogeneous phase with order parameter ξ̄

will spontaneously separate into a mixture of a metal-like
phase and an insulatorlike phase.

B. Numerical solution

To confirm the above linear-stability analysis, we numeri-
cally solve Eqs. (3) and (4) with periodic boundary conditions
for both ξ and n. We use a simple double-well potential for
fb, fb = −4 f0(τξ 2/2 + ξ 4/4) with τ = (T − T0)/T0, which
describes a second-order phase transition at a critical temper-
ature T0. f0 is the equilibrium free energy density at T = 0 K.
We choose the following parameters for numerical calcula-
tions: f0 = −0.25kBT0Nc, κ = 8kBT0N1/3

c , and γ = 5kBT0.
The result for temperature τ = −0.5 is shown in Fig. 2.

The initial ξ is assigned a uniform nonequilibrium value
ξ̄ = −0.5 plus an uncorrelated random noise ranging from
−0.005 to 0.005, which is inside the unstable regime de-
fined by inequalities (10). Indeed, the noise grows with time
with a dominant wavelength, which is shown clearly in the
Fourier transform of ξ (ξ̃ ) at t = 1.8 × 105e/MkBT0N2/3

c . The
highest peak in ξ̃ is at the wavelength λ0 = 74N−1/3

c , which
is very close to the λ0 = 72N−1/3

c estimated using Eq. (12).
We also observed the expected coarsening of the metal-like
phase (peaks of ξ ) and the insulatorlike phase (valleys of
ξ ) at later stages (not shown). If a sink term representing
the electron-hole recombination process (the process for n
to approach ni) were introduced, we would have seen the
eventual evolution of the transient insulator-metal mixture to
the equilibrium homogeneous insulator with ξ = −√−τ =
−1/

√
2. The simulation of the cases inside the stable regime

shows that the initial noises gradually disappear and that the
system directly evolves to the equilibrium homogeneous insu-
lating state. It should be pointed out that in the conventional
chemical spinodal decomposition in binary solutions, solute-
concentration modulations with finite wavelengths arise from
the competition between the reduction in the bulk chemical
energy and the gradient energy [2] whereas the transient elec-
tronic phase separation results from the coupling between the
electronic order parameter and the charge carriers [Eqs. (3)
and (4)].

III. TRANSIENT ELECTRONIC PHASE SEPARATION
IN PHOTOEXCITED VO2

We next discuss the transient electronic phase separation
of nonequilibrium states that resulted during the photoinduced
IMT in VO2.
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A. Phase-field model of IMT in photoexcited VO2

We shall follow our earlier work on the phase-field model
of VO2 [13–15]. The structural and the electronic phases
in VO2 can be characterized by a set of structural order
parameters {ηi, i = 1, 2, 3, 4} and a set of electronic order
parameters {ξi, i = 1, 2, 3, 4}, respectively [13–15]. A finite
ηi indicates the dimerization of the neighboring V ions, and
a finite ξi indicates the formation of the dynamical singlet
situated on the neighboring V sites and consequently the open-
ing of the energy gap [16–18]. The order parameters of the
different phases are η1 = η3 �= 0, η2 = η4 = 0, ξ1 = ξ3 �= 0,
ξ2 = ξ4 = 0, η1ξ1 < 0, η3ξ3 < 0 (and other symmetry-related
values) for the M1 phase and ηi = ξi = 0 (i = 1, 2, 3, 4) for
the R phase [13]. Since only the R and the M1 phases are
involved and since no multidomain structure is present, we
simplify the problem by reducing the two sets of the four-
dimensional order parameters to two one-dimensional order
parameters, η = (η1 + η3)/

√
2 and ξ = (ξ1 + ξ3)/

√
2 (here,

η2 = η4 = ξ2 = ξ4 = 0 always).
The Landau free-energy functional of VO2 is written as

FVO2 [T,�(r, t ); η(r, t ), ξ (r, t ), n(r, t ), p(r, t )]

= F VO2
0 [T ; η(r, t ), ξ (r, t )]

+ F VO2
f [T,�(r, t ); ξ (r, t ), n(r, t ), p(r, t )], (13)

where F VO2
0 and F VO2

f are the intrinsic free energy and the free
energy of free electrons and holes, respectively, and � is the
electric potential. F VO2

0 consists of a bulk Landau potential
f VO2
b and a gradient energy punishing the spatial vari-

ance of the order parameters, F VO2
0 = ∫

[ f VO2
b + κ1(∇η)2/2 +

κ2(∇ξ )2/2]d3r, where κ1 and κ2 are positive constants. The
bulk Landau potential reads [13–15]

f VO2
b = a1(T − T1)

2Tc
η2 + b1

4
η4 + c1

6
η6

+ a2(T − T2)

2Tc
ξ 2 + b2

4
ξ 4 + c2

6
ξ 6

+ hηξ − s

2
η2ξ 2 + q

2
η3ξ, (14)

where a1, a2, b1, b2, c1, c2, h, s, q, T1, and T2 are all con-
stants. The free energy of free electrons and holes in VO2 is
calculated based on the assumption that the conduction and
the valence bands are effectively parabolic [15],

F VO2
f =

∫ [
Eg(ξ )

2
(n + p) + kBT

∫ n

0
F−1

1/2

(
ζ

Nc

)
dζ

+ kBT
∫ p

0
F−1

1/2

(
ζ

Nv

)
dζ + e�(p − n)

]
d3r − F VO2

i ,

(15)

where F−1
1/2 is the inverse function of the Fermi inte-

gral F1/2(u) = (2/
√

π )
∫ ∞

0

√
ε[1 + exp(ε − u)]−1dε [19] and

F VO2
i is the equilibrium intrinsic free energy of free elec-

trons and holes serving as a reference energy. The effective
density of states of the conduction (valence) band Nc(v) is
related to the effective mass of the free electrons (holes) m∗

e(h),

Nc(v) = 2(m∗
e(h)kBT/2π h̄2)

3/2
. The energy gap is related to the

electronic order parameter ξ [16–18] to its symmetry-allowed
lowest order, Eg = γ ξ 2 [13–15], where γ is a constant fitted
to the experimentally measured gap.

The mesoscale kinetics of the phase transitions in VO2

upon photoexcitation is described by the Ginzburg-Landau
equations for η and ξ and the diffusion equations for n
and p,

∂η(r, t )

∂t
= − L1

δFVO2

δη(r, t )
, (16)

∂ξ (r, t )

∂t
= −L2

δFVO2

δξ (r, t )
, (17)

∂n(r, t )

∂t
= ∇ ·

[
Men(r, t )

e
∇ δFVO2

δn(r, t )

]
+ �(r, t ), (18)

∂ p(r, t )

∂t
=∇ ·

[
Mh p(r, t )

e
∇ δFVO2

δp(r, t )

]
+ �(r, t ), (19)

which are closed by the Poisson equation for the self-
consistent determination of the electric potential �(r, t ),

−∇2�(r, t ) = e[p(r, t ) − n(r, t )]

εrε0
. (20)

Here, �(r, t ) represents the rate per unit volume of photoex-
citation of free electron-hole pairs. L1 and L2 are constants
characterizing the phase transition speed, and Me(h) is the
electron (hole) mobility. εr and ε0 are the relative permit-
tivity of VO2 and the vacuum permittivity, respectively. The
electron-hole recombination process can be ignored here since
the lifetime of free electrons and holes in VO2 (∼10 μs [20])
is found to be much longer than the timescale of the transient
electronic phase separation.

For a monochrome light linearly polarized along the x
direction (propagating in the z direction) with an angular
frequency ω and an intensity I , � can be derived from the
Fermi’s golden rule,

� = 2π

h̄V

∑
ki,k f

[1 − fF (εck f − μe)]

∣∣∣∣eÃ

m
p f i

∣∣∣∣
2

fF
(
εvki + μh

)

× δ
(
εck f − εvki − h̄ω

)
, (21)

where m is the electron mass, h̄ is the Planck constant divided
by 2π , fF (ε) = [1 + exp(ε/kBT )]−1 is the Fermi distribution
function, Ã is the amplitude of the vector potential of the
light, V is the illuminated volume, and p f i = 〈ck f |px|vki〉
is the momentum matrix element connecting the ki state in
the valence band and the k f state in the conduction band.
For a general polarization, the vector potential of the light
can be written as Ãn where the complex vector n is the
polarization direction. Then the momentum matrix element
appearing in the modulus operator in Eq. (21) is n · p f i,
where p f i = (〈ck f |px|vki〉, 〈ck f |py|vki〉). In such a general
case, one needs to explicitly calculate p f i including the phase
factors of its components, which requires the detail of the
electronic structure of the material and is beyond the scope
of the present mesoscopic continuous theory. The momentum
of the photon has been ignored since it is negligible compared
to the momentum of the electron. εvk = −h̄2k2/2m∗

h − Eg/2
and εck = h̄2k2/2m∗

e + Eg/2 are the energy spectra of the
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FIG. 3. Phase-field simulation results on the transient electronic phase separation in a 300-nm-long VO2 nanobeam at T = 320 K
photoexcited by an 800-nm laser pulse of 2 mJ/cm2 fluence and 0.2 ns duration. (a)–(c) depict the temporal evolution of ξ , η, and n,
respectively. p is almost the same as n. The inset in (b) is a schematic of the simulation setup. We only show the results on half of the
sample (0 � x � 150 nm) [the shaded region in (a) indicates the half of the illuminated region]. The results on the other half are symmetrical
with the shown results about the x = 150 nm mirror plane. (d) Dominant wavelength of the phase modulation as a function of temperature in
the photoexcited VO2. The line is a guide to the eyes.

parabolic valence and conduction bands, respectively. Since
the effective mass of holes in VO2 has not been measured,
we adopt a rough approximation that m∗

h = m∗
e [20]. μe and

μh are the quasichemical potentials of free electrons and free
holes, respectively. Note that the quasichemical potential of
the valence electrons is the negative quasichemical poten-
tial of the holes μh here. For the two-parabolic-band model,
the momentum matrix element can be approximated from
the k · p perturbation theory |p f i|2 ≈ δk f ki (1 + m/m∗

h )mEg/2
[21]. Ã is related to the intensity I by I = ε0cω2Ã2/2, where c
is the speed of light in the vacuum. Using these relations and
doing the summation in Eq. (21), we have

� =
√

2πNvNce2EgI

ε0cmω2 h̄kBT

(
1 + m

m∗
h

)√
h̄ω − Eg

kBT

× fF

(
− h̄ω

2
+ μh

)[
1 − fF

(
h̄ω

2
− μe

)]
, (22)

in which we have used m∗
e = m∗

h so that Nv = Nc = √
NcNv .

I is a Gaussian-type function of both the space and the time
controlling the illumination range and duration of the pump
laser pulse: In the one-dimensional case I (x, t ) = √

eI0gδ (x −
x0)gζ (t − t0), where gσ (ε) = exp(−ε2/2σ 2) and I0 is defined
as the intensity of the laser pulse. The illumination width and
the pulse duration are defined as 4δ and 2ζ , respectively. x0

and t0 are the position and the moment of the peak of the laser
pulse, respectively.

B. Photoinduced transient electronic phase separation

We consider a VO2 nanobeam (one-dimensional system)
with its middle part illuminated by a 800-nm laser pulse and
its two ends connected to the ground [inset in Fig. 3(b)]. The
corresponding boundary conditions are that the electric poten-
tial � is zero, and that n and p have their equilibrium values at
the two ends. We assume Neumann boundary conditions (zero
spatial derivatives) for η and ξ , which is the manifestation
of no interaction of the order parameters with the environ-
ment. The parameters of the light used in the simulation are
I0 = 107 W/cm2, δ = 25 nm, x0 = 150 nm, ζ = 0.1 ns, and
t0 = 0.2 ns, corresponding to a 2I0ζ = 2 mJ/cm2 fluence and
2ζ = 0.2 ns duration laser pulse. The period of the 800-nm
laser is 2.67 fs, which is far shorter than the scattering time
18.5 fs estimated from the electron mobility of 0.5 cm2/V s
[22].

Figure 3 presents the results for VO2 upon photoexcitation.
Inside the illuminated region, the photoexcitation produces
free electron-hole pairs, which screen the electron-electron
repulsion and thus the electron correlation described by the
electronic order parameter [23]. This eventually leads to the
closure of the energy gap resulting in the transition from
the insulator to the metal inside the illuminated region,
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which is consistent with the femtosecond time-resolved pho-
toelectron spectroscopy measurement and the first-principles
many-body perturbation theory calculations [23]. The IMT
inside the illuminated region is accompanied by the diffusion
of the excited free electrons and holes outside the illuminated
region and the formation of a nonequilibrium electronic state
there. As it can be seen clearly, charge density modulation
with a wavelength of ∼11 nm forms at the edge of the il-
luminated region (around x ∼ 70 nm) several picoseconds
following the incidence of the laser, inducing the coexistence
of metal-like (high carrier density) and insulatorlike (low
carrier density) phases. A wavelike ionic displacement field
(represented by the structural order parameter η) also develops
at the edge of the illuminated region due to the coupling be-
tween the electronic and the structural order parameters. The
metal-like and the insulatorlike phases also undergo coarsen-
ing at later stages.

We calculate the characteristic wavelength of the phase
modulation at different temperatures, as shown in Fig. 3(d).
The wavelength increases with elevating temperature and
reaches the maximum of ∼14 nm near Tc. The wavelengths
are far shorter than the diffusion length of the free carriers
(several micrometers [20]). At low temperatures the modu-
lation wavelength may be calculated to be subnanometers,
implying the possibility of charge ordering at the atomic scale.

IV. CONCLUSIONS AND DISCUSSIONS

We formulated the theory and computational model for
studying coupled electronic and structural phase transitions
under fast stimuli. We demonstrated both analytically and
computationally that an IMT driven by ultrafast stimuli is
likely preceded by a transient electronic phase separation of
the excited nonequilibrium electronic states into charge den-
sity modulations with a dominant wavelength. This work is
expected to stimulate future experimental investigations to
detect and explore the transient electronic phase separation
phenomena and the modulated states of charge density and
ionic displacement fields in VO2 and related materials that
exhibit IMTs.

In the phase-field model of VO2, we made the approxi-
mation of parabolic bands for both the conduction and the
valence bands, while the band structure of VO2 is much more

complicated than this approximation [24,25]. The compli-
cated band structure will result in a complicated diffusion
equation. Although the exact time and spatial scales of the
electronic phase separation will definitely depend on the de-
tails of the band structure, we argue that our conclusion for the
existence of the phase separation is insensitive to the details
of the band structure. Our argument is based on the fact that
the important factors for the possible emergence of the phase
separation are the spontaneous change in the band gap and a
natural gradient energy of the order parameter responsible for
the possible domain wall energy. This is demonstrated by the
emergence of the phase separation in both our minimal model
and the actual VO2 model despite the difference in the details
of the diffusion equations in the two models.

We also assumed the hole effective mass to be the same
as the electron effective mass. The effective mass of holes
in VO2 is expected to be different from that of electrons
due to the asymmetric conduction and valence bands. Nev-
ertheless, this may just have a minor influence on the results.
Since the mobilities of the free electrons and the free holes
in VO2 are close to each other [20], the charge neutrality
is expected to be approximately fulfilled everywhere in the
system during the phase separation, as demonstrated in our
simulation. Hence, only the diffusion equation and conse-
quently the effective mass of the free electrons are important.
The different effective mass of the free holes affects the rate
of the photoexcitation of free electron-hole pairs, but it has a
minimal influence on the phase separation because the phase
separation does not occur inside the illuminated region and the
important consequence of the photoexcitation is the formation
of a nonequilibrium state at the edges of the illuminated re-
gion. Therefore, the timescale and wavelength of the phase
separation should be insensitive to the different effective mass
of free holes.
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